Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Cell ; 84(8): 1541-1555.e11, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38503286

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Mitocondriales/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
2.
EMBO Rep ; 25(3): 1570-1588, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263329

RESUMEN

5'-end modifications play key roles in determining RNA fates. Phospho-methylation is a noncanonical cap occurring on either 5'-PPP or 5'-P ends. We used ChemRAP, in which affinity purification of cellular proteins with chemically synthesized modified RNAs is coupled to quantitative proteomics, to identify 5'-Pme "readers". We show that 5'-Pme is directly recognized by EPRS, the central subunit of the multisynthetase complex (MSC), through its linker domain, which has previously been involved in key noncanonical EPRS and MSC functions. We further determine that the 5'-Pme writer BCDIN3D regulates the binding of EPRS to specific mRNAs, either at coding regions rich in MSC codons, or around start codons. In the case of LRPPRC (leucine-rich pentatricopeptide repeat containing), a nuclear-encoded mitochondrial protein associated with the French Canadian Leigh syndrome, BCDIN3D deficiency abolishes binding of EPRS around its mRNA start codon, increases its translation but ultimately results in LRPPRC mislocalization. Overall, our results suggest that BCDIN3D may regulate the translation of specific mRNA via RNA-5'-Pme.


Asunto(s)
Proteínas de Neoplasias , Biosíntesis de Proteínas , Proteínas de Neoplasias/genética , Canadá , Metilación , ARN Mensajero/genética , ARN/metabolismo
3.
Int J Med Sci ; 21(2): 219-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169719

RESUMEN

Increasing studies have shown that N6-methyladenosine (m6A) modification plays an important role in cardiovascular diseases. In this study, we systematically investigated the regulatory mode of m6A genes in myocardial infarction (MI) by combining bioinformatics analysis of clinical samples with animal experiments. We utilized gene expression data of clinical samples from public databases to examine the expression of m6A genes in heart tissues and found a large difference between the healthy control group and MI group. Subsequently, we established an MI diagnosis model based on the differentially expressed m6A genes using the random forest method. Next, unsupervised clustering method was used to classify all MI samples into two clusters, and the differences in immune infiltration and gene expression between different clusters were compared. We found LRPPRC to be the predominant gene in m6A clustering, and it was negatively correlated with immunoreaction. Through GO enrichment analysis, we found that most differentially expressed genes between the two clusters were profibrotic. By means of WGCNA, we inferred that GJA4 might be a core molecule in the m6A regulatory network of MI. This study demonstrates that m6A regulators probably affects the immune-inflammatory response and fibrosis to regulate the process of MI, which provides a potential therapeutic target.


Asunto(s)
Infarto del Miocardio , Animales , Infarto del Miocardio/genética , Análisis por Conglomerados , Fibrosis , ARN
4.
J Transl Med ; 21(1): 504, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496051

RESUMEN

BACKGROUND: Ovarian cancer (OC) is the most lethal malignant gynecological tumor type for which limited therapeutic targets and drugs are available. Enhanced mitochondrial oxidative phosphorylation (OXPHOS), which enables cell growth, migration, and cancer stem cell maintenance, is a critical driver of disease progression and a potential intervention target of OC. However, the current OXPHOS intervention strategy mainly suppresses the activity of the electron transport chain directly and cannot effectively distinguish normal tissues from cancer tissues, resulting in serious side effects and limited efficacy. METHODS: We screened natural product libraries to investigate potential anti-OC drugs that target OXPHOS. Additionally, LC-MS, qRT-PCR, western-blot, clonogenic assay, Immunohistochemistry, wound scratch assay, and xenograft model was applied to evaluate the anti-tumor mechanism of small molecules obtained by screening in OC. RESULTS: Gossypol acetic acid (GAA), a widely used gynecological medicine, was screened out from the drug library with the function of suppressing OXPHOS and OC progression by targeting the leucine-rich pentatricopeptide repeat containing (LRPPRC) protein. Mechanically, LRPPRC promotes the synthesis of OXPHOS subunits by binding to RNAs encoded by mitochondrial DNA. GAA binds to LRPPRC directly and induces LRPPRC rapid degradation in a ubiquitin-independent manner. LRPPRC was overexpressed in OC, which is highly correlated with the poor outcomes of OC and could promote the malignant phenotype of OC cells in vitro and in vivo. GAA management inhibits cell growth, clonal formation, and cancer stem cell maintenance in vitro, and suppresses subcutaneous graft tumor growth in vivo. CONCLUSIONS: Our study identified a therapeutic target and provided a corresponding inhibitor for OXPHOS-based OC therapy. GAA inhibits OC progression by suppressing OXPHOS complex synthesis via targeting LRPPRC protein, supporting its potential utility as a natural therapeutic agent for ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Fosforilación Oxidativa , Femenino , Animales , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Proliferación Celular , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proteínas de Neoplasias/metabolismo
5.
BMC Cancer ; 23(1): 935, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789316

RESUMEN

BACKGROUND: Leucine-rich pentatricopeptide repeat containing (LRPPRC) is a potential oncogene in multiple tumor types, including lung adenocarcinoma, esophageal squamous cell carcinoma and gastric cancer. LRPPRC exerts its tumor-promoting effects mainly by regulating mitochondrial homeostasis and inducing oxidative stress. However, the exact role and mechanisms by which LRPPRC acts in osteosarcoma and osteosarcoma-derived cancer stem-like cells (CSCs), which potentially critically contribute to recurrence, metastasis and chemoresistance, are still largely unclear. METHODS: LRPPRC level in osteosarcoma cells and CSCs were detected by western blot. Effects of LRPPRC on CSCs were accessed after LRPPRC knockdown by introducing lentivirus containing shRNA targeting to LRPPRC mRNA. RESULTS: we found that LRPPRC was highly expressed in several osteosarcoma cell lines and that LRPPRC knockdown inhibited malignant behaviors, including proliferation, invasion, colony formation and tumor formation, in MG63 and U2OS cells. Enriched CSCs derived from MG63 and U2OS cells presented upregulated LRPPRC levels compared to parental cells (PCs), and LRPPRC knockdown markedly decreased the sphere-forming capacity. These findings demonstrate that LRPPRC knockdown decreased stemness in CSCs. Consistent with a previous report, LRPPRC knockdown decreased the expression levels of FOXM1 and its downstream target genes, including PRDX3, MnSOD and catalase, which are responsible for scavenging reactive oxygen species (ROS). Expectedly, LRPPRC knockdown increased the accumulation of ROS in osteosarcoma and osteosarcoma-derived CSCs under hypoxic conditions due to the decrease in ROS scavenging proteins. Moreover, LRPPRC knockdown sensitized osteosarcomas and CSCs against carboplatin, a ROS-inducing chemoagent, and promoted apoptosis. Furthermore, LRPPRC knockdown significantly decreased the mitochondrial membrane potential, disturbed mitochondrial homeostasis and led to mitochondrial dysfunction. CONCLUSION: Taken together, these findings indicated that LRPPRC exerts critical roles in regulating mitochondrial homeostasis, mitochondrial function and tumorigenesis in osteosarcomas and osteosarcoma-derived CSCs. This suggests that LRPPRC might be a promising therapeutic target for osteosarcomas.


Asunto(s)
Neoplasias Óseas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Pulmonares , Osteosarcoma , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Mitocondrias/metabolismo , Osteosarcoma/patología , Neoplasias Pulmonares/patología , Neoplasias Óseas/patología , Homeostasis , Línea Celular Tumoral , Proliferación Celular , Células Madre Neoplásicas/metabolismo , Proteínas de Neoplasias/genética
6.
Mol Cell Proteomics ; 20: 100065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33640490

RESUMEN

Drosophila melanogaster has been a workhorse of genetics and cell biology for more than a century. However, proteomic-based methods have been limited due to the complexity and dynamic range of the fly proteome and the lack of efficient labeling methods. Here, we advanced a chemically defined food source into direct stable-isotope labeling of amino acids in flies (SILAF). It allows for the rapid and cost-efficient generation of a large number of larvae or flies, with full incorporation of lysine-[13C6] after six labeling days. SILAF followed by fractionation and enrichment gave proteomic insights at a depth of 7196 proteins and 8451 phosphorylation sites, which substantiated metabolic regulation on enzymatic level. We applied SILAF to quantify the mitochondrial phosphoproteome of an early-stage leucine-rich PPR motif-containing protein (LRPPRC)-knockdown fly model of mitochondrial disease that almost exclusively affects protein levels of the oxidative phosphorylation (OXPHOS) system. While the mitochondrial compartment was hypo-phosphorylated, two conserved phosphosites on OXPHOS subunits NDUFB10 and NDUFA4 were significantly upregulated upon impaired OXPHOS function. The ease and versatility of the method actuate the fruit fly as an appealing model in proteomic and posttranslational modification studies, and it enlarges potential metabolic applications based on heavy amino acid diets.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfoproteínas/metabolismo , Aminoácidos/metabolismo , Animales , Drosophila melanogaster , Femenino , Marcaje Isotópico , Masculino , Fosforilación , Proteoma
7.
BMC Musculoskelet Disord ; 24(1): 729, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700277

RESUMEN

BACKGROUND: Low back pain (LBP) has drawn much widespread attention and is a major global health concern. In this field, intervertebral disc degeneration (IVDD) is frequently the focus of classic studies. However, the mechanistic foundation of IVDD is unclear and has led to conflicting outcomes. METHODS: Gene expression profiles (GSE34095, GSE147383) of IVDD patients alongside control groups were analyzed to identify differentially expressed genes (DEGs) in the GEO database. GSE23130 and GSE70362 were applied to validate the yielded key genes from DEGs by means of a best subset selection regression. Four machine-learning models were established to assess their predictive ability. Single-sample gene set enrichment analysis (ssGSEA) was used to profile the correlation between overall immune infiltration levels with Thompson grades and key genes. The upstream targeting miRNAs of key genes (GSE63492) were also analyzed. A single-cell transcriptome sequencing data (GSE160756) was used to define several cell clusters of nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplate (CEP) of human intervertebral discs and the distribution of key genes in different cell clusters was yielded. RESULTS: By developing appropriate p-values and logFC values, a total of 6 DEGs was obtained. 3 key genes (LRPPRC, GREM1, and SLC39A4) were validated by an externally validated predictive modeling method. The ssGSEA results indicated that key genes were correlated with the infiltration abundance of multiple immune cells, such as dendritic cells and macrophages. Accordingly, these 4 key miRNAs (miR-103a-3p, miR-484, miR-665, miR-107) were identified as upstream regulators targeting key genes using the miRNet database and external GEO datasets. Finally, the spatial distribution of key genes in AF, CEP, and NP was plotted. Pseudo-time series and GSEA analysis indicated that the expression level of GREM1 and the differentiation trajectory of NP chondrocytes are generally consistent. GREM1 may mainly exacerbate the degeneration of NP cells in IVDD. CONCLUSIONS: Our study gives a novel perspective for identifying reliable and effective gene therapy targets in IVDD.


Asunto(s)
Anillo Fibroso , Proteínas de Transporte de Catión , Degeneración del Disco Intervertebral , MicroARNs , Humanos , Degeneración del Disco Intervertebral/genética , MicroARNs/genética , Biomarcadores , Biología Computacional , Proteínas de Neoplasias , Péptidos y Proteínas de Señalización Intercelular
8.
Pflugers Arch ; 472(3): 375-384, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32065259

RESUMEN

Leucine-rich pentatricopeptide repeat motif-containing protein (LRP130) is implicated in the control of mitochondrial gene expression and oxidative phosphorylation in the liver, partly due to its interaction with peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α). To investigate LRP130's role in healthy human skeletal muscle, we examined LRP130's fiber-type distribution and subcellular localization (n = 6), as well as LRP130's relationship with PGC-1α protein and citrate synthase (CS) maximal activity (n = 33) in vastus lateralis samples obtained from young males. The impact of an acute bout of exercise (endurance [END] and sprint interval training [SIT]) and fasting (8 h) on LRP130 and PGC-1α expression was also determined (n = 10). LRP130 protein content paralleled fiber-specific succinate dehydrogenase activity (I > IIA) and strongly correlated with the mitochondrially localized protein apoptosis-inducing factor in type I (r = 0.75) and type IIA (r = 0.85) fibers. Whole-muscle LRP130 protein content was positively related to PGC-1α protein (r = 0.49, p < 0.01) and CS maximal activity (r = 0.42, p < 0.01). LRP130 mRNA expression was unaltered (p > 0.05) following exercise, despite ~ 6.6- and ~ 3.8-fold increases (p < 0.01) in PGC-1α mRNA expression after END and SIT, respectively. Although unchanged at the group level (p > 0.05), moderate-to-strong positive correlations were apparent between individual changes in LRP130 and PGC-1α expression at the mRNA (r = 0.63, p < 0.05) and protein (r = 0.59, p = 0.07) level in response to fasting. Our findings support a potential role for LRP130 in the maintenance of basal mitochondrial phenotype in human skeletal muscle. LRP130's importance for mitochondrial remodeling in exercised and fasted human skeletal muscle requires further investigation.


Asunto(s)
Ejercicio Físico/fisiología , Ayuno/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Neoplasias/metabolismo , Descanso/fisiología , Adulto , Animales , Apoptosis/fisiología , Citrato (si)-Sintasa/metabolismo , Ayuno/fisiología , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Musculares/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/metabolismo , Adulto Joven
9.
FASEB J ; 33(2): 1836-1851, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30204502

RESUMEN

The ATPase inhibitory factor 1 (IF1) is an intrinsically disordered protein that regulates the activity of the mitochondrial ATP synthase. Phosphorylation of S39 in IF1 prevents it from binding to the enzyme and thus abolishes its inhibitory activity. Dysregulation of IF1 is linked to different human diseases, providing a relevant biomarker of cancer progression. However, the tissue content of IF1 relative to the abundance of the ATP synthase is unknown. In this study, we characterized the tissue-specific expression of IF1 in human and mouse tissues and quantitated the content of IF1 and of ATP synthase. We found relevant differences in IF1 expression between human and mouse tissues and found that in high-energy-demanding tissues, the molar content of IF1 exceeds that of the ATP synthase. In these tissues, a fraction of IF1 is bound to the enzyme, and the other fraction is phosphorylated and hence is unable to bind the enzyme. Post-transcriptional control accounts for most of the regulated expression of IF1, especially in mouse heart, where IF1 mRNA translation is repressed by the leucine-rich pentatricopeptide repeat containing protein. Overall, these findings enlighten the cellular biology of IF1 and pave the way to development of additional models that address its role in pathophysiology.-Esparza-Moltó, P. B., Nuevo-Tapioles, C., Chamorro, M., Nájera, L., Torresano, L., Santacatterina, F., Cuezva, J. M. Tissue-specific expression and post-transcriptional regulation of the ATPase inhibitory factor 1 (IF1) in human and mouse tissues.


Asunto(s)
Proteínas/fisiología , Procesamiento Postranscripcional del ARN , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , Proteína Inhibidora ATPasa
10.
Am J Physiol Cell Physiol ; 317(1): C58-C67, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30995105

RESUMEN

Leigh syndrome French Canadian type (LSFC) is a mitochondrial disease caused by mutations in the leucine-rich pentatricopeptide repeat-containing (LRPPRC) gene leading to a reduction of cytochrome-c oxidase (COX) expression reaching 50% in skin fibroblasts. We have shown that under basal conditions, LSFC and control cells display similar ATP levels. We hypothesized that this occurs through upregulation of mechanistic target of rapamycin (mTOR)-mediated metabolic reprogramming. Our results showed that compared with controls, LSFC cells exhibited an upregulation of the mTOR complex 1 (mTORC1)/p70 ribosomal S6 kinase pathway and higher levels of hypoxia-inducible factor 1α (HIF-1α) and its downstream target pyruvate dehydrogenase kinase 1 (PDHK1), a regulator of mitochondrial pyruvate dehydrogenase 1 (PDH1). Consistent with these signaling alterations, LSFC cells displayed a 40-61% increase in [U-13C6]glucose contribution to pyruvate, lactate, and alanine formation, as well as higher levels of the phosphorylated and inactive form of PDH1-α. Interestingly, inhibition of mTOR with rapamycin did not alter HIF-1α or PDHK1 protein levels in LSFC fibroblasts. However, this treatment increased PDH1-α phosphorylation in control and LSFC cells and reduced ATP levels in control cells. Rapamycin also decreased LRPPRC expression by 41 and 11% in LSFC and control cells, respectively, and selectively reduced COX subunit IV expression in LSFC fibroblasts. Taken together, our data demonstrate the importance of mTORC1, independent of the HIF-1α/PDHK1 axis, in maintaining LRPPRC and COX expression in LSFC cells.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/enzimología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Enfermedad de Leigh/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Neoplasias/metabolismo , Piel/enzimología , Adenosina Trifosfato/metabolismo , Células Cultivadas , Niño , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/patología , Complejo IV de Transporte de Electrones/genética , Metabolismo Energético , Femenino , Fibroblastos/patología , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mitocondrias/enzimología , Mitocondrias/patología , Proteínas de Neoplasias/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Quebec , Transducción de Señal , Piel/patología
11.
RNA ; 23(6): 927-937, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28325843

RESUMEN

The eukaryotic translation initiation factor eIF4E acts in the nuclear export and translation of a subset of mRNAs. Both of these functions contribute to its oncogenic potential. While the biochemical mechanisms that underlie translation are relatively well understood, the molecular basis for eIF4E's role in mRNA export remains largely unexplored. To date, over 3000 transcripts, many encoding oncoproteins, were identified as potential nuclear eIF4E export targets. These target RNAs typically contain a ∼50-nucleotide eIF4E sensitivity element (4ESE) in the 3' UTR and a 7-methylguanosine cap on the 5' end. While eIF4E associates with the cap, an unknown factor recognizes the 4ESE element. We previously identified cofactors that functionally interacted with eIF4E in mammalian cell nuclei including the leucine-rich pentatricopeptide repeat protein LRPPRC and the export receptor CRM1/XPO1. LRPPRC simultaneously interacts with both eIF4E bound to the 5' mRNA cap and the 4ESE element in the 3' UTR. In this way, LRPPRC serves as a specificity factor to recruit 4ESE-containing RNAs within the nucleus. Further, we show that CRM1 directly binds LRPPRC likely acting as the export receptor for the LRPPRC-eIF4E-4ESE RNA complex. We also found that Importin 8, the nuclear importer for cap-free eIF4E, imports RNA-free LRPPRC, potentially providing both coordinated nuclear recycling of the export machinery and an important surveillance mechanism to prevent futile export cycles. Our studies provide the first biochemical framework for the eIF4E-dependent mRNA export pathway.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Animales , Núcleo Celular/metabolismo , Factor 4E Eucariótico de Iniciación/química , Humanos , Carioferinas/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Proteínas de Neoplasias/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de ARN , ARN Mensajero/química , Receptores Citoplasmáticos y Nucleares/metabolismo , beta Carioferinas/metabolismo , Proteína Exportina 1
12.
Brain ; 138(Pt 12): 3503-19, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26510951

RESUMEN

Mitochondrial Complex IV [cytochrome c oxidase (COX)] deficiency is one of the most common respiratory chain defects in humans. The clinical phenotypes associated with COX deficiency include liver disease, cardiomyopathy and Leigh syndrome, a neurodegenerative disorder characterized by bilateral high signal lesions in the brainstem and basal ganglia. COX deficiency can result from mutations affecting many different mitochondrial proteins. The French-Canadian variant of COX-deficient Leigh syndrome is unique to the Saguenay-Lac-Saint-Jean region of Québec and is caused by a founder mutation in the LRPPRC gene. This encodes the leucine-rich pentatricopeptide repeat domain protein (LRPPRC), which is involved in post-transcriptional regulation of mitochondrial gene expression. Here, we present the clinical and molecular characterization of novel, recessive LRPPRC gene mutations, identified using whole exome and candidate gene sequencing. The 10 patients come from seven unrelated families of UK-Caucasian, UK-Pakistani, UK-Indian, Turkish and Iraqi origin. They resemble the French-Canadian Leigh syndrome patients in having intermittent severe lactic acidosis and early-onset neurodevelopmental problems with episodes of deterioration. In addition, many of our patients have had neonatal cardiomyopathy or congenital malformations, most commonly affecting the heart and the brain. All patients who were tested had isolated COX deficiency in skeletal muscle. Functional characterization of patients' fibroblasts and skeletal muscle homogenates showed decreased levels of mutant LRPPRC protein and impaired Complex IV enzyme activity, associated with abnormal COX assembly and reduced steady-state levels of numerous oxidative phosphorylation subunits. We also identified a Complex I assembly defect in skeletal muscle, indicating different roles for LRPPRC in post-transcriptional regulation of mitochondrial mRNAs between tissues. Patient fibroblasts showed decreased steady-state levels of mitochondrial mRNAs, although the length of poly(A) tails of mitochondrial transcripts were unaffected. Our study identifies LRPPRC as an important disease-causing gene in an early-onset, multisystem and neurological mitochondrial disease, which should be considered as a cause of COX deficiency even in patients originating outside of the French-Canadian population.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Enfermedades Mitocondriales/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Canadá , Células Cultivadas , Preescolar , Deficiencia de Citocromo-c Oxidasa/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Proteínas Repetidas Ricas en Leucina , Masculino , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Mutación , Linaje , Proteínas/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial
14.
J Biol Chem ; 288(22): 15510-9, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23599432

RESUMEN

Regulation of mtDNA expression is critical for controlling oxidative phosphorylation capacity and has been reported to occur at several different levels in mammalian mitochondria. LRPPRC (leucine-rich pentatricopeptide repeat-containing protein) has a key role in this regulation and acts at the post-transcriptional level to stabilize mitochondrial mRNAs, to promote mitochondrial mRNA polyadenylation, and to coordinate mitochondrial translation. However, recent studies have suggested that LRPPRC may have an additional intramitochondrial role by directly interacting with the mitochondrial RNA polymerase POLRMT to stimulate mtDNA transcription. In this study, we have further examined the intramitochondrial roles for LRPPRC by creating bacterial artificial chromosome transgenic mice with moderately increased LRPPRC expression and heterozygous Lrpprc knock-out mice with moderately decreased LRPPRC expression. Variation of LRPPRC levels in mice in vivo, occurring within a predicted normal physiological range, strongly affected the levels of an unprocessed mitochondrial precursor transcript (ND5-cytochrome b) but had no effect on steady-state levels of mitochondrial transcripts or de novo transcription of mtDNA. We further assessed the role of LRPPRC in mitochondrial transcription by performing size exclusion chromatography and immunoprecipitation experiments in human cell lines and mice, but we found no interaction between LRPPRC and POLRMT. Furthermore, addition of purified LRPPRC to a recombinant human in vitro transcription system did not activate mtDNA transcription. On the basis of these data, we conclude that LRPPRC does not directly regulate mtDNA transcription but rather acts as a post-transcriptional regulator of mammalian mtDNA expression.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Citocromos b/genética , Citocromos b/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Hepáticas/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Proteínas de Neoplasias/genética , Transcripción Genética/fisiología
15.
Cancer ; 120(8): 1228-36, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24390809

RESUMEN

BACKGROUND: Autophagy has recently been found to play important roles in tumorigenesis and leucine-rich pentatricopeptide repeat motif-containing protein (LRPPRC) has been identified as an inhibitor that suppresses autophagy and mitophagy and maintains mitochondrial activity. The authors hypothesized that LRPPRC levels can be used as a biomarker for the diagnosis and prognosis of prostate cancer. METHODS: Immunochemistry analysis was performed to evaluate the levels of LRPPRC in 112 samples collected from patients with prostate adenocarcinoma (PCa) and 38 samples from patients with benign prostatic hyperplasia (BPH) who were enrolled in hospitals in Guangzhou City, China and were followed for 10 years. RESULTS: Significantly higher levels of LRPPRC were found in PCa samples compared with BPH samples. Greater than 75% of patients with PCa demonstrated high levels of LRPPRC whereas only 10% of patients with BPH were found to have similar levels of LRPPRC. The levels of LRPPRC were found to be positively correlated with tumor grade, metastasis, and serum prostate-specific antigen level, but were negatively correlated with hormone therapy sensitivity after 2 years of surgery and overall survival. The association between high levels of LRPPRC and late-stage PCa or hormone therapy insensitivity was confirmed in tissue samples collected from prostate-specific phosphatase and tensin homolog (PTEN)(-/-) mice or hormone-dependent and hormone-independent PCa cell lines. CONCLUSIONS: LRPPRC levels may be used as an independent biomarker for patients with PCa at a late stage with poor prognosis.


Asunto(s)
Autofagia/fisiología , Proteínas de Neoplasias/análisis , Neoplasias de la Próstata/mortalidad , Anciano , Anciano de 80 o más Años , Animales , Humanos , Inmunohistoquímica , Masculino , Ratones , Persona de Mediana Edad , Neoplasias Hormono-Dependientes/química , Fosfohidrolasa PTEN/fisiología , Pronóstico , Hiperplasia Prostática/metabolismo , Neoplasias de la Próstata/química , Neoplasias de la Próstata/patología
16.
Aging (Albany NY) ; 16(8): 6773-6795, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38643468

RESUMEN

Ovarian cancer is the second most common cause of gynecologic cancer death. Chemoresistance and metastasis remain major challenges for current treatment. Previously, HAPSTR1 was shown to be a target gene of a paclitaxel resistance-associated miRNA. However, the biological function and underlying molecular mechanisms of HAPSTR1 in ovarian cancer progression remain unclear. Herein, we aimed to measure HAPSTR1 expression in ovarian cancer specimens and examine its correlations with clinical features and key functional interactions with other genes and proteins. An immunohistochemistry assay showed that HAPSTR1 was overexpressed in ovarian cancer tissues and was significantly associated with the FIGO stage and clinical outcome. HAPSTR1 overexpression promoted proliferation, invasion and migration in cellular and mouse models, whereas inhibition induced the opposite effects. In addition, HAPSTR1 stimulated the EMT pathway and affected the expression of autophagy biomarkers. Mechanistically, we demonstrated that HAPSTR1 is bound to LRPPRC and PSMD14 via immunoprecipitation. HAPSTR1 suppressed LRPPRC ubiquitination and recruited PSMD14 to interact with LRPPRC. Moreover, LRPPRC knockdown reversed HAPSTR1-mediated improvement in cellular proliferation, invasion, and migration. Our study is the first detailed and comprehensive analysis of HAPSTR1 in cancer progression and offers an experimental basis for the clinical treatment of ovarian carcinoma.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Invasividad Neoplásica , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Ubiquitinación
17.
Am J Clin Exp Immunol ; 13(3): 105-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022790

RESUMEN

BACKGROUND: Leucine rich pentatricopeptide repeat containing (LRPPRC) protein is a multifunctional protein involved in cell cycle progression and tumor development. However, its prognostic significance and association with immune infiltration in Liver hepatocellular carcinoma (LIHC) remain unclear. METHODS: We utilized transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases of LIHC patients to investigate the potential pro-cancer role of LRPPRC, including differential expression of LRPPRC in LIHC, prognostic value, clinicopathological features, immune cell infiltration relevance and function enrichment analysis. RESULTS: Our findings suggest that LRPPRC is upregulated in LIHC and exhibits correlations with survival, clinical stage, and tumor grade in LIHC patients. Additionally, immune infiltration analysis revealed significant negative correlations between LRPPRC expression and multiple tumor-infiltrating immune cells, including CTLs, DCs, pDCs, B cells, Th17 cells, neutrophils, T cells, Mast cells, Th1 cells, Tregs, and NK cells, whereas a significant positive correlation was observed with infiltration of Th2 cells, T helper cells and Tcms. Furthermore, functional enrichment analysis indicated that LRPPRC may be involved in G2m checkpoint, mitotic spindle, E2f targets, Wnt Beta catenin signaling, spermatogenesis and other processes.

18.
Biol Direct ; 19(1): 69, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164777

RESUMEN

A substantive body of evidence has demonstrated the significant roles of circular RNA (circRNA) in cancer. However, the contribution of dysregulated circRNAs to ovarian cancer (OC) remains elusive. We aim to elucidate the critical roles and mechanisms of hsa_circ_0020093, which was demonstrated to be downregulated in OC tissues in our previous study. In this study, we confirmed the decreased expression of hsa_circ_0020093 in OC tissues and cell lines and demonstrated the negative correlation between its expression and FIGO stage, abdominal implantation and CA125 level of OC patients. Through gain and loss of function studies, we confirmed the inhibitory role of hsa_circ_0020093 in ovarian tumor growth in vitro and in vivo. Mechanistically, based on the peri-nuclear accumulation of hsa_circ_0020093, we discovered the interaction between hsa_circ_0020093 and the mitochondrial protein LRPPRC by RNA pull-down, mass spectrometry, RNA Binding Protein Immunoprecipitation. As a result, qRT-PCR and transmission electron microscopy results showed that the mitochondria mRNA expression and mitochondria abundance were decreased upon hsa_circ_0020093-overexpression. Meanwhile, we also unearthed the hsa_circ_0020093/miR-107/LATS2 axis in OC according to RNA-sequencing, RIP and luciferase reporter assay data. Furthermore, LRPPRC and LATS2 are both reported as the upstream regulators of YAP, our study also studied the crosstalk between hsa_circ_0020093, LRPPRC and miR-107/LATS2, and unearthed the up-regulation of phosphorylated YAP in hsa_circ_0020093-overexpressing OC cells and xenograft tumors. Collectively, our study indicated the novel mechanism of hsa_circ_0020093 in suppressing OC progression through both hsa_circ_0020093/LRPPRC and hsa_circ_0020093/miR-107/LATS2 axes, providing a potential therapeutic target for OC patients.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , ARN Circular , Transducción de Señal , Proteínas Supresoras de Tumor , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos
19.
J Genet Genomics ; 51(5): 531-542, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38184105

RESUMEN

Phosphatase and tensin homolog (PTEN) is a multifunctional gene involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here, we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.


Asunto(s)
Metabolismo Energético , Mitocondrias , Fosfohidrolasa PTEN , ARN Circular , Proteínas de Unión al ARN , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Metabolismo Energético/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Potencial de la Membrana Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Adenosina Trifosfato/metabolismo , Células HEK293 , Proteínas de Neoplasias
20.
Life Sci ; 343: 122527, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417544

RESUMEN

AIMS: RNA-binding proteins (RBPs) play pivotal roles in carcinogenesis and immunotherapy. Leucine-rich pentapeptide repeat-containing protein (LRPPRC) is crucial for RNA polyadenylation, transport, and stability. Although recent studies have suggested LRPPRC's potential role in tumor progression, its significance in tumor prognosis, diagnosis, and immunology remains unclear. MAIN METHODS: We comprehensively analyzed LRPPRC expression in tumors using various databases, including Human Transcriptome Cell Atlas (HTCA), University of California Santa Cruz (UCSC), Human Protein Atlas (HPA), Sangerbox, TISIDB, GeneMANIA, GSCALite, and CellMiner. We examined the correlation between LRPPRC expression level and prognosis, immune infiltration, immunotherapy, methylation, biological function, and drug sensitivity. Single-cell analysis was performed using Tumor Immune Single Cell Hub (TISCH) and CancerSEA software. Patients with acute myeloid leukemia (AML) were categorized based on LRPPRC levels for functional and immune infiltration analyses. The role of LRPPRC in cancer was validated using in vitro experiments. KEY FINDINGS: Our findings revealed that LRPPRC was highly expressed in almost all cancer types, indicating its significant prognostic and diagnostic potential. Notably, LRPPRC was associated with diverse immune features, such as immune cell infiltration, immune checkpoint genes, tumor mutational burden, and microsatellite instability, suggesting its value in guiding immunotherapy strategies. Within AML, the high-expression group had lower levels of immune cells, including CD8+ T cells. In vitro experiments confirmed the inhibitory effects of LRPPRC knockdown on AML cell proliferation. SIGNIFICANCE: This study highlights LRPPRC as a reliable pan-cancer prognostic and immune biomarker, particularly in AML. It lays the groundwork for future research on LRPPRC-targeted cancer therapies.


Asunto(s)
Biomarcadores de Tumor , Carcinogénesis , Leucemia Mieloide Aguda , Humanos , Linfocitos T CD8-positivos , Proteínas de Neoplasias , Pronóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda