Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Biol Rep ; 51(1): 920, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158794

RESUMEN

BACKGROUND: Liaoning cashmere goat is recognized as a valuable genetic resource breed, with restrictions on genetic outflow in China. Hair follicle development in the cashmere goat is influenced by melatonin and long non-coding RNAs (lncRNAs). However, the role of lncRNAs in facilitating melatonin-promoted cashmere growth remains poorly understood. Previous studies have identified a new lncRNA, lncRNA018392, which is involved in the melatonin-promoted proliferation of cashmere skin fibroblasts. METHOD: Flow cytometry and CCK-8 assays confirmed that silencing lncRNA018392 negates the effects of melatonin on cell proliferation, and that proliferation was reduced when the gene CSF1R, located near lncRNA018392, was inhibited. Further investigation using a dual-luciferase reporter assay showed that lncRNA018392 could positively regulate the promoter of CSF1R. RESULTS: Results from RNA-binding protein immunoprecipitation (RIP) and chromatin immunoprecipitation sequencing (ChIP-Seq) revealed that lncRNA018392 interacts with the transcription factor SPI1, with CSF1R being a downstream target gene regulated by SPI1. This interaction was confirmed by ChIP-PCR, which demonstrated SPI1's binding to CSF1R. CONCLUSIONS: This study found that the melatonin-responsive lncRNA018392 accelerates the cell cycle and promotes cell proliferation by recruiting SPI1 to upregulate the expression of the neighboring gene CSF1R. These findings provide a theoretical foundation for elucidating the molecular mechanisms of cashmere growth and for the molecular breeding of cashmere goats.


Asunto(s)
Proliferación Celular , Fibroblastos , Cabras , Melatonina , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cabras/genética , Fibroblastos/metabolismo , Proliferación Celular/genética , Melatonina/farmacología , Melatonina/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Piel/metabolismo , Piel/citología , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de los fármacos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Folículo Piloso/metabolismo , Transactivadores
2.
Biochem Genet ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719988

RESUMEN

The aim of this study is to investigate the activation of NF-κB signaling pathway and the regulation of the expression of genes related to chorionic villus growth by the binding of LncRNA MTC (XLOC_005914) and p65 (transcription factor p65 [Capra hircus], XP_017898873.1). In addition, the regulation of LncRNA MTC and p65 binding on the proliferation of Liaoning Cashmere Goat skin fibroblasts is investigated. The upregulation of LncRNA MTC promoted the proliferation of skin fibroblasts, and the NF-κB signaling pathway played an important role in this process. Compared with the negative control (NC group), the expression of TNFα and NFKB2(NF-κB) genes was highly significantly up-regulated (P < 0.001), and NFKBIA(IκBɑ) genes were highly significantly down-regulated (P < 0.01) after LncRNA MTC overexpression (OE group). The expression levels of TNFα and NFκB-P-p65 proteins were upregulated in the OE group; NF-κB-p65 expression levels were upregulated in the nucleus, IκBα expression levels were downregulated in the cytoplasm, and P-IκBα expression levels were upregulated. LncRNA MTC and p65 proteins were co-localized in the cells. Meanwhile, LncRNA MTC and p65 protein showed significant nucleation in the OE group. RNA pull-down and LC-MS/MS verified that p65 protein was indeed an interacting protein of LncRNA MTC. LncRNA MTC binds to p65 protein, upregulates the expression of TNFα protein, nucleates p65 protein, and activates NF-κB signaling pathway to promote the proliferation of skin fibroblasts in Liaoning Cashmere Goat.

3.
BMC Genomics ; 24(1): 720, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017403

RESUMEN

BACKGROUND: Numerous factors influence the growth and development of cashmere. Existing research on cashmere has predominantly emphasized a single omics level. Integrating multi-omics analyses can offer a more comprehensive understanding by encompassing the entire spectrum. This study more accurately and comprehensively identified the key factors influencing cashmere fineness using multi-omics analysis. METHODS: This study used skin tissues of coarse cashmere type (CT_LCG) and fine cashmere type Liaoning cashmere goats (FT_LCG) for the analysis. This study employed an integrated approach involving transcriptomics, translatomics, proteomics, and metabolomics to identify substances associated with cashmere fineness. The findings were validated using parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM) techniques. RESULTS: The GO functional enrichment analysis identified three common terms: multicellular organismal process, immune system process, and extracellular region. Furthermore, the KEGG enrichment analysis uncovered the involvement of the arachidonic acid metabolic pathway. Protein expression trends were verified using PRM technology. The expression trends of KRT79, as confirmed by PRM, were consistent with those observed in TMT proteomics and exhibited a positive regulatory effect on cashmere fineness. Metabolite expression trends were confirmed using MRM technology. The expression trends of 9 out of 15 validated metabolites were in agreement with those identified in the non-targeted metabolomics analysis. CONCLUSIONS: This study employed multi-omics analysis to identify key regulators of cashmere fineness, including PLA2G12A, KRT79, and prostaglandin B2. The findings of this study offer valuable data and establish a theoretical foundation for conducting comprehensive investigations into the molecular regulatory mechanisms and functional aspects of cashmere fineness.


Asunto(s)
Multiómica , Piel , Animales , Piel/metabolismo , Cabras/genética
4.
Anim Biotechnol ; 34(6): 1937-1942, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35443150

RESUMEN

MicroRNA exerts an important regulatory role in almost all the biological process, including hair follicle development in Liaoning Cashmere goat. In order to improve the Cashmere performance of goat, the regulatory role of microRNA in hair follicle cycle has drawn hotspot attention. However, the molecular mechanisms of miRNA-1-3p involved in hair follicle development are poorly understood. In this study, we found that miRNA-1-3p was less expressed in anagen stage of hair follicle cycle of Cashmere goat than that in telogen stage by using RT-qPCR and immunoblotting analysis, in contrast to the expression pattern of FGF14. The Dual-Luciferase reporter assay was employed to verify the relationship between miRNA-1-3p and FGF14. The results showed that miRNA-1-3p specifically binds to the 3'UTR of FGF14 mRNA, and FGF14 is the target gene of miR-1-3p. In conclusion, this study shows that miRNA-1-3p may regulate hair follicle development in Liaoning Cashmere goats by targeting FGF14.


Asunto(s)
Folículo Piloso , MicroARNs , Animales , Folículo Piloso/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cabras
5.
Anim Biotechnol ; 34(7): 2817-2826, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36093624

RESUMEN

Existing experiments have found a new intergenic lncRNA activated by melatonin, which is called lncRNA MTC. However, the regulatory mechanism of lncRNA MTC in Liaoning Cashmere goat skin fibroblasts has not been clarified. Specific knockdown of lncRNA MTC inhibits cell proliferation and increases apoptosis. iTRAQ reagent was used for relative and absolute quantification of proteins in lncRNA MTC-KD and NC groups to evaluate changes in protein expression during dermal fibroblast development following lncRNA MTC deletion. A total of 5931 proteins were found in Liaoning Cashmere goat skin fibroblasts, of which 123 were differentially expressed, including 32 up-regulated proteins and 91 down-regulated proteins. Of the 91 down-regulated proteins, 32 act mainly through related pathways (e.g., cell cycle, mitochondrial function, ribosomal structure, vesicular transport, cytoskeletal components and skin morphogenesis). LncRNA MTC facilitates the proliferation of Liaoning Cashmere goat skin fibroblasts by regulating ITGB5, TlN2, CTSS, POLG, RAP1B, CHAF1A, CDCA8 and other proteins involved in cell proliferation. The results of this study provide some candidate proteins for the in-depth investigation of the molecular mechanism of lncRNA MTC, which facilitates hair growth in cashmere goats and provides more insights into their regulatory networks and biochemical pathways.


Asunto(s)
ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Folículo Piloso/metabolismo , Cabras , Fibroblastos
6.
Anim Biotechnol ; 34(4): 1583-1593, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35253626

RESUMEN

Liaoning cashmere goat (LCG) is a famous cashmere goat breed in China. Cashmere fineness, as an important index to evaluate cashmere quality, is also one of the problems to be improved for Liaoning cashmere goats. Transcriptome studies all mRNA transcribed by a specific tissue or cell in a certain period. It is a key link in the study of gene expression regulation. It plays an important role in the analysis of biological growth and disease. Transcriptome is spatio-temporal specific, that is, gene expression varies in different tissues or at different times. Three coarser and three fine LCG skin samples were sequenced by RNA-seq technology, and a total of 427 differentially expressed genes were obtained, including 291 up-regulated genes and 136 down-regulated genes. In the experiment, we screened out 16 genes that had significant differences in the expression of coarse and fine cashmere of Liaoning cashmere goats, so it was inferred that these 16 genes might have regulatory effects on cashmere fineness. Moreover, GO gene set enrichment analysis revealed that differential genes mainly consist of immune response, MHC protein complex, Heme binding and other pathways. KEGG analysis showed that transplant-versus-host disease and allograft rejection were the main pathways of differential genes.


Asunto(s)
Regulación de la Expresión Génica , Transcriptoma , Animales , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases , Cabras/genética , Folículo Piloso/metabolismo
7.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080249

RESUMEN

One of the critical elements in evaluating the quality of cashmere is its fineness, but we still know little about how it is regulated at the metabolic level. In this paper, we use UHPLC-MS/MS detection and analysis technology to compare the difference in metabolites between coarse cashmere (CT_LCG) and fine cashmere (FT_LCG) skin of Liaoning cashmere goats. According to the data, under positive mode four metabolites were significantly up-regulated and seven were significantly down-regulated. In negative mode, seven metabolites were significantly up-regulated and fourteen metabolites were significantly down-regulated. The two groups' most significant metabolites, Gly-Phe and taurochenodeoxycholate, may be crucial in controlling cashmere's growth, development, and fineness. In addition, we enriched six KEGG pathways, of which cholesterol metabolism, primary bile acid biosynthesis, and bile secretion were enriched in positive and negative modes. These findings offer a new research idea for further study into the critical elements influencing cashmere's fineness.


Asunto(s)
Cabras , Espectrometría de Masas en Tándem , Animales , Piel/metabolismo
8.
Anim Biotechnol ; 30(4): 279-286, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30798699

RESUMEN

The relationship between PLP2 gene and cashmere fiber quality of Liaoning cashmere goat was investigated. The sheep fibroblast cells were treated with exogenous cytokines and melatonin, independently, and RNA interference, RT-PCR and in situ hybridization were utilized for investigating the PLP2 gene regulation mechanism underlying the Liaoning cashmere growth. The results showed that the expression of PLP2 gene in the prosperous and degenerative stage is higher than that of the primary follicle, indicating that the PLP2 gene promotes the secondary follicle, wherein the gene is expressed only in the inner root sheath, suggesting its correlation to hair loss. The results of RT-PCR showed that the trend of FGF5 expression in PLP2 gene was positively regulated. The influence of MT on the expression of PLP2 gene was negatively regulated, and the inhibition was gradually enhanced with the passage of time. Studies have confirmed that the Noggin gene is an inhibitor of the BMP signaling pathway. After the noggin gene interferes with the lentivirus infection, the expression of the PLP2 gene is downregulated. Therefore, the PLP2 gene, along with the other suppressor genes including the noggin gene, might affect the development of hair follicles by inhibiting the BMP(Bone morphogenetic proteins)pathway.


Asunto(s)
Cabras/crecimiento & desarrollo , Folículo Piloso/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Factor 5 de Crecimiento de Fibroblastos/farmacología , Fibroblastos/metabolismo , Fibroblastos/virología , Cabras/genética , Cabras/metabolismo , Folículo Piloso/citología , Folículo Piloso/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Metabolismo de los Lípidos , Melatonina/farmacología , Proteínas de la Membrana/genética , Especificidad de Órganos , Interferencia de ARN , Ovinos/metabolismo , Ovinos/virología , Factores de Tiempo
9.
Genetica ; 145(1): 115-126, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28093668

RESUMEN

Homeobox protein Hox-C8 (HOXC8) is a member of Hox family. It is expressed in the dermal papilla of the skin and is thought to be associated with the hair inductive capacity of dermal papilla cells. In the present study, we isolated and characterized a full-length open reading frame of HOXC8 cDNA from the skin tissue of Liaoning cashmere goat, as well as, established a phylogenetic relationship of goat HOXC8 with that of other species. Also, we investigated the effect of methylation status of HOXC8 exon 1 at anagen secondary hair follicle on the cashmere fiber traits in Liaoning cashmere goat. The sequence analysis indicated that the obtained cDNA was 1134-bp in length containing a complete ORF of 729-bp. It encoded a peptide of 242 amino acid residues in length. The structural analysis indicated that goat HOXC8 contained a typical homeobox domain. The phylogenetic analysis revealed that Capra hircus HOXC8 had a closer genetic relationship with that of Ovis aries, followed by Bos Taurus and Bubalus bubalis. The methylation analysis suggested that the methylation degree of HOXC8 exon 1 in anagen secondary hair follicle might be involved in regulating the growth of cashmere fiber in Liaoning cashmere goat. Our results provide new evidence for understanding the molecular structural and evolutionary characteristics of HOXC8 in Liaoning cashmere goat, as well as, for further insight into the role of methylation degree of HOXC8 exon 1 regulates the growth of cashmere fiber in goat.


Asunto(s)
Metilación de ADN , Exones , Estudios de Asociación Genética , Cabras/genética , Proteínas de Homeodominio/genética , Carácter Cuantitativo Heredable , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Islas de CpG , Evolución Molecular , Cabras/clasificación , Filogenia , Polimorfismo Genético , Análisis de Secuencia de ADN
10.
Asian-Australas J Anim Sci ; 30(3): 328-337, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27383810

RESUMEN

OBJECTIVE: An experiment was conducted to determine the relationship between the KAP11.1 and the regulation wool fineness. METHODS: In previous work, we constructed a skin cDNA library and isolated a full-length cDNA clone termed KAP11.1. On this basis, we conducted a series of bioinformatics analysis. Tissue distribution of KAP11.1 mRNA was performed using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis. The expression of KAP11.1 mRNA in primary and secondary hair follicles was performed using real-time PCR (real-time polymerase chain reaction) analysis. The expression location of KAP11.1 mRNA in primary and secondary hair follicles was performed using in situ hybridization. RESULTS: Bioinformatics analysis showed that KAP11.1 gene encodes a putative 158 amino acid protein that exhibited a high content of cysteine, serine, threonine, and valine and has a pubertal mammary gland) structural domain. Secondary structure prediction revealed a high proportion of random coils (76.73%). Semi-quantitative RT-PCR showed that KAP11.1 gene was expressed in heart, skin, and liver, but not expressed in spleen, lung and kidney. Real time PCR results showed that the expression of KAP11.1 has a higher expression in catagen than in anagen in the primary hair follicles. However, in the secondary hair follicles, KAP11.1 has a significantly higher expression in anagen than in catagen. Moreover, KAP11.1 gene has a strong expression in inner root sheath, hair matrix, and a lower expression in hair bulb. CONCLUSION: We conclude that KAP11.1 gene may play an important role in regulating the fiber diameter.

11.
Genetica ; 144(4): 457-67, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27406581

RESUMEN

Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family (BMPs). It is involved in the development and cycle of hair follicle, as well as, is thought to be a potential candidate gene for cashmere traits in goats. In the present study, we isolated and characterized a full-length open reading frame (ORF) of BMP4 cDNA from the skin tissue of Liaoning cashmere goat, and investigated the transcriptional pattern and methylation status of BMP4 gene in skin tissue of this breed during different stages of hair follicle cycle. The sequence analysis indicated that the isolated cDNA was 1264-bp in length containing a complete ORF of 1230-bp. It encoded a precursor peptide of 409 amino acids with a signal peptide of 19 amino acids. The structural analysis indicated that goat BMP4 contains typical TGF-ß propeptide and TGF-ß domains. In skin tissue, BMP4 is generally transcribed in an ascendant pattern from anagen to telogen. The methylation level of 5' flanking regulatory region of BMP4 gene might be involved in its mRNA expression in skin tissue: a higher BMP4 methylation level in skin coincides with a lower expression of BMP4 mRNA. These results from the present work provided a foundation for further insight into the functional and regulatory characteristics of BMP4 in the development and cycle of hair follicle in Liaoning Cashmere goat.


Asunto(s)
Proteína Morfogenética Ósea 4/genética , Metilación de ADN , Regulación de la Expresión Génica , Cabras/genética , Folículo Piloso/metabolismo , Piel/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 4/química , Clonación Molecular , Islas de CpG , ADN Complementario/genética , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN , Transcripción Genética
12.
Anim Biotechnol ; 27(2): 104-12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913551

RESUMEN

MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules that negatively regulate gene expression. Herein, we investigated a selective number of miRNAs for their expression in skin tissue of Liaoning Cashmere goat during hair follicle cycles, and their intracellular regulatory networks were constructed based on bioinformatics analysis. The relative expression of six miRNAs (mir-103-3p, -15b-5p, 17-5p, -200b, -25-3p, and -30c-5p) at anagen phase is significantly higher than that at catagen and/or telogen phases. In comparison to anagen, the relative expression of seven miRNAs (mir-148a-3p, -199a-3p, -199a-5p, -24-3p, -30a-5p, -30e-5p, and -29a-3p) was revealed to be significantly up-regulated at catagen and/or telogen stages. The network analyses of miRNAs indicated those miRNAs investigated might be directly or indirectly involved in several signaling pathways through their target genes. These results provided a foundation for further insight into the roles of these miRNAs in skin tissue of Liaoning Cashmere goat during hair follicle cycles.


Asunto(s)
Cabras/genética , Folículo Piloso/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Cabras/metabolismo , MicroARNs/análisis
13.
Front Genet ; 12: 775499, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096002

RESUMEN

Cashmere fineness is an important index to evaluate cashmere quality. Liaoning Cashmere Goat (LCG) has a large cashmere production and long cashmere fiber, but its fineness is not ideal. Therefore, it is important to find genes involved in cashmere fineness that can be used in future endeavors aiming to improve this phenotype. With the continuous advancement of research, the regulation of cashmere fineness has made new developments through high-throughput sequencing and genome-wide association analysis. It has been found that translatomics can identify genes associated with phenotypic traits. Through translatomic analysis, the skin tissue of LCG sample groups differing in cashmere fineness was sequenced by Ribo-seq. With these data, we identified 529 differentially expressed genes between the sample groups among the 27197 expressed genes. From these, 343 genes were upregulated in the fine LCG group in relation to the coarse LCG group, and 186 were downregulated in the same relationship. Through GO enrichment analysis and KEGG enrichment analysis of differential genes, the biological functions and pathways of differential genes can be found. In the GO enrichment analysis, 491 genes were significantly enriched, and the functional region was mainly in the extracellular region. In the KEGG enrichment analysis, the enrichment of the human papillomavirus infection pathway was seen the most. We found that the COL6A5 gene may affect cashmere fineness.

14.
Environ Sci Pollut Res Int ; 28(28): 37918-37928, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33721167

RESUMEN

The morphology and oxidation state of arsenic in its compounds affects the skin cell toxicity. Accordingly, the present study was conducted to explore the effects of two different arsenic compounds on the proliferation and survival of Liaoning cashmere goat skin fibroblasts. Based on MTT assay results, at 24 h, the proliferation concentration, critical concentration, and half inhibitory concentration (IC50) of sodium arsenite were 0.50, 5.00, and 45.66 µmol/L, respectively. The corresponding values for dimethyl arsenic acid were 0.85, 1.00, and 38.68 mmol/L. Immunofluorescence, transmission electron microscopy, and mitochondria membrane potential (MMP) assays showed that sodium arsenite promotes microtubule polymerization and increases MMP, while cells treated with dimethyl arsenic acid exhibited cytoskeletal collapse and decreased MMP. In the IC50 groups for both arsenic agents, the cytoskeletons collapsed, microtubules were gathered into bundles, and MMP was significantly decreased. Dimethyl arsenic acid had a stronger effect on MMP than sodium arsenite. Flow cytometry revealed a slightly lower occurrence of apoptosis in the sodium arsenite proliferation group, while it was slightly increased in the dimethyl arsenic acid proliferation group. Apoptosis was increased more significantly in the sodium arsenite IC50 group than in the dimethyl arsenic acid IC50 group. These results indicate that the differences in cell proliferation and cytotoxicity induced by inorganic and organic arsenic are related to their effects on cellular structures.


Asunto(s)
Arsénico , Arsenitos , Animales , Arseniatos , Arsenitos/toxicidad , Ácido Cacodílico , Fibroblastos , Cabras , Compuestos de Sodio/toxicidad
15.
Gene ; 641: 78-85, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29054756

RESUMEN

The H19 transcript (imprinted maternally expressed transcript) is well-known as long noncoding RNA (lncRNA), and it is thought to be associated with the inductive capacity of dermal papilla cells for hair-follicle reconstruction. In this study, we isolated and characterized a lncRNA-H19 transcript from the secondary hair follicle of Liaoning cashmere goat. Also, we investigated its transcriptional pattern and methylation status of H19 gene in secondary hair follicle of this breed during different stages of hair follicle cycle. Nucleotide composition analysis indicated that guanine (G) and cytosine (C) are the dominant nucleotides in the lncRNA-H19 transcript of Liaoning cashmere goat with the highest frequency distribution (11.25%) of GG nucleotide pair. The regulatory network showed that lncRNA-H19 transcript appears to have remarkably diverse regulatory relationships with its related miRNAs and the potential target genes. In secondary hair follicle, the relative expression of lncRNA-H19 transcript at the anagen phase is significantly higher than that at both telogen and catagen phases suggesting that lncRNA-H19 transcript might play essential roles in the formation and growth of cashmere fiber of goat. Methylation analysis indicated that the methylation of the promoter region of H19 gene most likely participates in its transcriptional suppression in secondary hair follicle of Liaoning cashmere goat.


Asunto(s)
Pelaje de Animal/citología , Metilación de ADN/genética , Cabras/genética , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , Animales , Composición de Base/genética , Secuencia de Bases , Regulación de la Expresión Génica/genética , Folículo Piloso/citología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda