Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 24(29): 8826-8833, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996000

RESUMEN

Li-rich Mn-based cathode material (LRM), as a promising cathode for high energy density lithium batteries, suffers from severe side reactions in conventional lithium hexafluorophosphate (LiPF6)-based carbonate electrolytes, leading to unstable interfaces and poor rate performances. Herein, a boron-based additives-driven self-optimized interface strategy is presented to dissolve low ionic conductivity LiF nanoparticles at the outer cathode electrolyte interface, leading to the optimized interfacial components, as well as the enhanced Li ion migration rate in electrolytes. Being attributed to these superiorities, the LRM||Li battery delivers a high-capacity retention of 92.19% at 1C after 200 cycles and a low voltage decay of 1.08 mV/cycle. This work provides a new perspective on the rational selection of functional additives with an interfacial self-optimized characteristic to achieve a long lifespan LRM with exceptional rate performances.

2.
Nano Lett ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283995

RESUMEN

Lithium-rich layered oxides (LLOs) capable of supporting both cationic and anionic redox chemistry are promising cathode materials. Yet, their initial charge to high voltages often trigger significant oxygen evolution, resulting in substantial capacity loss and structural instability. In this study, we applied a straightforward low-potential activation (LOWPA) method alongside a relatively stable electrolyte to address this issue. This approach enables precise control over the order-to-disorder transformation of the transition metal layers in LLOs, producing an in-plane cation-disordered Li1.2Mn0.54Co0.13Ni0.13O2 that averts irreversible oxygen evolution at 4.8 V by stabilizing Mn-O2 or Mn-O3 species within the Li/Mn-disordered nanopores. Consequently, an ultrahigh reversible capacity of 322 mAh g-1 (equating to 1141 Wh kg-1), 91.5% initial Coulombic efficiency, and enhanced durability and rate capability are simultaneously achieved. As LOWPA does not alter any chemical composition of LLOs, it also offers a simple model for untangling the complex phenomena associated with oxygen-redox chemistry.

3.
Small ; 20(31): e2400876, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38429239

RESUMEN

Lithium-rich, cobalt-free oxides are promising potential positive electrode materials for lithium-ion batteries because of their high energy density, lower cost, and reduced environmental and ethical concerns. However, their commercial breakthrough is hindered because of their subpar electrochemical stability. This work studies the effect of aluminum doping on Li1.26Ni0.15Mn0.61O2 as a lithium-rich, cobalt-free layered oxide. Al doping suppresses voltage fade and improves the capacity retention from 46% for Li1.26Ni0.15Mn0.61O2 to 67% for Li1.26Ni0.15Mn0.56Al0.05O2 after 250 cycles at 0.2 C. The undoped material has a monoclinic Li2MnO3-type structure with spinel on the particle edges. In contrast, Al-doped materials (Li1.26Ni0.15Mn0.61-xAlxO2) consist of a more stable rhombohedral phase at the particle edges, with a monoclinic phase core. For this core-shell structure, the formation of Mn3+ is suppressed along with the material's decomposition to a disordered spinel, and the amount of the rhombohedral phase content increases during galvanostatic cycling. Whereas previous studies generally provided qualitative insight into the degradation mechanisms during electrochemical cycling, this work provides quantitative information on the stabilizing effect of the rhombohedral shell in the doped sample. As such, this study provides fundamental insight into the mechanisms through which Al doping increases the electrochemical stability of lithium-rich cobalt-free layered oxides.

4.
Small ; 20(2): e2305606, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670544

RESUMEN

Li-rich Mn-based cathodes have been regarded as promising cathodes for lithium-ion batteries because of their low cost of raw materials (compared with Ni-rich layer structure and LiCoO2 cathodes) and high energy density. However, for practical application, it needs to solve the great drawbacks of Li-rich Mn-based cathodes like capacity degradation and operating voltage decline. Herein, an effective method of surface modification by benzene diazonium salts to build a stable interface between the cathode materials and the electrolyte is proposed. The cathodes after modification exhibit excellent cycling performance (the retention of specific capacity is 84.2% after 350 cycles at the current density of 1 C), which is mainly attributed to the better stability of the structure and interface. This work provides a novel way to design the coating layer with benzene diazonium salts for enhancing the structural stability under high voltage condition during cycling.

5.
Small ; 20(8): e2307419, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822158

RESUMEN

Li-rich layered oxides (LLOs) are among the most promising cathode materials with high theoretical specific capacity (>250 mAh g-1 ). However, capacity decay and voltage hysteresis due tostructural degradation during cycling impede the commercial application of LLOs. Surface engineering and element doping are two methods widely applied tomitigate the structural degradation. Here, it is found that trace amount lanthanide element Yb doping can spontaneously form a surficial Yb-rich layer with high density of oxygen vacancy on the LLO-0.3% Yb (Li1.2 Mn0.54 Co0.13-x Ybx Ni0.13 O2 where x = 0.003) cathodes, which mitigating lattice oxygen loss and the non-preferred layered-to-spinel-to-rock salt tri-phase transition. Meanwhile, there are also some Yb ions doped into the lattice of LLO, which enhance the binding energy with oxygen and stabilize the lattice in grain interior during cycling. The dual effects of Yb doping greatly mitigate the structure degradation during cycling, and facilitate fast diffusion of lithium ions. As a result, the LLO-0.3% Yb sample achieves significantly improved cycling stability, with a capacity retention of 84.69% after 100 cycles at 0.2 C and 84.3% after 200 cycles at 1 C. These finding shighlight the promising rare element doping strategy that can have both surface engineering and doping effects in preparing LLO cathodes with high stability.

6.
Small ; : e2401839, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804822

RESUMEN

Co-free Li-rich Mn-based cathode materials are garnering great interest because of high capacity and low cost. However, their practical application is seriously hampered by the irreversible oxygen escape and the poor cycling stability. Herein, a reversible lattice adjustment strategy is proposed by integrating O vacancies and B doping. B incorporation increases TM─O (TM: transition metal) bonding orbitals whereas decreases the antibonding orbitals. Moreover, B doping and O vacancies synergistically increase the crystal orbital bond index values enhancing the overall covalent bonding strength, which makes TM─O octahedron more resistant to damage and enables the lattice to better accommodate the deformation and reaction without irreversible fracture. Furthermore, Mott-Hubbard splitting energy is decreased due to O vacancies, facilitating electron leaps, and enhancing the lattice reactivity and capacity. Such a reversible lattice, more amenable to deformation and forestalling fracturing, markedly improves the reversibility of lattice reactions and mitigates TM migration and the irreversible oxygen redox which enables the high cycling stability and high rate capability. The modified cathode demonstrates a specific capacity of 200 mAh g-1 at 1C, amazingly sustaining the capacity for 200 cycles without capacity degradation. This finding presents a promising avenue for solving the long-term cycling issue of Li-rich cathode.

7.
Small ; 20(23): e2307669, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38168885

RESUMEN

The unique anionic redox mechanism provides, high-capacity, irreversible oxygen release and voltage/capacity degradation to Li-rich cathode materials (LRO, Li1.2Mn0.54Co0.13Ni0.13O2). In this study, an integrated stabilized carbon-rock salt/spinel composite heterostructured layers (C@spinel/MO) is constructed by in situ self-reconstruction, and the generation mechanism of the in situ reconstructed surface is elucidated. The formation of atomic-level connections between the surface-protected phase and bulk-layered phase contributes to electrochemical performance. The best-performing sample shows a high increase (63%) of capacity retention compared to that of the pristine sample after 100 cycles at 1C, with an 86.7% reduction in surface oxygen release shown by differential electrochemical mass spectrometry. Soft X-ray results show that Co3+ and Mn4+ are mainly reduce in the carbothermal reduction reaction and participate in the formation of the spinel/MO rock-salt phase. The results of oxygen release characterized by Differential electrochemical mass spectrometry (DEMS) strongly prove the effectiveness of surface reconstruction.

8.
Small ; 20(23): e2307292, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38169091

RESUMEN

Layered Li-rich oxide cathode materials are capable of offering high energy density due to their cumulative cationic and anionic redox mechanism during (de)lithiation process. However, the structural instability of the layered Li-rich oxide cathode materials, especially in the deeply delitiated state, results in severe capacity and voltage degradation. Considering the minimal isotropic structural evolution of disordered rock salt oxide cathode during cycling, cation-disordered nano-domains have been controllably introduced into layered Li-rich oxides by co-doping of d0-TM and alkali ions. Combining electrochemical and synchrotron-based advanced characterizations, the incorporation of the phase-compatible cation-disordered domains can not only hinder the oxygen framework collapse along the c axis of layered Li-rich cathode under high operation voltage but also promote the Mn and anionic activities as well as Li+ (de)intercalation kinetics, leading to remarkable improvement in rate capability and mitigation of capacity and voltage decay. With this unique layered/rocksalt intergrown structure, the intergrown cathode yields an ultrahigh capacity of 288.4 mAh g-1 at 0.1 C, and outstanding capacity retention of ≈90.0% with obviously suppressed voltage decay after 100 cycles at 0.5, 1, and 2 C rate. This work provides a new direction toward advanced cathode materials for next-generation Li-ion batteries.

9.
Small ; 20(33): e2401132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38552226

RESUMEN

Li-rich layered oxides cathodes (LLOs) have prevailed as the promising high-energy-density cathode materials due to their distinctive anionic redox chemistry. However, uncontrollable anionic redox process usually leads to structural deterioration and electrochemical degradation. Herein, a Mo/Cl co-doping strategy is proposed to regulate the relative position of energy band for modulating the anionic redox chemistry and strengthening the structural stability of Co-free Li1.16Mn0.56Ni0.28O2 cathodes. The incorporation of Mo with high d state orbit and Cl with low electronegativity can narrow the band energy gap between bonding and antibonding bands via increasing the filled lower-Hubbard band (LHB) and decreasing the non-bonding O 2p energy bands, promoting the anionic redox reversibility. In addition, strong covalent Mo─O and Mn─Cl bonding further increases the covalency of Mn─O band to further stabilize the O2 n- species and enhance the reversible distortion of MnO6 octahedron. The strengthening electronic conductivity, together with the epitaxial structure Li2MoO4 facilitates the fast Li+ kinetics. As a result, the dual doping material exhibits enhanced anionic redox reversibility and suppressed oxygen release with increased cyclic stability and excellent rate performance. This strategy provides some guidance to design high-energy-density LLOs with desirable anionic redox reversibility and stable crystal structure via band structure engineering.

10.
Angew Chem Int Ed Engl ; 63(6): e202316790, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38116869

RESUMEN

Electrolyte engineering is a fascinating choice to improve the performance of Li-rich layered oxide cathodes (LRLO) for high-energy lithium-ion batteries. However, many existing electrolyte designs and adjustment principles tend to overlook the unique challenges posed by LRLO, particularly the nucleophilic attack. Here, we introduce an electrolyte modification by locally replacing carbonate solvents in traditional electrolytes with a fluoro-ether. By benefit of the decomposition of fluoro-ether under nucleophilic O-related attacks, which delivers an excellent passivation layer with LiF and polymers, possessing rigidity and flexibility on the LRLO surface. More importantly, the fluoro-ether acts as "sutures", ensuring the integrity and stability of both interfacial and bulk structures, which contributed to suppressing severe polarization and enhancing the cycling capacity retention from 39 % to 78 % after 300 cycles for the 4.8 V-class LRLO. This key electrolyte strategy with comprehensive analysis, provides new insights into addressing nucleophilic challenge for high-energy anionic redox related cathode systems.

11.
Small ; 19(41): e2303539, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37287389

RESUMEN

On account of high capacity and high voltage resulting from anionic redox, Li-rich layered oxides (LLOs) have become the most promising cathode candidate for the next-generation high-energy-density lithium-ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode-electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast-charging property..

12.
Small ; 19(20): e2207328, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36799132

RESUMEN

Li-rich layered oxides are considered as one of the most promising cathode materials for secondary lithium batteries due to their high specific capacities, but the issue of continuous voltage decay during cycling hinders their market entry. Increasing the Ni content in Li-rich materials is assumed to be an effective way to address this issue and attracts recent research interests. However, a high Ni content may induce increased intrinsic reactivity of materials, resulting in severe side reactions with the electrolyte. Thus, a comprehensive study to differentiate the two effects of the Ni content on the cell performance with Li-rich cathode is carried out in this work. Herein, it is demonstrated that a properly dosed amount of Ni can effectively suppress the voltage decay in Li-rich cathodes, while over-loading of Ni, on the contrary, can cause structural instability, Ni dissolution, and nonuniform Li deposition during cycling as well as severe oxygen loss. This work offers a deep understanding on the impacts of Ni content in Li-rich materials, which can be a good guidance for the future design of such cathodes for high energy density lithium batteries.

13.
Small ; 19(47): e2303256, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37501313

RESUMEN

High-capacity Li-rich layered oxides (LLOs) suffer from severe structure degradation due to the utilization of hybrid anion- and cation-redox activity. The native post-cycled structure, composed of progressively densified defective spinel layer (DSL) and intrinsic cations mixing, is deemed as the hindrance of the rapid and reversible de/intercalation of Li+ . Herein, the artificial post-cycled structure consisting of artificial DSL and inner cations mixing is in situ constructed, which would act as a shield against the irreversible oxygen emission and undesirable transition metal migration by suppressing anion redox activity and modulating cation mixing. Eventually, the modified DSL-2% Li-rich cathode demonstrates remarkable electrochemical properties with a high discharge capacity of 187 mAh g-1 after 500 cycles at 2 C, and improved voltage stability. Even under harsh operating conditions of 50 °C, DSL-2% can provide a high discharge capacity of 168 mAh g-1 after 250 cycles at 2 C, which is much higher than that of pristine LLO (92 mAh g-1 ). Furthermore, the artificial post-cycled structure provides a novel perspective on the role of native post-cycled structure in sustaining the lattice structure of the lithium-depleted region and also provides an insightful universal design principle for highly stable intercalated materials with anionic redox activity.

14.
Small ; 19(18): e2300419, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36725302

RESUMEN

All-Mn-based Li-rich cathodes Li2 MnO3 have attracted extensive attention because of their cost advantage and ultrahigh theoretical capacity. However, the unstable anionic redox reaction (ARR), which involves irreversible oxygen releases, causes declines in cycling capacity and intercalation potential, thus hindering their practical applications. Here, it is proposed that introducing stacking-fault defects into the Li2 MnO3 can localize oxygen lattice evolutions and stabilize the ARR, eliminating oxygen releases. The thus-made cathode has a highly reversible capacity (320 mA h g-1 ) and achieves excellent cycling stability. After 100 cycles, the capacity retention rate is 86% and the voltage decay is practically eliminated at 0.19 mV per cycle. Attributing to the stable ARR, samples show reduced stress-strain and phase transitions. Neutron pair distribution function (nPDF) measurements indicate that there is a structure response of localized oxygen lattice distortion to the ARR and the average oxygen lattice framework is well-preserved which is a prerequisite for the high cycle reversibility.

15.
Small ; 19(21): e2300175, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36843265

RESUMEN

The construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer. Theoretical calculation and experimental results display that the full-surface boron nickel complexes coating layer can not only passivate the activity of interface oxygen and improve its stability but also play the role of sharing voltage and protective layer to gradually activate the oxygen redox reaction during cycling. As a result, the elaborately designed cobalt-free Li-rich Mn-based cathode displays the highest discharge-specific capacity retentions of 91.1% after 400 cycles at 1 C and 94.3% even after 800 cycles at 5 C. In particular, the regulation strategy has well universality and is suitable for other high-capacity Li-rich cathode materials.

16.
Small ; 19(34): e2301564, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093190

RESUMEN

Serious capacity and voltage degradation of Li-rich layered oxides (LLOs) caused by severe interfacial side reactions (ISR), structural instability, and transition metal (TM) dissolution during charge/discharge need to be urgently resolved. Here, it is proposed for the inaugural time that the confinement effect of PO4 3- dilutes the LiMn6 superstructure units on the surface of LLOs, while deriving a stable interface with phosphate compounds and spinel species. Combining theoretical calculations, diffraction, spectroscopy, and micrography, an in-depth investigation of the mechanism is performed. The results show that the modified LLO exhibits excellent anionic/cationic redox reversibility and ultra-high cycling stability. The capacity retention is increased from 72.4% to 95.4%, and the voltage decay is suppressed from 2.48 to 1.29 mV cycle-1 after 300 cycles at 1 C. It also has stable long cycling performance, with capacity retention improved from 40.2% to 81.9% after 500 cycles at 2 C. The excellent electrochemical performance is attributed to the diluted superstructure units on the surface of LLO inhibiting the TM migration in the intralayer and interlayer. Moreover, the stable interfacial layers alleviate the occurrence of ISR and TM dissolution. Therefore, this strategy can give some important insights into the development of highly stable LLOs.

17.
Small ; 19(42): e2301834, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37340579

RESUMEN

Understanding the mechanism of the rate-dependent electrochemical performance degradation in cathodes is crucial to developing fast charging/discharging cathodes for Li-ion batteries. Here, taking Li-rich layered oxide Li1.2 Ni0.13 Co0.13 Mn0.54 O2 as the model cathode, the mechanisms of performance degradation at low and high rates are comparatively investigated from two aspects, the transition metal (TM) dissolution and the structure change. Quantitative analyses combining spatial-resolved synchrotron X-ray fluorescence (XRF) imaging, synchrotron X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques reveal that low-rate cycling leads to gradient TM dissolution and severe bulk structure degradation within the individual secondary particles, and especially the latter causes lots of microcracks within secondary particles, and becomes the main reason for the fast capacity and voltage decay. In contrast, high-rate cycling leads to more TM dissolution than low-rate cycling, which concentrates at the particle surface and directly induces the more severe surface structure degradation to the electrochemically inactive rock-salt phase, eventually causing a faster capacity and voltage decay than low-rate cycling. These findings highlight the protection of the surface structure for developing fast charging/discharging cathodes for Li-ion batteries.

18.
Small ; 19(20): e2207797, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808233

RESUMEN

Lithium-rich layered oxides (LLOs) are concerned as promising cathode materials for next-generation lithium-ion batteries due to their high reversible capacities (larger than 250 mA h g-1 ). However, LLOs suffer from critical drawbacks, such as irreversible oxygen release, structural degradation, and poor reaction kinetics, which hinder their commercialization. Herein, the local electronic structure is tuned to improve the capacity energy density retention and rate performance of LLOs via gradient Ta5+ doping. As a result, the capacity retention elevates from 73% to above 93%, and the energy density rises from 65% to above 87% for LLO with modification at 1 C after 200 cycles. Besides, the discharge capacity for the Ta5+ doped LLO at 5 C is 155 mA h g-1 , while it is only 122 mA h g-1 for bare LLO. Theoretical calculations reveal that Ta5+ doping can effectively increase oxygen vacancy formation energy, thus guaranteeing the structure stability during the electrochemical process, and the density of states results indicate that the electronic conductivity of the LLOs can be boosted significantly at the same time. This strategy of gradient doping provides a new avenue to improve the electrochemical performance of the LLOs by modulating the local structure at the surface.

19.
Angew Chem Int Ed Engl ; 62(5): e202213806, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36456529

RESUMEN

The application of Li-rich layered oxides is hindered by their dramatic capacity and voltage decay on cycling. This work comprehensively studies the mechanistic behaviour of cobalt-free Li1.2 Ni0.2 Mn0.6 O2 and demonstrates the positive impact of two-phase Ru doping. A mechanistic transition from the monoclinic to the hexagonal behaviour is found for the structural evolution of Li1.2 Ni0.2 Mn0.6 O2, and the improvement mechanism of Ru doping is understood using the combination of in operando and post-mortem synchrotron analyses. The two-phase Ru doping improves the structural reversibility in the first cycle and restrains structural degradation during cycling by stabilizing oxygen (O2- ) redox and reducing Mn reduction, thus enabling high structural stability, an extraordinarily stable voltage (decay rate <0.45 mV per cycle), and a high capacity-retention rate during long-term cycling. The understanding of the structure-function relationship of Li1.2 Ni0.2 Mn0.6 O2 sheds light on the selective doping strategy and rational materials design for better-performance Li-rich layered oxides.

20.
Angew Chem Int Ed Engl ; 62(25): e202218672, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37083044

RESUMEN

With ever-increasing pursuit for high-value output in recycling spent lithium-ion batteries (LIBs), traditional recycling methods of cathodes tend to be obsolete because of the complicated procedures. Herein, we first upcycle spent polycrystal LiNi0.88 Co0.095 Al0.025 O2 (S-NCA) to high value-added single-crystalline and Li-rich cathode materials through a simple but feasible LiOH-Na2 SO4 eutectic molten salt strategy. The in situ X-ray diffraction technique and a series of paratactic experiments record the evolution process of upcycling and prove that excessive Li occupies the transition metal (TM) layers. Beneficial from the single-crystalline and Li-rich nature, the regenerated NCA (R-NCA) exhibits remarkably enhanced electrochemical performances in terms of long-term cyclability, high-rate performance and low polarization. This approach can also be successfully extended to other cathode materials e.g., LiNix Coy Mnz O2 (NCM) and mixed spent NCAs with varied degree of Li loss.


Asunto(s)
Litio , Cloruro de Sodio , Suministros de Energía Eléctrica , Electrodos , Iones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda