Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 24(6): 2094-2101, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315573

RESUMEN

Prelithiation plays a crucial role in advancing the development of high-energy-density batteries, and ultrathin lithium (UTL) has been proven to be a promising anode prelithiation reagent. However, there remains a need to explore an adjustable, efficient, and cost-effective method for manufacturing UTL. In this study, we introduce a method for producing UTL with adjustable thicknesses ranging from 1.5 to 10 µm through blade coating of molten lithium on poly(vinylidene fluoride)-modified copper current collectors. By employing the transfer-printing method, prelithiated graphite and Si-C composite electrodes are prepared, which exhibit significantly improved initial Coulombic efficiencies of 99.60% and 99.32% in half-cells, respectively. Moreover, the energy densities of Li(NiCoMn)1/3O2 and LiFePO4 full cells assembled with the prelithiated graphite electrodes increase by 13.1% and 23.6%, respectively.

2.
Small ; : e2402988, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982943

RESUMEN

Zero-excess Li-metal batteries (ZE-LMBs) have emerged as the ultimate battery platform, offering an exceptionally high energy density. However, the absence of Li-hosting materials results in uncontrolled dendritic Li deposition on the Cu current collector, leading to chronic loss of Li inventory and severe electrolyte decomposition, limiting its full utilization upon cycling. This study presents the application of ultrathin (≈50 nm) coatings comprising six metallic layers (Cu, Ag, Au, Pt, W, and Fe) on Cu substrates in order to provide insights into the design of Li-depositing current collectors for stable ZE-LMB operation. In contrast to non-alloy Cu, W, and Fe coatings, Ag, Au, and Pt coatings can enhance surface lithiophilicity, effectively suppressing Li dendrite growth, thereby improving Li reversibility. Considering the distinct Li-alloying behaviors, particularly solid-solution and/or intermetallic phase formation, Pt-coated Cu current collectors maintain surface lithiophilicity over repeated Li plating/stripping cycles by preserving the original coating layer, thereby attaining better cycling performance of ZE-LMBs. This highlights the importance of selecting suitable Li-alloy metals to sustain surface lithiophilicity throughout cycling to regulate dendrite-less Li plating and improve the electrochemical stability of ZE-LMBs.

3.
Small ; : e2406359, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225380

RESUMEN

Anode-free lithium-metal batteries (AFLMBs) are desirable candidates for achieving high-energy-density batteries, while severe active Li+ loss and uneven Li plating/stripping behavior impede their practical application. Herein, a trilaminar LS-Cu (LiCPON + Si/C-Cu) current collector is fabricated by radio frequency magnetron sputtering, including a Si/C hybrid lithiophilic layer and a supernatant carbon-incorporated lithium phosphorus oxynitride (LiCPON) solid-state electrolyte layer. Joint experimental and computational characterizations and simulations reveal that the LiCPON solid-state electrolyte layer can decompose into an in situ stout ion-transport-promoting protective layer, which can not only regulate homogeneous Li plating/stripping behavior but also inhibit the pulverization and deactivation of Si/C hybrid lithiophilic layer. When combined with surface prelithiated Li1.2Ni0.13Co0.13Mn0.54O2 (Preli-LRM) cathode, the Preli-LRM||LS-Cu full cell delivers 896.1 Wh kg-1 initially and retains 354.1 Wh kg-1 after 50 cycles. This strategy offers an innovative design of compensating for active Li+ loss and inducing uniform Li plating/stripping behavior simultaneously for the development of AFLMBs.

4.
Small ; 19(12): e2206176, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587971

RESUMEN

Electrolyte modulation and electrode structure design are two common strategies to suppress dendrites growth on Li metal anode. In this work, a self-adaptive electrode construction method to suppress Li dendrites growth is reported, which merges the merits of electrolyte modulation and electrode structure design strategies. In detail, negatively charged titania nanosheets with densely packed nanopores on them are prepared. These holey nanosheets in the electrolyte move spontaneously onto the anode under electrical field, building a mesoporous structure on the electrode surface. The as-formed porous electrode has large surface area with good lithiophilicity, which can efficiently transfer lithium ion (Li+ ) inside the electrode, and induce the genuine lithium plating/stripping. Moreover, the negative charges and nanopores on the sheets can also regulate the lithium-ion flux to promote uniform deposition of Li metal. As a result, the symmetric and full cells using the holey titania nanosheets containing electrolyte, show much better performance than the ones using electrolyte without holey nanosheets inside. This work points out a new route for the practical applications of Li-metal batteries.

5.
Small ; 19(12): e2205709, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36585392

RESUMEN

Lithium metal anode (LMA) is puzzled by the serious issues corresponding to infinite volume change and notorious lithium dendrite during long-term stripping/plating process. Herein, the transition metal nitrides array with outstanding lithiophilicity, including CoN, VN, and Ni3 N, are decorated onto carbon framework as "nests" to uniform Li nucleation and guide Li metal deposition. These transition metal nitrides with excellent conductivity can guarantee the fast electron transport, therefore maintain a stable interface for Li reduction. In addition, the designed multi-dimensional structure of metal nitride array decorated carbon framework can effectively regulate the growth of Li metal during the stripping/plating process. Of note, attributing to the lattice-matching between CoN and Li metal, the composite Li/CoN@CF anode exhibits ultra-stable cycling performance in symmetrical cells (over 4000 h@1 mA cm-2 with 1 mAh cm-2 and 1000h@20 mA cm-2 with 20 mAh cm-2 ). The assembled full cells based on Li/CoN@CF composite anode, LiFePO4 or S as cathodes, deliver excellent cycling stability and rate capability. This strategy provides an effective approach to develop a stable lithium metal anode for lithium metal batteries.

6.
Small ; 19(52): e2304373, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649179

RESUMEN

Lithium metal anodes face several challenges in practical applications, such as dendrite growth, poor cycle efficiency, and volume variation. 3D hosts with lithiophilic surfaces have emerged as a promising design strategy for anodes. In this study, inspiration from the intrinsic isotropy, chemical heterogeneity, and wide tunability of metallic glass (MG) is drew to develop a 3D mesoporous host with a lithiophilic surface. The CuZrAg MG is prepared using the scalable melt-spinning technique and subsequently treated with a simple one-step chemical dealloying method. This resultes in the creation of a host with a homogeneously distributed abundance of lithium affinity sites on the surface. The excellent lithiophilic property and capability for uniform lithium deposition of the 3D CuZrAg electrode have been confirmed through theoretical calculations. Therefore, the 3D CuZrAg electrode displays excellent cyclic stability for over 400 cycles with 96% coulomb efficiency, and ultra-low overpotentials of 5 mV for over 2000 h at 1.0 mA cm-2 and 1.0 mAh cm-2 . Additionally, the full cells partied with either LiFePO4 or LiNi0.8 Co0.1 Mn0.1 O2 cathode deliver exceptional long-term cyclability and rate capability. This work demonstrates the great potential of metallic glass in lithium metal anode application.

7.
Chemistry ; 29(70): e202302773, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37750566

RESUMEN

Lithium (Li) metal is a promising anode candidate for high-energy-density batteries owing to its high theoretical capacity and low electrochemical potential. However, uneven Li nucleation, uncontrollable dendritic growth, infinite voltage change and even safety issues hinder its commercial application. Herein, a three-dimensional (3D) framework of freestanding vanadium nitride nanowires (VN NWs) is established as Li host for dendrite-free Li metal anode. A lithiophilic Li3 N interlayer which in situ formed by the surface reaction between molten Li and VN NWs is utilized to guide a uniform Li nucleation and deposition within the skeleton, as well as avoid the dendrite formation. Meanwhile, VN NWs can decrease local current density, homogenize Li-ion flux and accommodate volume fluctuations of the anode due to its 3D structure with high electron conductivity. Thus, the corresponding composite Li metal anode delivers a long-life span of 500 cycles (1000 h) at a current density of 0.5 mA cm-2 , and exhibits lower nucleation over-potential and voltage hysteresis at different current densities from 0.5~5 mA cm-2 in carbonate electrolyte. In conclusion, this work provides a new type of scaffold with both high electronic conductivity and excellent lithiophilicity for stable Li anodes.

8.
Nano Lett ; 22(12): 4999-5008, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35679350

RESUMEN

The sluggish redox kinetics of sulfur and the uncontrollable growth of lithium dendrites are two main challenges that impede the practical applications of lithium-sulfur (Li-S) batteries. In this study, a multifunctional host with vacancy-rich MoSSe vertically grown on reduced graphene oxide aerogels (MoSSe/rGO) is designed as the host material for both sulfur and lithium. The embedding of Se into a MoS2 lattice is introduced to improve the inherent conductivity and generate abundant anion vacancies to endow the 3D conductive graphene based aerogels with specific sulfiphilicity-lithiophilicity. As a result, the assembled Li-S batteries based on MoSSe/rGO exhibit greatly improved capacity and cycling stability and can be operated under a lean electrolyte (4.8 µL mg-1) and a high sulfur loading (6.5 mg cm-2), achieving a high energy density. This study presents a unique method to unlock the catalysis capability and improve the inherent lithiophilicity by heteroatom doping and defect chemistry for kinetics-enhanced and dendrite-free Li-S batteries.

9.
Small ; 18(33): e2203273, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35871502

RESUMEN

Using 3D host is an effective way to solve the dendrite growth problem and accommodate volume changes of lithium (Li) metal anode. However, the preferred Li deposition on the top surface leads to the Li metal agglomeration at the surface. In addition, the large weight of the 3D host also greatly decreases the capacity based on the whole anode. Herein, a bidirectional lithiophilic gradient modification, including a top-down ZnO gradient and a bottom-up Sn gradient, is applied to an ultralight 3D carbon nanofiber host (density: 0.1 g cm-3 ) and ensures the evenly filling lithium deposition in the 3D host. ZnO transforms into highly ionic conductive Li-Zn alloy and Li2 O during cycling, enhancing the Li-ion transportation from top to bottom. The metallic Sn also lowers the Li nucleation potential, guiding the preferential Li deposition from the bottom. With such a host, a stable CE of 97.5% over 100 cycles at 1 mA cm-2 and 3 mAh cm-2 is achieved, and the full battery also delivers good cycling stability over 300 cycles with a high CE of 99.8% coupled with high loading LiFePO4 cathode (10 mg cm-2 ) and low N/P ratio (≈3).

10.
Nano Lett ; 21(24): 10252-10259, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34850628

RESUMEN

Herein, a novel sandwichlike host with expandable accommodation and gradient characteristics of lithiophilicity and conductivity is prepared by constructing a reduced graphene oxide (rGO)/SiO2/rGO intercalated structure on the basis of electrospraying and coating an additional PVDF-HFP layer on the top surface. This gradient host electrode enables preferential, ordered, and uniform Li deposition in the SiO2-embedded interlayer space. The dendrite growth and isolated Li are suppressed by the combined rGO/PVDF-HFP layer with robust, flexible, and floatable features, which could function as an artificial solid-electrolyte interphase to impede reckless electrolyte infiltration, homogenize the Li ion flux distribution, and build a stable electrochemical interface. The designed electrodes could be stably cycled with a high capacity of 5 mAh cm-2 and give rise to a high average Coulombic efficiency (CE) of 99.14%. Furthermore, the derived full cells can deliver an average CE of 99.87% in 300 cycles with a capacity retention of 90.22% and successfully operate under lean electrolyte conditions.

11.
Small ; 17(48): e2007142, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33661559

RESUMEN

Carbon materials have been widely considered as the frameworks in lithium (Li) metal anodes due to their lightweight, high electrical conductivity, and large specific surface area. Various heteroatom-doping strategies have been developed to enhance the lithiophilicity of carbon frameworks, thus rendering a uniform Li nucleation in working Li metal batteries. The corresponding lithiophilicity chemistry of doping sites has been comprehensively probed. However, various defects are inevitably introduced into carbon materials during synthesis and their critical role in regulating Li nucleation and growth behaviors is less understood. In this contribution, the defect chemistry of carbon materials in Li metal anodes is investigated through first-principles calculations. The binding energy towards a Li atom and the critical current density are two key descriptors to reveal the defect chemistry of carbon materials. Consequently, a diagram of designing carbon frameworks with both high lithiophilicity and a large critical current density is built, from which the Stone-Wales defect is predicted to possess the best performance for delivering a uniform Li deposition. This work uncovers the defect chemistry of carbon frameworks and affords fruitful insights into defect engineering for achieving dendrite-free Li metal anodes.

12.
Small ; 16(24): e2000794, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32419375

RESUMEN

The development of lithium metal anodes capable of sustaining large volume changes, avoiding lithium dendrite formation, and remaining stable in ambient air is crucial for commercially viable lithium metal batteries. Toward this goal, the fabrication of porous and lithiophilic copper scaffolds via a powder metallurgy strategy is reported. Infiltrating the scaffolds with molten lithium followed by exposure to Freon R134a produces lithium metal anodes with dramatically improved rate performance and cycling stability. This work provides a simple yet effective route for the fabrication of safe, low-cost lithium metal batteries with high energy density.

13.
Chemistry ; 26(24): 5434-5440, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32026523

RESUMEN

Nonuniform nucleation is one of the major reasons for the dendric growth of metallic lithium, which leads to intractable problems in the efficiency, reversibility, and safety in Li-based batteries. To improve the deposition of metallic Li on Cu substrates, herein, a freestanding current collector (NGDY@CuNW) is formed by coating pyridinic nitrogen-doped graphdiyne (NGDY) nanofilms on 3D Cu nanowires (CuNWs). Theoretical predictions reveal that the introduction of nitrogen atoms in the 2D GDY can enhance the binding energy between the Li atom and GDY, therefore improving the lithiophilicity on the surface for uniform lithium nucleation and deposition. Accordingly, the deposited metallic Li on the NGDY@CuNW electrode exhibits a dendrite-free morphology, resulting in significant improvements in terms of the reversibility with a high coulombic efficiency (CE) and a long lifespan at high current density. Our research provides an efficient method to control the surface property of Cu, which also will be instructive for other metal batteries.

14.
Chemistry ; 25(19): 5036-5042, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30723947

RESUMEN

The use of Li metal as the anode for Li-based batteries has attracted considerable attention due to its ultrahigh energy density. However, the formation of Li dendrites, uneven deposition, and huge volume changes hinder its reliable implementation. These issues become much more severe in commercial carbonate-based electrolytes than in ether-based electrolytes. Herein, a rationally designed three-dimensional graphene/Ag aerogel (3D G-Ag aerogel) is proposed for Li metal anodes with long cycle life in carbonate-based electrolytes. The modified lithiophilic nature of G-Ag aerogel, realized through decoration with Ag NPs, effectively decreases the energy barrier for Li nucleation, regulating uniform Li deposition behavior. Moreover, the highly flexible, conductive 3D porous architecture with hierarchical mesopores and macropores can readily accommodate deposited Li and ensures the integrity of the conductive network during cycling. Consequently, high coulombic efficiency (over 93.5 %) and a significantly long cycle life (1589 h) over 200 cycles, with a relatively high cycling capacity of 2.0 mAh cm-2 , can easily be achieved, even in a carbonate-based electrolyte. Considering the intrinsic high voltage windows of carbonate-based electrolytes, matching the G-Ag aerogel Li metal anode with a high-voltage cathode can be envisaged for the fabrication of high-energy-density Li secondary batteries.

15.
Angew Chem Int Ed Engl ; 58(47): 16795-16799, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31529575

RESUMEN

A new strategy for the synthesis of a covalent triazine framework (CTF-1) was introduced based on the cyclotrimerization reaction of 1,4-dicyanobenzene using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) under ionothermal conditions. LiTFSI not only served as a catalyst, but also facilitated the in situ generation and homogeneous distribution of LiF particles across the framework. The hierarchical structure resulting upon integration of CTF-LiF onto an airlaid-paper (AP) offered unique features for lithium metal anodes, such as lithiophilicity from CTF, interface stabilization from LiF, and sufficient lithium storage space from AP. Based on this synergistic effect, the AP-CTF-LiF anode exhibited stable cycling performance even at a current density of 10 mA cm-2 .

16.
Angew Chem Int Ed Engl ; 58(10): 3092-3096, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30589160

RESUMEN

Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current collectors (CCs) and Li-free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic-scale design of Cu-CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)-preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid-electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal-electrolyte interphases towards practical applications of Li anodes prepared on CCs.

17.
ACS Appl Mater Interfaces ; 16(25): 32259-32270, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38864717

RESUMEN

Lithium (Li) metal has been regarded as the ideal anode for rechargeable batteries due to its low reduction potential and high theoretical capacity. However, the formation of fatal Li dendrites during repeated cycling shortens the battery life and causes serious safety concerns. Functionalized separators with electrically conductive and lithiophilic coating layers potentially inhibit dendrite formation and growth on Li metal anodes by providing nucleation sites for reversible Li deposition/stripping. In this work, we propose functionalized separators incorporating heteroatom-doped (N or B) graphene interlayers to modulate the Li nucleation behavior. The electronegative N-doping and electropositive B-doping were investigated to understand their regulation of the Li deposition behavior. With the heteroatom-doped graphene-coated separators, we observe significantly improved cycling stability along with enhanced charge transfer kinetics and low Li nucleation overpotential. This is attributed to the heteroatom-doped graphene interlayer expanding the surface area of the Li metal anode while providing additional space for uniform Li deposition/stripping, thus preventing undesirable side reactions. As a result, the formation of dendrites and pits on the Li metal anode surface is suppressed, demonstrating the protective effect of the Li metal anode. Interestingly, N-doped graphene-coated separators exhibit lower Li nucleation overpotentials than B-doped graphene-coated separators but rather lower average Coulombic efficiencies and reduced cycling stability. This implies that adequate adsorption on B-based sites, as opposed to the strong adsorption on N-based sites, improves the reversibility. Notably, the Li adsorption strength of the lithiophilic functional groups critically affects the reversibility, as observed by Li nucleation barrier measurements and atomistic simulations. This work suggests that interface engineering using conductive and lithiophilic materials can be a promising strategy for controlling Li deposition in advanced Li metal batteries.

18.
J Colloid Interface Sci ; 673: 638-646, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38897065

RESUMEN

Lithium (Li) metal anode (LMA) is one of the most promising anodes for high energy density batteries. However, its practical application is impeded by notorious dendrite growth and huge volume expansion. Although the three-dimensional (3D) host can enhance the cycling stability of LMA, further improvements are still necessary to address the key factors limiting Li plating/stripping behavior. Herein, porous copper (Cu) foam (CF) is thermally infiltrated with molten Li-rich Li-zinc (Li-Zn) binary alloy (CFLZ) with variable Li/Zn atomic ratio. In this process, the LiZn intermetallic compound phase self-assembles into a network of mixed electron/ion conductors that are distributed within the metallic Li phase matrix and this network acts as a sublevel skeleton architecture in the pores of CF, providing a more efficient and structured framework for the material. The as-prepared CFLZ composite anodes are systematically investigated to emphasize the roles of the tunable lithiophilicity and hierarchical structure of the frameworks. Meanwhile, a thin layer of Cu-Zn alloy with strong lithiophilicity covers the CF scaffold itself. The CFLZ with high Zn content facilitates uniform Li nucleation and deposition, thereby effectively suppressing Li dendrite growth and volume fluctuation. Consequently, the hierarchical and lithiophilic framework shows low Li nucleation overpotential and highly stable Coulombic efficiency (CE) for 200 cycles in conventional carbonate based electrolyte. The full cell coupled with LiFePO4 (LFP) cathode demonstrates high cycle stability and rate performance. This work provides valuable insights into the design of advanced dendrite-free 3D LMA toward practical application.

19.
J Colloid Interface Sci ; 676: 80-88, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39018813

RESUMEN

Lithium metal is highly favored as an ideal anode material in future high-capacity lithium batteries due to its appealing properties. Nevertheless, the implementation of lithium metal batteries (LMBs) is severely plagued by challenges such as instable solid electrolyte interface (SEI), uncontrolled growth of dendrite, and severe volume expansion. Herein, to address the aforementioned issues, an artificial SEI layer is fabricated, which is comprised of LixSi alloy and Li3N. The in-situ generated LixSi/Li3N interface is formed on the carbon fiber (denoted as CF/LixSi/Li3N) through a spontaneous reaction between molten Li and Si3N4. Density functional theory (DFT) calculations reveal that LixSi alloy has low ion diffusion energy barrier, which facilitates the low nucleation overpotential of Li+ and enables homogeneous lithium deposition. Li3N can further promote the rapid Li+ transport due to the excellent Li+ conductivity. In addition, the reserved 3D space effectively mitigates the volume change along cycling procedure. Owing to the synergistic effect of the LixSi/Li3N protective layer and the 3D structure, the composite anode shows higher cycling stability with a lifetime of more than 3000 cycles at 1 mA cm-2. Furthermore, matched with commercial LiFePO4 (LFP) and LiNi5Co2Mn3O2 (NCM523) cathodes, the full cells also exhibit impressive electrochemical properties. This work introduces an ingenious approach for constructing stable lithium metal anodes and effective lithium metal batteries.

20.
Adv Mater ; : e2407443, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39385641

RESUMEN

Interest in all-solid-state batteries (ASSBs), particularly the anode-less type, has grown alongside the expansion of the electric vehicle (EV) market, because they offer advantages in terms of their energy density and manufacturing cost. However, in most anode-less ASSBs, the anode is covered by a protective layer to ensure stable lithium (Li) deposition, thus requiring high temperatures to ensure adequate Li ion diffusion kinetics through the protective layer. This study proposes a dual-seed protective layer consisting of silver (Ag) and zinc oxide (ZnO) nanoparticles for sulfide-based anode-less ASSBs. This dual-seed-based protective layer not only facilitates Li diffusion via multiple lithiation pathways over a wide range of potentials, but also enhances the mechanical stability of the anode interface through the in situ formation of a Ag-Zn alloy with high ductility. The capacity retention during full-cell evaluation is 80.8% for 100 cycles when cycled at 1 mA cm-2 with 3 mAh cm-2 at room temperature. The dual-seed approach provides useful insights into the design of multi-seed concepts in which, from a mechanochemical perspective, various lithiophilic materials synergistically impact upon the anode-less interface.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda