Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Infect Dis ; 82: 61-65, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30849497

RESUMEN

INTRODUCTION: Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-toff MS) is a reliable method for diagnosing a number of bacterial and fungal infections. It is also effective as a method of rapid diagnosis of several parasitic agents. We used MALDI-toff MS to study the protein profiles of four nematodes: Dirofilaria repens, Dirofilaria. immitis, Ascaris suum and Ascaris lumbricoides. METHODS: We studied the protein profiles of dirofilaria (five of each species: D. repens and D. immitis) and ascaris (five of each species: A. suum and A. lumbricoides), using a proteomic analysis based on MALDI-toff MS. RESULTS: Analysis of protein extracts of dirofilaria and ascaris showed spectra with high-intensity peaks in the range of 2-20 kDa. The quality of the spectra (clear graphical reflection of mass/charge to luminous intensity, consistent in repeated analyzes) and the intensity of the spectral peaks were consistent in all samples of the same species. The spectra profiles of D. repens and D. immitis differed in eight major peaks which makes it possible to differentiate species according to the protein profile. The spectra profiles obtained from A. suum and A. lumbricoides proteins differed slightly in 3 major peaks in both species and were discovered in m/z 13000; 13400 and 14400. The protein peaks in diapason 3000 kD-7300 kD specific for all genus ascaris are constant. CONCLUSIONS: MALDI-toff MS-based proteomic analysis can serve as an effective taxonomic tool for parasitological studies.


Asunto(s)
Ascaris/clasificación , Dirofilaria immitis/clasificación , Dirofilaria repens/clasificación , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Ascaris/metabolismo , Dirofilaria immitis/metabolismo , Dirofilaria repens/metabolismo , Femenino , Especificidad de la Especie
2.
Front Mol Neurosci ; 12: 146, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244601

RESUMEN

Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in response to stress and induces anxiety and several behavioral and neurobiological changes that are strongly correlated with mood disorders. In fact, our group proposes that maLPA1-null mice represent an animal model of anxious depression. However, despite the key role of the LPA-LPA1-pathway in emotion and stress coping behaviors, the available information describing the mechanisms by which the LPA-LPA1-pathway regulates emotion is currently insufficient. Because activation of LPA1 requires LPA, here, we used a Matrix-Assisted Laser Desorption/ Ionization mass spectrometry-based approach to evaluate the effects of an LPA1 receptor deficiency on the hippocampal levels of LPA species. Additionally, the impact of stress on the LPA profile was also examined in both wild-type (WT) and the Malaga variant of LPA1-null mice (maLPA1-null mice). Mice lacking LPA1 did not exhibit gross perturbations in the hippocampal LPA species, but the LPA profile was modified, showing an altered relative abundance of 18:0 LPA. Regardless of the genotype, restraint stress produced profound changes in all LPA species examined, revealing that hippocampal LPA species are a key target of stress. Finally, the relationship between the hippocampal levels of LPA species and performance in the elevated plus maze was established. To our knowledge, this study is the first to detect, identify and profile LPA species in the hippocampus of both LPA1-receptor null mice and WT mice at baseline and after acute stress, as well as to link these LPA species with anxiety-like behaviors. In conclusion, the hippocampal LPA species are a key target of stress and may be involved in psychopathological conditions.

3.
Infect Drug Resist ; 11: 2211-2217, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519059

RESUMEN

INTRODUCTION: Serratia marcescens is a significant hospital-acquired pathogen, and many outbreaks of S. marcescens infection have been reported in neonates. We report a sudden breakout of S. marcescens harboring the bla IMP-4 and bla VIM-2 metallo-ß-lactamase (MBL) genes that occurred from March to August 2015 in the neonatal intensive care unit of Cairo University Hospital, Cairo, Egypt. METHODS: During the study period, 40 nonduplicate clinical isolates of S. marcescens were collected from blood culture samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to identify each isolate. Then, minimum inhibitory concentrations of different antibiotics were assessed by the Vitek 2 compact system. Screening of the MBL genes bla IMP, bla VIM, bla SIM-1, bla SPM-1, and bla GIM-1 as well as the carbapenemase genes KPC, NDM, OXA-48, SME-1, and SME-2 were evaluated. Pulsed field gel electrophoresis was preformed to detect the genetic relationship of the isolates. RESULTS: Analysis showed that 37.5% of the S. marcescens clinical isolates were resistant to meropenem (minimum inhibitory concentrations ≥ 2 µg/mL), and bla IMP-4 and bla VIM-2 were the most prevalent MBL genes (42.5% and 37.5%, respectively). None of the other investigated genes were observed. Pulsed field gel electrophoresis typing revealed two discrete clones; 33/40 (82.5%) were pulsotype A and 7/40 (17.5%) were pulsotype B. CONCLUSION: Here, we report for the first time the detection of MBL-producing S. marcescens isolates, particularly IMP-4 and VIM-2 recovered from inpatients with bacteremias from the intensive care unit at Cairo University Hospital.

4.
J Genet Eng Biotechnol ; 16(2): 295-304, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30733738

RESUMEN

Proteases are the hydrolytic enzymes which hydrolyzes peptide bond between proteins with paramount applications in pharmaceutical and industrial sector. Therefore production of proteases with efficient characteristics of biotechnological interest from novel strain is significant. Hence, in this study, an alkaline serine protease produced by Bacillus cereus strain S8 (MTCC NO 11901) was purified and characterized. The alkaline protease was purified by ammonium sulfate precipitation (50%), ion exchange (DEAE-Cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. As a result of this purification, a protein with specific activity of 300U/mg protein was obtained with purification fold 17.04 and recovery percentage of 34.6%. The molecular weight of the purified protease was determined using SDS-PAGE under non-reducing (71 kDa) and reducing conditions (35 kDa and 22 kDa). Zymogram analysis revealed that proteolytic activity was only associated with 22 kDa. These results indicate that existence of the enzyme as dimer in its native state. The molecular weight of the protease (22 kDa) was also determined by gel filtration (Sephadex G-200) chromatography and it was calculated as 21.8 kDa. The optimum activity of the protease was observed at pH 10.0 and temperature 70 °C with great stability towards pH and temperature with casein as a specific substrate. The enzyme was completely inhibited by PMSF and TLCK indicating that it is a serine protease of trypsin type. The enzyme exhibits a great stability towards organic solvents, oxidizing and bleaching agents and it is negatively influenced by Li2+ and Co2+ metal ions. The purified protein was further characterized by Matrix Assisted Laser Desorption Ionization/Mass Spectroscopy (MALDI/MS) analysis which reveals that total number of amino acids is 208 with isoelectric point 9.52.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda