Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38676127

RESUMEN

The Internet of Things (IoT) will bring about the next industrial revolution in Industry 4.0. The communication aspect of IoT devices is one of the most critical factors in choosing the device that is suitable for use. Thus far, the IoT physical layer communication challenges have been met with various communications protocols that provide varying strengths and weaknesses. This paper summarizes the network architectures of some of the most popular IoT wireless communications protocols. It also presents a comparative analysis of some of the critical features, including power consumption, coverage, data rate, security, cost, and quality of service (QoS). This comparative study shows that low-power wide area network (LPWAN)-based IoT protocols (LoRa, Sigfox, NB-IoT, LTE-M) are more suitable for future industrial applications because of their energy efficiency, high coverage, and cost efficiency. In addition, the study also presents an Industrial Internet of Things (IIoT) application perspective on the suitability of LPWAN protocols in a particular scenario and addresses some open issues that need to be researched. Thus, this study can assist in deciding the most suitable IoT communication protocol for an industrial and production field.

2.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35214374

RESUMEN

Long-Term Evolution for Metro (LTE-M) is adopted as the data communication system in urban rail transit to exchange bio-direction train-wayside information. Reliable data communication is essential in LTE-M systems for ensuring trains' operation safety and efficiency. However, the inter-cell inference problem exists in LTE results in throughput reduction, especially when trains are in the edge area of adjacent cells, and has negative effects on train operation. The uplink power control and radio resource scheduling scheme is studied in LTE-M system which differentiates from public cellular networks in user numbers and the availability of the trains' locations. Since the locations of the trains are available, the interferences from the neighbouring cells can be calculated, and a location based algorithm together with soft frequency reuse is designed. In addition, a proportional fair algorithm is taken to improve uplink radio resource scheduling considering the fairness to different train-wayside communication service requirements. Through simulation, the practicability of the proposed schemes in communication system of urban rail transit is verified in aspects of radio power control and data communication throughput.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores , Comunicación , Simulación por Computador
3.
Sensors (Basel) ; 22(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35632285

RESUMEN

Long Term Evolution-Metro (LTE-M), as a special communication system for train control, has strict requirements on adjacent channel interference (ACI). According to the 3rd Generation Partnership Project (3GPP) protocol of the European Telecommunications Standards Institute (ETSI) standards, this paper presents the required isolation degree for LTE-M systems to resist ACI. Aiming at the scenario of leaky cable transmission and antenna transmission adopted by the underground LTE-M system of the subway, the isolation degree required for LTE-M system deployment is deduced by combining the channel description with the principle of ACI. For the coexistence of a LTE-M system and an adjacent cellular system in a subway ground scenario, the Monte-Carlo (MC) method is used to simulate several conceivable scenarios of the LTE-M system and the adjacent frequency cellular system. In addition, the throughput loss of the LTE-M system is estimated by considering signal to interference plus noise ratio (SINR). Simulation results demonstrate that adjacent frequency user equipment (UE) has negligible small interference with the LTE-M underground system when using the leaky cable radiation pattern, whereas for the LTE-M ground system, the main interference comes from the adjacent frequency UE to the LTE-M base station (BS). Finally, interference avoidance solutions are presented, which can be utilized as a reference in the design and deployment of LTE-M systems in the rail transit environment.


Asunto(s)
Vías Férreas , Telecomunicaciones , Simulación por Computador , Método de Montecarlo , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda