Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 40(6): e106583, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33459428

RESUMEN

Plasmodium falciparum (Pf) is a major cause of human malaria and is transmitted by infected Anopheles mosquitoes. The initial asymptomatic infection is characterized by parasite invasion of hepatocytes, followed by massive replication generating schizonts with blood-infective merozoites. Hepatocytes can be categorized by their zonal location and metabolic functions within a liver lobule. To understand specific host conditions that affect infectivity, we studied Pf parasite liver stage development in relation to the metabolic heterogeneity of fresh human hepatocytes. We found selective preference of different Pf strains for a minority of hepatocytes, which are characterized by the particular presence of glutamine synthetase (hGS). Schizont growth is significantly enhanced by hGS uptake early in development, showcasing a novel import system. In conclusion, Pf development is strongly determined by the differential metabolic status in hepatocyte subtypes. These findings underscore the importance of detailed understanding of hepatocyte host-Pf interactions and may delineate novel pathways for intervention strategies.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Hepatocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Transporte Biológico/fisiología , Proliferación Celular/fisiología , Glucosa/metabolismo , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Humanos , Hígado/parasitología , Hígado/patología
2.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34013963

RESUMEN

The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Malaria , Parásitos , Animales , Hepatocitos , Hígado , Plasmodium berghei , Proteínas Protozoarias
3.
Proc Biol Sci ; 290(2011): 20232280, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018100

RESUMEN

Vaccination strategies in mice inducing high numbers of memory CD8+ T cells specific to a single epitope are able to provide sterilizing protection against infection with Plasmodium sporozoites. We have recently found that Plasmodium-specific CD8+ T cells cluster around sporozoite-infected hepatocytes but whether such clusters are important in elimination of the parasite remains incompletely understood. Here, we used our previously generated data in which we employed intravital microscopy to longitudinally image 32 green fluorescent protein (GFP)-expressing Plasmodium yoelii parasites in livers of mice that had received activated Plasmodium-specific CD8+ T cells after sporozoite infection. We found significant heterogeneity in the dynamics of the normalized GFP signal from the parasites (termed 'vitality index' or VI) that was weakly correlated with the number of T cells near the parasite. We also found that a simple model assuming mass-action, additive killing by T cells well describes the VI dynamics for most parasites and predicts a highly variable killing efficacy by individual T cells. Given our estimated median per capita kill rate of k = 0.031/h we predict that a single T cell is typically incapable of killing a parasite within the 48 h lifespan of the liver stage in mice. Stochastic simulations of T cell clustering and killing of the liver stage also suggested that: (i) three or more T cells per infected hepatocyte are required to ensure sterilizing protection; (ii) both variability in killing efficacy of individual T cells and resistance to killing by individual parasites may contribute to the observed variability in VI decline, and (iii) the stable VI of some clustered parasites cannot be explained by measurement noise. Taken together, our analysis for the first time provides estimates of efficiency at which individual CD8+ T cells eliminate intracellular parasitic infection in vivo.


Asunto(s)
Malaria , Plasmodium yoelii , Ratones , Animales , Linfocitos T CD8-positivos , Hígado/parasitología , Hepatocitos/parasitología , Esporozoítos , Plasmodium berghei/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(7): E1138-E1147, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137845

RESUMEN

The first, obligatory replication phase of malaria parasite infections is characterized by rapid expansion and differentiation of single parasites in liver cells, resulting in the formation and release of thousands of invasive merozoites into the bloodstream. Hepatic Plasmodium development occurs inside a specialized membranous compartment termed the parasitophorous vacuole (PV). Here, we show that, during the parasite's hepatic replication, the C-terminal region of the parasitic PV membrane protein exported protein 1 (EXP-1) binds to host Apolipoprotein H (ApoH) and that this molecular interaction plays a pivotal role for successful Plasmodium liver-stage development. Expression of a truncated EXP-1 protein, missing the specific ApoH interaction site, or down-regulation of ApoH expression in either hepatic cells or mouse livers by RNA interference resulted in impaired intrahepatic development. Furthermore, infection of mice with sporozoites expressing a truncated version of EXP-1 resulted in both a significant reduction of liver burden and delayed blood-stage patency, leading to a disease outcome different from that generally induced by infection with wild-type parasites. This study identifies a host-parasite protein interaction during the hepatic stage of infection by Plasmodium parasites. The identification of such vital interactions may hold potential toward the development of novel malaria prevention strategies.


Asunto(s)
Hígado/parasitología , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , beta 2 Glicoproteína I/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Regulación hacia Abajo , Genes Protozoarios , Células HEK293 , Hepatocitos/parasitología , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/genética , Eliminación de Secuencia , Esporozoítos/fisiología , Vacuolas/parasitología , beta 2 Glicoproteína I/antagonistas & inhibidores , beta 2 Glicoproteína I/genética
5.
J Proteome Res ; 18(9): 3404-3418, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31335145

RESUMEN

The pre-erythrocytic liver stage of the malaria parasite, comprising sporozoites and the liver stages into which they develop, remains one of the least understood parts of the lifecycle, in part owing to the low numbers of parasites. Nonetheless, it is recognized as an important target for antimalarial drugs and vaccines. Here we provide the first proteomic analysis of merosomes, which define the final phase of the liver stage and are responsible for initiating the blood stage of infection. We identify a total of 1879 parasite proteins, and a core set of 1188 proteins quantitatively detected in every biological replicate, providing an extensive picture of the protein repertoire of this stage. This unique data set will allow us to explore key questions about the biology of merosomes and hepatic merozoites.


Asunto(s)
Hígado/parasitología , Malaria/diagnóstico , Plasmodium berghei/aislamiento & purificación , Proteómica , Animales , Anopheles/parasitología , Eritrocitos/parasitología , Hepatocitos/parasitología , Humanos , Estadios del Ciclo de Vida/genética , Malaria/sangre , Malaria/genética , Malaria/parasitología , Merozoítos/aislamiento & purificación , Merozoítos/patogenicidad , Ratones , Plasmodium berghei/genética , Plasmodium berghei/patogenicidad
6.
Parasitol Res ; 117(8): 2487-2497, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29797085

RESUMEN

Malaria is transmitted through the injection of Plasmodium sporozoites into the skin by Anopheles mosquitoes. The parasites first replicate within the liver before infecting red blood cells, which leads to the symptoms of the disease. Experimental immunization with attenuated sporozoites that arrest their development in the liver has been extensively investigated in rodent models and humans. Recent technological advances have included the capacity to cryopreserve sporozoites for injection, which has enabled a series of controlled studies on human infection with sporozoites. Here, we used a cryopreservation protocol to test the efficiency of genetically attenuated cryopreserved sporozoites for immunization of mice in comparison with freshly isolated controls. This showed that cryopreserved sporozoites are highly viable as judged by their capacity to migrate in vitro but show only 20% efficiency in liver infection, which impacts their capacity to generate protection of animals in immunization experiments.


Asunto(s)
Malaria/prevención & control , Plasmodium berghei/inmunología , Esporozoítos/inmunología , Vacunación , Vacunas Atenuadas/inmunología , Animales , Anopheles/parasitología , Línea Celular Tumoral , Movimiento Celular/fisiología , Criopreservación , Células Hep G2 , Humanos , Hígado/parasitología , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/genética , Esporozoítos/genética , Esporozoítos/metabolismo
7.
J Infect Dis ; 215(1): 122-130, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077589

RESUMEN

Trimethoprim-sulfamethoxazole (TMP-SMX) is widely used in malaria-endemic areas in human immunodeficiency virus (HIV)-infected children and HIV-uninfected, HIV-exposed children as opportunistic infection prophylaxis. Despite the known effects that TMP-SMX has in reducing clinical malaria, its impact on development of malaria-specific immunity in these children remains poorly understood. Using rodent malaria models, we previously showed that TMP-SMX, at prophylactic doses, can arrest liver stage development of malaria parasites and speculated that TMP-SMX prophylaxis during repeated malaria exposures would induce protective long-lived sterile immunity targeting pre-erythrocytic stage parasites in mice. Using the same models, we now demonstrate that repeated exposures to malaria parasites during TMP-SMX administration induces stage-specific and long-lived pre-erythrocytic protective anti-malarial immunity, mediated primarily by CD8+ T-cells. Given the HIV infection and malaria coepidemic in sub-Saharan Africa, clinical studies aimed at determining the optimum duration of TMP-SMX prophylaxis in HIV-infected or HIV-exposed children must account for the potential anti-infection immunity effect of TMP-SMX prophylaxis.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/inmunología , Malaria/prevención & control , Plasmodium/inmunología , Esporozoítos/inmunología , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Infecciones por VIH/parasitología , Inmunización , Interferón gamma/biosíntesis , Estadios del Ciclo de Vida , Malaria/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/prevención & control , Plasmodium/efectos de los fármacos , Plasmodium/crecimiento & desarrollo
8.
Methods Mol Biol ; 2524: 397-408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821489

RESUMEN

Malaria hypnozoites are dormant parasite stages that reside inside hepatocytes. Upon activation, these stages can resume growth, causing new episodes of blood stage malaria infection. This chapter describes a fast and sensitive protocol for the detection of bioluminescent (BL) hypnozoites in vitro. Using transgenic Plasmodium cynomolgi parasites that differentially express the BL reporter proteins firefly luciferase and the ultrabright NanoLuc, hypnozoites can be distinguished from liver stage schizonts. This robust method sets the stage for implementation in large-scale drug screening platforms with the aim to find new compounds that eliminate hypnozoites.


Asunto(s)
Malaria , Plasmodium cynomolgi , Hepatocitos , Humanos , Luciferasas/genética , Malaria/diagnóstico , Malaria/parasitología , Plasmodium cynomolgi/fisiología , Recurrencia
9.
Elife ; 72018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30589413

RESUMEN

Relapses of Plasmodium dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old P. cynomolgi liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al., 2017). We now extend these findings by transcriptome profiling of 9 to 10 day-old liver stage parasites, thus revealing for the first time the maturation of the dormant stage over time. Although progression of dormancy leads to a 10-fold decrease in transcription and expression of only 840 genes, including genes associated with housekeeping functions, we show that pathways involved in quiescence, energy metabolism and maintenance of genome integrity remain the prevalent pathways active in mature hypnozoites.


Asunto(s)
Perfilación de la Expresión Génica , Hígado/parasitología , Plasmodium cynomolgi/crecimiento & desarrollo , Plasmodium cynomolgi/genética , Animales , Primates , Factores de Tiempo
10.
Elife ; 62017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215331

RESUMEN

Plasmodium liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite Plasmodium cynomolgi. Hypnozoites express only 34% of Plasmodium physiological pathways, while 91% are expressed in replicating schizonts. Few known malaria drug targets are expressed in quiescent parasites, but pathways involved in microbial dormancy, maintenance of genome integrity and ATP homeostasis were robustly expressed. Several transcripts encoding heavy metal transporters were expressed in hypnozoites and the copper chelator neocuproine was cidal to all liver stage parasites. This transcriptomic dataset is a valuable resource for the discovery of vaccines and effective treatments to combat vivax malaria.


Asunto(s)
Perfilación de la Expresión Génica , Hígado/parasitología , Macaca mulatta/parasitología , Plasmodium cynomolgi/crecimiento & desarrollo , Plasmodium cynomolgi/genética , Esquizontes/crecimiento & desarrollo , Esquizontes/genética , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda