Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Am J Hum Genet ; 111(2): 259-279, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232730

RESUMEN

Tauopathies are a group of neurodegenerative diseases defined by abnormal aggregates of tau, a microtubule-associated protein encoded by MAPT. MAPT expression is near absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression could be controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding disease risk and pathogenesis. Here, we performed chromatin conformation assays (HiC & Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27ac and CTCF in NPCs and differentiated neurons to nominate candidate cis-regulatory elements (cCREs). We assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in neurodegeneration-affected individuals and control subjects. We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the H1/H2 haplotype inversion breakpoint. We also found that rare and predicted damaging genetic variation in nominated CREs was nominally depleted in dementia-affected individuals relative to control subjects, consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduced MAPT expression, may be protective against neurodegenerative disease. Overall, this study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.


Asunto(s)
Enfermedades Neurodegenerativas , Proteínas tau , Humanos , Cromatina/genética , Haplotipos , Enfermedades Neurodegenerativas/genética , Neuronas , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas tau/genética
2.
J Biol Chem ; : 107621, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098523

RESUMEN

Sequestosome1 (SQSTM1) is an autophagy receptor that mediates degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network, and these interactions are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA and KIR. Technological advances in cell biology continue to expand our knowledge of the SQSTM1 protein network and of the relationship of the actions of the SQSTM1 protein network in cellular physiology and disease states. Here we apply proximity profile labeling to investigate the SQSTM1 protein interaction network by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners, and capture of novel SQSTM1 protein interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. We demonstrate the importance of the PB1 and/or UBA domains for binding network members, including the K18 domain of tau. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.

3.
Mol Ther ; 32(4): 1080-1095, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310353

RESUMEN

Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway. In human differentiated neurons in culture, microRNA-mediated tau reduction diminished neuronal firing without affecting neuronal morphology or impairing axonal transport. In the htau mouse model of tauopathy, we locally expressed artificial microRNAs in the prefrontal cortex (PFC), an area particularly vulnerable to initiating tau pathology in this model. Tau knockdown prevented the accumulation of insoluble and hyperphosphorylated tau, modulated firing activity of putative pyramidal neurons, and improved glucose uptake in the PFC. Moreover, such tau reduction prevented cognitive decline in aged htau mice. Our results suggest target engagement of designed tau-microRNAs to effectively reduce tau pathology, providing a proof of concept for a potential therapeutic approach based on local tau knockdown to rescue tauopathy-related phenotypes.


Asunto(s)
MicroARNs , Tauopatías , Ratones , Humanos , Animales , Anciano , Proteínas tau/genética , Proteínas tau/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Tauopatías/genética , Tauopatías/terapia , Tauopatías/metabolismo , Neuronas/metabolismo , Fenotipo , Ratones Transgénicos , Modelos Animales de Enfermedad
4.
Mol Cell Neurosci ; 130: 103954, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032719

RESUMEN

BACKGROUND: Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology. In AD and Pick's disease, a large percentage of caspase-6 associated cleaved-tau positive neurons lack phospho-tau, suggesting that many vulnerable neurons to tau pathology go undetected when using conventional phospho-tau antibodies and possibly will not respond to phospho-tau based therapies. Therefore, therapeutic strategies against caspase cleaved-tau pathology could be necessary to modulate the extent of tau abnormalities in AD and other tauopathies. METHODS: To understand the timing and progression of caspase activation, tau cleavage, and neuronal death, we created two mAbs targeting caspase-6 tau cleavage sites and probed postmortem brain tissue from an individual with FTLD due to the V337M MAPT mutation. We then assessed tau cleavage and apoptotic stress response in cortical neurons derived from induced pluripotent stem cells (iPSCs) carrying the FTD-related V337M MAPT mutation. Finally, we evaluated the neuroprotective effects of caspase inhibitors in these iPSC-derived neurons. RESULTS: FTLD V337M MAPT postmortem brain showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months post-differentiation showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau, phospho-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by the inhibition of effector caspases. CONCLUSIONS: Our results suggest an upstream, time-dependent accumulation of caspase-6 cleaved tau in V337M MAPT neurons promoting neurotoxicity. These processes can be reversed by caspase inhibition. These results underscore the potential of developing caspase-6 inhibitors as therapeutic agents for FTLD and other tauopathies. Additionally, they highlight the promise of using caspase-cleaved tau as biomarkers for these conditions.

5.
Genomics ; 116(3): 110852, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703969

RESUMEN

Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.


Asunto(s)
Autofagia , Neoplasias Hepáticas , Proteínas tau , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Pronóstico , Línea Celular Tumoral , Survivin/genética , Survivin/metabolismo , Proliferación Celular , Animales , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Biomarcadores de Tumor/genética , Movimiento Celular , Ratones , Apoptosis , Regulación Neoplásica de la Expresión Génica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo
6.
Neurogenetics ; 25(3): 215-223, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38592608

RESUMEN

We present an in-depth clinical and neuroimaging analysis of a family carrying the MAPT K298E mutation associated with frontotemporal dementia (FTD). Initial identification of this mutation in a single clinical case led to a comprehensive investigation involving four affected siblings allowing to elucidate the mutation's phenotypic expression.A 60-year-old male presented with significant behavioral changes and progressed rapidly, exhibiting speech difficulties and cognitive decline. Neuroimaging via FDG-PET revealed asymmetrical frontotemporal hypometabolism. Three siblings subsequently showed varied but consistent clinical manifestations, including abnormal behavior, speech impairments, memory deficits, and motor symptoms correlating with asymmetric frontotemporal atrophy observed in MRI scans.Based on the genotype-phenotype correlation, we propose that the p.K298E mutation results in early-onset behavioral variant FTD, accompanied by a various constellation of speech and motor impairment.This detailed characterization expands the understanding of the p.K298E mutation's clinical and neuroimaging features, underlining its role in the pathogenesis of FTD. Further research is crucial to comprehensively delineate the clinical and epidemiological implications of the MAPT p.K298E mutation.


Asunto(s)
Demencia Frontotemporal , Mutación , Neuroimagen , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Masculino , Proteínas tau/genética , Persona de Mediana Edad , Mutación/genética , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Linaje , Femenino , Estudios de Asociación Genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Fenotipo
7.
Neurobiol Dis ; 191: 106412, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244935

RESUMEN

Age-related tau astrogliopathy (ARTAG) is detectable in the brains of over one-third of autopsied persons beyond age 80, but the pathoetiology of ARTAG is poorly understood. Insights can be gained by analyzing risk factors and comorbid pathologies. Here we addressed the question of which prevalent co-pathologies are observed with increased frequency in brains with ARTAG. The study sample was the National Alzheimer's Coordinating Center (NACC) data set, derived from multiple Alzheimer's disease research centers (ADRCs) in the United States. Data from persons with unusual conditions (e.g. frontotemporal dementia) were excluded leaving 504 individual autopsied research participants, clustering from 20 different ADRCs, autopsied since 2020; ARTAG was reported in 222 (44.0%) of included participants. As has been shown previously, ARTAG was increasingly frequent with older age and in males. The presence and severity of other common subtypes of pathology that were previously linked to dementia were analyzed, stratifying for the presence of ARTAG. In logistical regression-based statistical models that included age and sex as covariates, ARTAG was relatively more likely to be found in brains with limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and in brains with comorbid cerebrovascular pathology (arteriolosclerosis and/or brain infarcts). However, ARTAG was not associated with severe Alzheimer's disease neuropathologic change (ADNC), or primary age-related tauopathy (PART). In a subset analysis of 167 participants with neurocognitive testing data, there was a marginal trend for ARTAG pathology to be associated with cognitive impairment as assessed with MMSE scores (P = 0.07, adjusting for age, sex, interval between final clinic visit and death, and ADNC severity). A limitation of the study was that there were missing data about ARTAG pathologies, with incomplete operationalization of ARTAG according to anatomic region and pathologic subtypes (e.g., thorn-shaped or granular-fuzzy astrocytes). In summary, ARTAG was not associated with ADNC, whereas prior observations about ARTAG occurring with increased frequency in aging, males, and brains with LATE-NC were replicated. It remains to be determined whether the increased frequency of ARTAG in brains with comorbid cerebrovascular pathology is related to local infarctions or neuroinflammatory signaling, or with some other set of correlated factors including blood-brain barrier dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Proteinopatías TDP-43 , Masculino , Humanos , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Envejecimiento/patología , Encéfalo/metabolismo
8.
Acta Neuropathol ; 148(1): 25, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160375

RESUMEN

Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.


Asunto(s)
Encéfalo , Ratas Transgénicas , Proteínas tau , Animales , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Ratas , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Priones/metabolismo , Priones/genética , Tauopatías/patología , Tauopatías/metabolismo , Tauopatías/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Mutación
9.
Brain Behav Immun ; 122: 231-240, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153518

RESUMEN

BACKGROUND: Inflammation has been proposed as a crucial player in neurodegeneration, including Frontotemporal Dementia (FTD). A few studies on sporadic FTD lead to inconclusive results, whereas large studies on genetic FTD are lacking. The aim of this study is to determine cytokine and chemokine plasma circulating levels in a large cohort of genetic FTD, collected within the GENetic Frontotemporal dementia Initiative (GENFI). METHODS: Mesoscale technology was used to analyse levels of 30 inflammatory factors in 434 plasma samples, including 94 Symptomatic Mutation carriers [(SMC); 15 with mutations in Microtubule Associated Protein Tau (MAPT) 34 in Progranulin (GRN) and 45 in Chromosome 9 Open Reading Frame (C9ORF)72], 168 Presymptomatic Mutation Carriers (PMC; 34 MAPT, 70 GRN and 64 C9ORF72) and 173 Non-carrier Controls (NC)]. RESULTS: The following cytokines were significantly upregulated (P<0.05) in MAPT and GRN SMC versus NC: Tumor Necrosis Factor (TNF)α, Interleukin (IL)-7, IL-15, IL-16, IL-17A. Moreover, only in GRN SMC, additional factors were upregulated, including: IL-1ß, IL-6, IL-10, IL-12/IL-23p40, eotaxin, eotaxin-3, Interferon γ-induced Protein (IP-10), Monocyte Chemotactic Protein (MCP)4. On the contrary, IL-1α levels were decreased in SMC compared with NC. Significantly decreased levels of this cytokine were also found in PMC, independent of the type of mutation. In SMC, no correlations between disease duration and cytokine and chemokine levels were found. Considering NfL and GFAP levels, as expected, significant increases were observed in SMC as compared to NC. These differences in mean values remain significant even when stratifying symptomatic patients by the mutated gene (P<0.0001). Considering instead the levels of NfL, GFAP, and the altered inflammatory molecules, no significant correlations emerged. CONCLUSION: We showed that inflammatory proteins are upregulated in MAPT and GRN SMC, with some specific factors altered in GRN only, whereas no changes were seen in C9ORF72 carriers. Notably, only IL-1α levels were decreased in both SMC and PMC, independent of the type of causal mutation, suggesting common modifications occurring in the preclinical phase of the disease.

10.
Alzheimers Dement ; 20(5): 3606-3628, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38556838

RESUMEN

INTRODUCTION: Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS: A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS: While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION: In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS: MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Isoformas de Proteínas , Proteínas tau , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patología , Tauopatías/genética , Tauopatías/metabolismo , Empalme Alternativo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Animales , Demencia/genética , Demencia/metabolismo
11.
Alzheimers Dement ; 20(4): 2952-2967, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38470006

RESUMEN

BACKGROUND: Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment. METHODS: Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging. Proteomic profiling, proteasome activity assays, and Western blotting were employed to examine neurons at baseline and in response to UPS perturbation. RESULTS: Neurons with lower basal UPS activity were more vulnerable to tau accumulation following mild UPS inhibition. Chronic reduction in proteasome activity in human neurons induced compensatory elevation of regulatory proteins involved in proteostasis and several proteasome subunits. DISCUSSION: These findings reveal that genetic variation influences basal UPS activity in human neurons and differentially sensitizes them to external factors perturbing the UPS, leading to the accumulation of aggregation-prone proteins such as tau. HIGHLIGHTS: Polygenic risk score for AD is associated with the ubiquitin-proteasome system (UPS) in neurons. Basal proteasome activity correlates with aggregation-prone protein levels in neurons. Genetic variation affects the response to proteasome inhibition in neurons. Neuronal proteasome perturbation induces an elevation in specific proteins involved in proteostasis. Low basal proteasome activity leads to enhanced tau accumulation with UPS challenge.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteostasis , Proteómica , Neuronas/metabolismo
12.
Alzheimers Dement ; 20(4): 3080-3087, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38343132

RESUMEN

INTRODUCTION: Genetic studies conducted over the past four decades have provided us with a detailed catalog of genes that play critical roles in the etiology of Alzheimer's disease (AD) and related dementias (ADRDs). Despite this progress, as a field we have had only limited success in incorporating this rich complexity of human AD/ADRD genetics findings into our animal models of these diseases. Our primary goal for the gene replacement (GR)-AD project is to develop mouse lines that model the genetics of AD/ADRD as closely as possible. METHODS: To do this, we are generating mouse lines in which the genes of interest are precisely and completely replaced in the mouse genome by their full human orthologs. RESULTS: Each model set consists of a control line with a wild-type human allele and variant lines that precisely match the human genomic sequence in the control line except for a high-impact pathogenic mutation or risk variant.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Mutación , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética
13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000146

RESUMEN

Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) are the two major neurodegenerative diseases with distinct clinical and neuropathological profiles. The aim of this report is to conduct a population-based investigation in well-characterized APP, PSEN1, PSEN2, MAPT, GRN, and C9orf72 mutation carriers/pedigrees from the north, the center, and the south of Italy. We retrospectively analyzed the data of 467 Italian individuals. We identified 21 different GRN mutations, 20 PSEN1, 11 MAPT, 9 PSEN2, and 4 APP. Moreover, we observed geographical variability in mutation frequencies by looking at each cohort of participants, and we observed a significant difference in age at onset among the genetic groups. Our study provides evidence that age at onset is influenced by the genetic group. Further work in identifying both genetic and environmental factors that modify the phenotypes in all groups is needed. Our study reveals Italian regional differences among the most relevant AD/FTD causative genes and emphasizes how the collaborative studies in rare diseases can provide new insights to expand knowledge on genetic/epigenetic modulators of age at onset.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Mutación , Proteínas tau , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/epidemiología , Italia/epidemiología , Demencia Frontotemporal/genética , Demencia Frontotemporal/epidemiología , Demencia Frontotemporal/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Proteínas tau/genética , Edad de Inicio , Proteína C9orf72/genética , Presenilina-2/genética , Estudios Retrospectivos , Precursor de Proteína beta-Amiloide/genética , Presenilina-1/genética , Progranulinas/genética , Adulto , Anciano de 80 o más Años , Predisposición Genética a la Enfermedad
15.
Artículo en Inglés | MEDLINE | ID: mdl-38319996

RESUMEN

Alzheimer's Disease (AD) is a multifactorial neurodegenerative disease and there is still no definitive treatment today. Early diagnosis of the disease is important, but there are almost no biomarkers that can be used in early diagnosis. The cerebrospinal fluid used in the diagnosis of the disease is not sufficient and is very difficult to obtain. Therefore, blood biomarkers that are less costly, less invasive, easily accessible, and can be used in long-term studies would be a better alternative. The aim of this study is to determine the relationship between Alzheimer's Disease and P301L MAPT gene mutation, homocysteine, folate and uric acid. 101 Alzheimer's patients and 101 healthy individuals were included in this study. Mutation analysis was performed using the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method with blood samples taken from the subjects. There was no significant difference between the patient and control groups in terms of homocysteine (p = 0.771), folate (p = 0.366) and uric acid (p = 0.860). When the genotypes were compared between the patient and control groups in terms of MAPT gene mutation (P301L), no statistically significant difference was detected (p = 0.081). There are very few studies in the literature investigating the relationship between Alzheimer's disease and P301L MAPT gene mutation. Additionally, there is no study investigating the relationship between Alzheimer's disease and homocysteine, folate, uric acid and P301L MAPT mutation in the Turkish population. We believe that this study has shed light on future studies.

16.
Cells ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38994964

RESUMEN

Aggregation of the microtubule-associated protein tau (MAPT) is the hallmark pathology in a spectrum of neurodegenerative disorders collectively called tauopathies. Physiologically, tau is an inherent neuronal protein that plays an important role in the assembly of microtubules and axonal transport. However, disease-associated mutations of this protein reduce its binding to the microtubule components and promote self-aggregation, leading to formation of tangles in neurons. Tau is also expressed in oligodendrocytes, where it has significant developmental roles in oligodendrocyte maturation and myelin synthesis. Oligodendrocyte-specific tau pathology, in the form of fibrils and coiled coils, is evident in major tauopathies including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Multiple animal models of tauopathy expressing mutant forms of MAPT recapitulate oligodendroglial tau inclusions with potential to cause degeneration/malfunction of oligodendrocytes and affecting the neuronal myelin sheath. Till now, mechanistic studies heavily concentrated on elucidating neuronal tau pathology. Therefore, more investigations are warranted to comprehensively address tau-induced pathologies in oligodendrocytes. The present review provides the current knowledge available in the literature about the intricate relations between tau and oligodendrocytes in health and diseases.


Asunto(s)
Oligodendroglía , Tauopatías , Proteínas tau , Humanos , Tauopatías/metabolismo , Tauopatías/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Animales , Proteínas tau/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
17.
Antibiotics (Basel) ; 13(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38534666

RESUMEN

Bloodstream infections (BSI) are defined by the presence of viable bacteria or fungi, accompanied by systemic signs of infection. Choosing empirical therapy based solely on patient risk factors and prior antibiotic susceptibility test (AST) may lead to either ineffective treatment or unnecessarily broad-spectrum antibiotic exposure. In general, Clinical & Laboratory Standards Institute guideline-approved ASTs have a turnaround time of 48-72 h from sample to answer, a period that may result in a critical delay in the appropriate selection of therapy. Therefore, reducing the time required for AST is highly advantageous. We have previously shown that our novel rapid AST method, MAPt (Micro-Agar-PCR-test), accurately identifies susceptibility profiles for spiked bioterrorism agents like Bacillus anthracis, Yersinia pestis and Francisella tularensis directly from whole-blood and blood culture samples, even at low bacterial levels (500 CFU/mL). This study evaluated the performance of MAPt on routine bloodstream infection (BSI), focusing on Escherichia coli and Klebsiella pneumoniae isolates from clinical cultures, including resistant strains to some of the six tested antibiotics. Notably, MAPt yielded results exceeding 95% agreement with the standard hospital method within a significantly shorter timeframe of 6 h. These findings suggest significant potential for MAPt as a rapid and reliable BSI management tool.

18.
Cell Genom ; 4(6): 100563, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38772368

RESUMEN

Divergence of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is widespread in mammals, including primates, but the underlying mechanisms and functional impact are poorly understood. Here, we modeled cassette exon inclusion in primate brains as a quantitative trait and identified 1,170 (∼3%) exons with lineage-specific splicing shifts under stabilizing selection. Among them, microtubule-associated protein tau (MAPT) exons 2 and 10 underwent anticorrelated, two-step evolutionary shifts in the catarrhine and hominoid lineages, leading to their present inclusion levels in humans. The developmental-stage-specific divergence of exon 10 splicing, whose dysregulation can cause frontotemporal lobar degeneration (FTLD), is mediated by divergent distal intronic MBNL-binding sites. Competitive binding of these sites by CRISPR-dCas13d/gRNAs effectively reduces exon 10 inclusion, potentially providing a therapeutically compatible approach to modulate tau isoform expression. Our data suggest adaptation of MAPT function and, more generally, a role for AS in the evolutionary expansion of the primate brain.


Asunto(s)
Empalme Alternativo , Encéfalo , Exones , Proteínas tau , Proteínas tau/genética , Proteínas tau/metabolismo , Animales , Exones/genética , Encéfalo/metabolismo , Humanos , Empalme Alternativo/genética , Primates/genética , Intrones/genética , Evolución Molecular
19.
Acta Neuropathol Commun ; 12(1): 132, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138580

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by 4R tau deposition in neurons as well as in astrocytes and oligodendrocytes. While astrocytic tau deposits are rarely observed in normal aging (so-called aging-related tau astrogliopathy, ARTAG) and Alzheimer's disease (AD), astrocytic tau in the form of tufted astrocytes is a pathognomonic hallmark of PSP. Classical biochemical experiments emphasized tau synthesis in neurons in the central nervous system, suggesting that astrocytic tau inclusions might be derived from uptake of extracellular neuronal-derived tau. However, recent single-nucleus RNAseq experiments highlight the fact that MAPT, the gene encoding tau, is also expressed by astrocytes, albeit in lower amounts. We, therefore, revisited the question of whether astrocyte-driven expression of tau might contribute to astrocytic tau aggregates in PSP by performing fluorescent in situ hybridization/immunohistochemical co-localization in human postmortem brain specimens from individuals with PSP and AD with ARTAG as well as normal controls. We find that, in PSP but not in AD, tau-immunoreactive astrocytes have higher levels of MAPT mRNA compared to astrocytes that do not have tau aggregates. These results suggest that astrocytic responses in PSP are unique to this tauopathy and support the possibility that fundamental changes in PSP astrocyte-endogenous mRNA biology contribute to increased synthesis of tau protein and underlies the formation of the astrocytic tau deposits characteristic of PSP.


Asunto(s)
Astrocitos , Parálisis Supranuclear Progresiva , Proteínas tau , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Astrocitos/metabolismo , Astrocitos/patología , Anciano , Masculino , Anciano de 80 o más Años , Femenino , Persona de Mediana Edad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Transcripción Genética , Encéfalo/metabolismo , Encéfalo/patología
20.
Protein Sci ; 33(9): e5099, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39145409

RESUMEN

The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.


Asunto(s)
Tauopatías , Proteínas tau , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Humanos , Tauopatías/genética , Tauopatías/metabolismo , Mutación , Conformación Proteica , Multimerización de Proteína , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda