Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Vet Pathol ; : 3009858241265035, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054587

RESUMEN

A foxhound from a hunting kennel in the United Kingdom was euthanized after being hospitalized with progressive neurologic signs, including tremors, seizures, and obtunded mentation. No abnormalities were appreciated on gross postmortem examination. Histologically, severe meningoencephalomyelitis and mild neuritis of the brachial plexus were present. Molecular analysis of brain tissue detected louping ill virus. In addition, louping ill virus-specific antigens were detected in neurons within the brainstem, the entire length of the spinal cord, as well as in rare cells in the brachial plexus using immunohistochemistry. The genetic sequence of the virus appears most closely related to a previously detected virus in a dog from a similar geographic location in 2015. This is the first characterization of the inflammatory lesions and viral distribution of louping ill virus in a naturally infected dog within the spinal cord and brachial plexus.

2.
Emerg Infect Dis ; 26(1): 90-96, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661056

RESUMEN

During February 2018-January 2019, we conducted large-scale surveillance for the presence and prevalence of tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) in sentinel animals and ticks in the United Kingdom. Serum was collected from 1,309 deer culled across England and Scotland. Overall, 4% of samples were ELISA-positive for the TBEV serocomplex. A focus in the Thetford Forest area had the highest proportion (47.7%) of seropositive samples. Ticks collected from culled deer within seropositive regions were tested for viral RNA; 5 of 2,041 ticks tested positive by LIV/TBEV real-time reverse transcription PCR, all from within the Thetford Forest area. From 1 tick, we identified a full-length genomic sequence of TBEV. Thus, using deer as sentinels revealed a potential TBEV focus in the United Kingdom. This detection of TBEV genomic sequence in UK ticks has important public health implications, especially for undiagnosed encephalitis.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Ixodidae/virología , Animales , Ciervos/parasitología , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/transmisión , Ensayo de Inmunoadsorción Enzimática , Femenino , Pruebas de Inhibición de Hemaglutinación , Humanos , Masculino , Filogenia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especies Centinela/virología , Análisis de Secuencia de ARN , Reino Unido/epidemiología
3.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30760569

RESUMEN

Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are members of the tick-borne flaviviruses (TBFVs) in the family Flaviviridae which cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines against TBEV and LIV are available, infection rates are rising due to the low vaccination coverage. To date, no specific therapeutics have been licensed. Several neutralizing monoclonal antibodies (MAbs) show promising effectiveness in the control of TBFVs, but the underlying molecular mechanisms are yet to be characterized. Here, we determined the crystal structures of the LIV envelope (E) protein and report the comparative structural analysis of a TBFV broadly neutralizing murine MAb (MAb 4.2) in complex with either the LIV or TBEV E protein. The structures reveal that MAb 4.2 binds to the lateral ridge of domain III of the E protein (EDIII) of LIV or TBEV, an epitope also reported for other potently neutralizing MAbs against mosquito-borne flaviviruses (MBFVs), but adopts a unique binding orientation. Further structural analysis suggested that MAb 4.2 may neutralize flavivirus infection by preventing the structural rearrangement required for membrane fusion during virus entry. These findings extend our understanding of the vulnerability of TBFVs and other flaviviruses (including MBFVs) and provide an avenue for antibody-based TBFV antiviral development.IMPORTANCE Understanding the mechanism of antibody neutralization/protection against a virus is crucial for antiviral countermeasure development. Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are tick-borne flaviviruses (TBFVs) in the family Flaviviridae They cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines for both viruses are available, infection rates are rising due to low vaccination coverage. In this study, we solved the crystal structures of the LIV envelope protein (E) and a broadly neutralizing/protective TBFV MAb, MAb 4.2, in complex with E from either TBEV or LIV. Key structural features shared by TBFV E proteins were analyzed. The structures of E-antibody complexes showed that MAb 4.2 targets the lateral ridge of both the TBEV and LIV E proteins, a vulnerable site in flaviviruses for other potent neutralizing MAbs. Thus, this site represents a promising target for TBFV antiviral development. Further, these structures provide important information for understanding TBFV antigenicity.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Virus de la Encefalitis Transmitidos por Garrapatas/química , Epítopos/química , Proteínas del Envoltorio Viral/química , Cristalografía por Rayos X , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Flavivirus/química , Dominios Proteicos
4.
J Vector Borne Dis ; 57(1): 14-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33818450

RESUMEN

A comprehensive understanding of the geographic distribution of the tick-borne encephalitis virus (TBEV) complex is necessary due to increasing transboundary movement and cross-reactivity of serological tests. This review was conducted to identify the geographic distribution of the TBEV complex, including TBE virus, Alkhurma haemorrhagic fever virus, Kyasanur forest disease virus, louping-ill virus, Omsk haemorrhagic fever virus, and Powassan virus. Published reports were identified using PubMed, EMBASE, and the Cochrane library. In addition to TBEV complex case-related studies, seroprevalence studies were also retrieved to assess the risk of TBEV complex infection. Among 1406 search results, 314 articles met the inclusion criteria. The following countries, which are known to TBEV epidemic region, had conducted national surveillance studies: Austria, China, Czech, Denmark, Estonia, Finland, Germany, Hungary, Italy, Latvia, Norway, Poland, Romania, Russia, Switzerland, Sweden, Slovenia, and Slovakia. There were also studies/reports on human TBEV infection from Belarus, Bulgaria, Croatia, France, Japan, Kyrgyzstan, Netherland, and Turkey. Seroprevalence studies were found in some areas far from the TBEV belt, specifically Malaysia, Comoros, Djibouti, and Kenya. Kyasanur forest disease virus was reported in southwestern India and Yunnan of China, the Powassan virus in the United States, Canada, and east Siberia, Alkhurma haemorrhagic fever virus in Saudi Arabia and east Egypt, and Louping-ill virus in the United Kingdom, Ireland, and east Siberia. In some areas, the distribution of the TBEV complex overlaps with that of other viruses, and caution is recommended during serologic diagnosis. The geographic distribution of the TBEV complex appears to be wide and overlap of the TBE virus complex with other viruses was observed in some areas. Knowledge of the geographical distribution of the TBEV complex could help avoid cross-reactivity during the serologic diagnosis of these viruses. Surveillance studies can implement effective control measures according to the distribution pattern of these viruses.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/epidemiología , Enfermedades Endémicas/prevención & control , Animales , Reacciones Cruzadas , Virus de la Encefalitis Transmitidos por Garrapatas/clasificación , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Encefalitis Transmitida por Garrapatas/inmunología , Geografía , Humanos , Estudios Seroepidemiológicos , Pruebas Serológicas/normas
5.
Vaccine ; 42(9): 2429-2437, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38458875

RESUMEN

Louping ill virus (LIV) is a tick-borne flavivirus that predominantly causes disease in livestock, especially sheep in the British Isles. A preventive vaccine, previously approved for veterinary use but now discontinued, was based on an inactivated whole virion that likely provided protection by induction of neutralizing antibodies recognizing the viral envelope (E) protein. A major disadvantage of the inactivated vaccine was the need for high containment facilities for the propagation of infectious virus, as mandated by the hazard group 3 status of the virus. This study aimed to develop high-efficacy non-infectious protein-based vaccine candidates. Specifically, soluble envelope protein (sE), and virus-like particles (VLPs), comprised of the precursor of membrane and envelope proteins, were generated, characterized, and studied for their immunogenicity in mice. Results showed that the VLPs induced more potent virus neutralizing response compared to sE, even though the total anti-envelope IgG content induced by the two antigens was similar. Depletion of anti-monomeric E protein antibodies from mouse immune sera suggested that the neutralizing antibodies elicited by the VLPs targeted epitopes spanning the highly organized structure of multimer of the E protein, whereas the antibody response induced by sE focused on E monomers. Thus, our results indicate that VLPs represent a promising LIV vaccine candidate.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Vacunas de Partículas Similares a Virus , Vacunas , Animales , Ratones , Ovinos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas del Envoltorio Viral
6.
J Wildl Dis ; 57(2): 282-291, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33822153

RESUMEN

In Norway, the Willow Ptarmigan (Lagopus lagopus lagopus) is experiencing population declines and is nationally Red Listed as Near Threatened. Although disease has not generally been regarded as an important factor behind population fluctuations for Willow Ptarmigan in Norway, disease occurrence has been poorly investigated. Both louping-ill virus (LIV) and the closely related tick-borne encephalitis virus are found along the southern part of the Norwegian coast. We assessed whether and where Norwegian Willow Ptarmigan populations have been infected with LIV. We expected to find infected individuals in populations in the southernmost part of the country. We did not expect to find infected individuals in populations further north and at higher altitudes because of the absence of the main vector, the sheep tick (Ixodes ricinus). We collected serum samples on Nobuto filter paper and used a hemagglutination inhibition assay for antibodies against LIV. We collected data at both local and country-wide levels. For local sampling, we collected and analyzed 87 hunter-collected samples from one of the southernmost Willow Ptarmigan populations in Norway. Of these birds, only three positives (3.4%) were found. For the country-wide sampling, we collected serum samples from 163 Willow Ptarmigan carcasses submitted from selected locations all over the country. Of these birds, 32% (53) were seropositive for LIV or a cross-reacting virus. Surprisingly, we found seropositive individuals from locations across the whole country, including outside the known distribution of the sheep tick. These results suggest that either LIV or a cross-reacting virus infects ptarmigan in large parts of Norway, including at high altitudes and latitudes.


Asunto(s)
Enfermedades de las Aves/virología , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Galliformes , Meningoencefalomielitis Ovina/sangre , Animales , Enfermedades de las Aves/epidemiología , Meningoencefalomielitis Ovina/epidemiología , Noruega/epidemiología , Estudios Seroepidemiológicos , Pruebas Serológicas , Ovinos
7.
Ticks Tick Borne Dis ; 11(5): 101487, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32723662

RESUMEN

Tick-borne encephalitis virus (TBEV) and louping-ill virus (LIV) are two closely related zoonotic flaviviruses leading to neurological diseases and belonging to the tick-borne encephalitis (TBE) serocomplex. Both viruses are transmitted by the same ixodid tick vector, Ixodes ricinus. Due to global warming affecting vector biology and pathogen transmission, the viruses pose an emerging threat for public health in Europe and Asia. These flaviviruses share some hosts, like sheep, goats and humans, although the main hosts for LIV and TBEV are sheep and small rodents, respectively. Whereas LIV has been detected in Spanish sheep and goat herds, circulating antibodies against TBEV have only been reported in dogs and horses from particular regions in this country. The limited available information about the prevalence of these viruses in Spain led us to investigate the serological evidence of TBE flaviviruses in horses from Spain. Serum neutralization tests (SNT) were performed using sera from 495 breeding and sport horses collected during two periods (2011-2013 and 2015-2016). A seroprevalence of 3.1 % (95 % CI 1.5-4.6) was found and cross-reactivity with West Nile virus was excluded in the positive samples. Sport horses showed a significantly higher TBE serocomplex seropositivity compared to breeding horses. An increased seroprevalence was observed in the second sampling period (2015-2016). Our results demonstrate for the first time the presence of antibodies against TBE flaviviruses in horses residing in mainland Spain; further epidemiological surveys are necessary in order to understand and monitor the active transmission of TBE flaviviruses in this country and rule out the presence of other flaviviruses co-circulating in Spain.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Encefalitis Transmitida por Garrapatas/veterinaria , Enfermedades de los Caballos/epidemiología , Animales , Anticuerpos Antivirales/sangre , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/virología , Femenino , Enfermedades de los Caballos/diagnóstico , Enfermedades de los Caballos/virología , Caballos , Masculino , Prevalencia , Estudios Seroepidemiológicos , España/epidemiología
8.
Parasit Vectors ; 13(1): 464, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912330

RESUMEN

BACKGROUND: Arboviruses are a growing public health concern in Europe, with both endemic and exotic arboviruses expected to spread further into novel areas in the next decades. Predicting where future outbreaks will occur is a major challenge, particularly for regions where these arboviruses are not endemic. Spatial modelling of ecological risk factors for arbovirus circulation can help identify areas of potential emergence. Moreover, combining hazard maps of different arboviruses may facilitate a cost-efficient, targeted multiplex-surveillance strategy in areas where virus transmission is most likely. Here, we developed predictive hazard maps for the introduction and/or establishment of six arboviruses that were previously prioritized for the Netherlands: West Nile virus, Japanese encephalitis virus, Rift Valley fever virus, tick-borne encephalitis virus, louping-ill virus and Crimean-Congo haemorrhagic fever virus. METHODS: Our spatial model included ecological risk factors that were identified as relevant for these arboviruses by an earlier systematic review, including abiotic conditions, vector abundance, and host availability. We used geographic information system (GIS)-based tools and geostatistical analyses to model spatially continuous datasets on these risk factors to identify regions in the Netherlands with suitable ecological conditions for arbovirus introduction and establishment. RESULTS: The resulting hazard maps show that there is spatial clustering of areas with either a relatively low or relatively high environmental suitability for arbovirus circulation. Moreover, there was some overlap in high-hazard areas for virus introduction and/or establishment, particularly in the southern part of the country. CONCLUSIONS: The similarities in environmental suitability for some of the arboviruses provide opportunities for targeted sampling of vectors and/or sentinel hosts in these potential hotspots of emergence, thereby increasing the efficient use of limited resources for surveillance.


Asunto(s)
Infecciones por Arbovirus/virología , Arbovirus/aislamiento & purificación , Especies Introducidas/estadística & datos numéricos , Infecciones por Arbovirus/epidemiología , Arbovirus/clasificación , Arbovirus/genética , Arbovirus/fisiología , Humanos , Países Bajos/epidemiología , Análisis Espacio-Temporal
9.
Parasit Vectors ; 12(1): 265, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31133059

RESUMEN

Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Arbovirus/aislamiento & purificación , Mosquitos Vectores/virología , Animales , Arbovirus/clasificación , Vectores Artrópodos/virología , Vectores de Enfermedades , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Europa (Continente) , Humanos , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Factores de Riesgo , Virus del Nilo Occidental/aislamiento & purificación
10.
Ticks Tick Borne Dis ; 10(1): 115-123, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30245088

RESUMEN

Tick-borne encephalitis virus (TBEV) is a tick-transmitted flavivirus within the tick-borne encephalitis (TBE) complex. The TBE complex is represented by both TBEV and louping ill virus (LIV) in Denmark. Anaplasma phagocytophilum is also transmitted by ticks and is believed to play an essential role in facilitating and aggravating LIV infection in sheep. This study aimed to describe the distribution of TBE complex viruses in Denmark, to establish the possible emergence of new foci and their association with the distribution of A. phagocytophilum. We performed a nationwide seroprevalence study of TBE complex viruses using roe deer (Capreolus capreolus) as sentinels and determined the prevalence of A. phagocytophilum in roe deer. Danish hunters obtained blood samples from roe deer during the hunting season of 2013-14. The samples were examined for TBEV-specific antibodies by virus neutralization tests (NT). A. phagocytophilum infection was assessed by specific real-time-PCR. The overall seroprevalence of the TBE complex viruses in roe deer was 6.9% (51/736). The positive samples were primarily obtained from a known TBE endemic foci and risk areas identified in previous sentinel studies. However, new TBE complex risk areas were also identified. The overall prevalence of A. phagocytophilum was 94.0% (173 PCR-positive of 184 roe deer), which is twice the rate observed ten years ago. These results point to an expansion of these tick-borne diseases geographically and within reservoir populations and, therefore, rationalize the use of sentinel models to monitor changes in transmission of tick-borne diseases and development of new risk areas. We found no association between TBE complex-positive roe deer and the prevalence of A. phagocytophilum, as almost all roe deer were infected. Based on our findings we encourage health care providers to be attentive to tick-borne illnesses such as TBE when treating patients with compatible symptoms.


Asunto(s)
Anaplasma phagocytophilum/aislamiento & purificación , Ciervos , Ehrlichiosis/veterinaria , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Encefalitis Transmitida por Garrapatas/veterinaria , Meningoencefalomielitis Ovina/epidemiología , Vigilancia de Guardia/veterinaria , Animales , Vectores Arácnidos/virología , Dinamarca/epidemiología , Ehrlichiosis/epidemiología , Ehrlichiosis/microbiología , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/virología , Femenino , Ixodidae/virología , Meningoencefalomielitis Ovina/virología , Masculino , Prevalencia , Estudios Seroepidemiológicos , Infestaciones por Garrapatas/veterinaria
11.
Viruses ; 10(7)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29933625

RESUMEN

Flaviviruses are globally distributed pathogens causing millions of human infections every year. Flaviviruses are arthropod-borne viruses and are mainly transmitted by either ticks or mosquitoes. Mosquito-borne flaviviruses and their interactions with the innate immune response have been well-studied and reviewed extensively, thus this review will discuss tick-borne flaviviruses and their interactions with the host innate immune response.


Asunto(s)
Infecciones por Flavivirus/inmunología , Flavivirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Interferón Tipo I/inmunología , Garrapatas/virología , Animales , Humanos , Inmunidad Innata , Ratones , Proteínas/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda