RESUMEN
Objectives: Pravastatin sodium is reported to have multiple beneficial effects in cerebral atherosclerosis and neuronal injury; however, the preventive effects on cerebral venous ischemia are still unknown. Herein, we aimed to examine the neuroprotective effects of transoral prior administration of pravastatin sodium against cerebral cortical venous ischemia with suppression of apoptosis. Methods: Thirty 8-week-old male Wistar rats were divided equally into two study groups (n = 15 vs. n = 15); the pravastatin group was fed 1% pravastatin sodium with their usual diet for 2 weeks, while the control group only received the usual diet. Two-vein occlusion (2VO) model was applied for this study, and two adjacent cortical veins in each animal were permanently occluded photochemically with rose bengal dye. During photo-thrombosis, regional changes of the cerebral blood flow (CBF) in area of the venous ischemia were recorded. At 48-h after 2VO, animals were euthanized using perfusion fixation, and we histologically measured ratios of infarcted area to contralateral hemisphere, and counted Bax- and Bcl-2-positive cells in the penumbra to investigate the implications for apoptosis. Results: The ratio of infarcted area was significantly decreased in the pravastatin group compared to the control group (P < 0.01). The number of Bax-positive cells also decreased significantly in the pravastatin group (P < 0.01). In contrast, immunolabeling for Bcl-2 was essentially negative in all areas in both groups. There were also no significant differences in regional CBF changes after 2VO between the two groups (P = 0.13). Conclusions: Pre-emptive administration of pravastatin sodium mixed in the food has neuroprotective effects against cerebral cortical venous ischemia with suppression of apoptosis associated with inhibition of Bax expression but has little influence on regional CBF.
RESUMEN
Rehabilitative exercise following a brain stroke has beneficial effects on the morphological plasticity of neurons. Particularly, voluntary running exercise after focal cerebral ischemia promotes functional recovery and ameliorates ischemia-induced dendritic spine loss in the peri-infarct motor cortex layer 5. Moreover, neuronal morphology is affected by changes in the perineuronal environment. Glial cells, whose phenotypes may be altered by exercise, are known to play a pivotal role in the formation of this perineuronal environment. Herein, we investigated the effects of voluntary running exercise on glial cells after middle cerebral artery occlusion. Voluntary running exercise increased the population of glial fibrillary acidic protein-positive astrocytes born between post-operative days (POD) 0 and 3 on POD15 in the peri-infarct cortex. After exercise, transcriptomic analysis of post-ischemic astrocytes revealed 10 upregulated and 70 downregulated genes. Furthermore, gene ontology analysis showed that the 70 downregulated genes were significantly associated with neuronal morphology. In addition, exercise reduced the number of astrocytes expressing lipocalin 2, a regulator of dendritic spine density, on POD15. Our results suggest that exercise modifies the composition of astrocytic population and their phenotype.
RESUMEN
Aim: In China, warfarin is usually prescribed with Chuanxiong Rhizoma for treating thromboembolism diseases. However, the reason for their combination is still being determined. The present study explored the pharmacokinetics interactions of warfarin, Chuanxiong Rhizoma, and gut microbiota in the rat model of middle cerebral artery occlusion (MCAO). Methods: A total of 48 rats were randomly divided into six groups: MCAO rats orally administered warfarin (W group), pseudo germ-free MCAO rats orally administered warfarin (W-f group), MCAO rats co-administered Chuanxiong Rhizoma and warfarin (C + W group), pseudo germ-free MCAO rats co-administered Chuanxiong Rhizoma and warfarin (C + W-f group), MCAO rats co-administered warfarin and senkyunolide I (S + W group); pseudo germ-free MCAO rats co-administered warfarin and senkyunolide I (S + W-f group). After treatment, all animals' blood and stool samples were collected at different time points. The stool samples were used for 16S rRNA sequencing analysis. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method was established to quantify warfarin, internal standards, and the main bioactive components of Chuanxiong in blood samples. The main pharmacokinetics parameters of warfarin were calculated by DAS 2.1.1 software. Results: The relative abundance of Allobaculum and Dubosiella in the pseudo germ-free groups (W-f, C + W-f, S + W-f) was lower than that in the other three groups (W, C + W, S + W). The relative abundance of Lactobacillus in the W-f group was higher than that of the W group, while the relative abundance of Akkermansia decreased. The relative abundance of Ruminococcaceae_UCG-014 and Ruminococcaceae_NK4A214_group in the S + W-f group was lower than in the S + W group. Compared to the W group, the AUC0-t and Cmax of warfarin in the W-f group increased significantly to 51.26% and 34.58%, respectively. The AUC0-t and Cmax in the C + W group promoted 71.20% and 65.75% more than the W group. Compared to the W group, the AUC0-t and Cmax increased to 64.98% and 64.39% in the S + W group. Conclusion: Chuanxiong Rhizoma and senkyunolide I (the most abundant metabolites of Chuanxiong Rhizoma aqueous extract) might affect the pharmacokinetics features of warfarin in MCAO rats through, at least partly, gut microbiota.
RESUMEN
Cerebral ischemia-reperfusion injury induces multi-dimensional damage to neuronal cells through exacerbation of critical protective mechanisms. Targeting more than one mechanism simultaneously namely, inflammatory responses and metabolic energy homeostasis could provide additional benefits to restrict or manage cerebral injury. Being proven neuroprotective agents both, progesterone (PG) and trimetazidine (TMZ) has the potential to add on the individual therapeutic outcomes. We hypothesized the simultaneous administration of PG and TMZ could complement each other to synergize, or at least enhance neuroprotection in reperfusion injury. We investigated the combination of PG and TMZ on middle cerebral artery occlusion (MCAO) induced cerebral reperfusion injury in rats. Molecular docking on targets of energy homeostasis and apoptosis assessed the initial viability of PG and TMZ for neuroprotection. Animal experimentation with MCA induced ischemia-reperfusion (I/R) injury in rats was performed on five randomized groups. Sham operated control group received vehicle (saline) while the other four I-R groups were pre-treated with vehicle (saline), PG (8 âmg/kg), TMZ treated (25 âmg/kg), and PG â+ âTMZ (8 and 25 âmg/kg) for 7 days by intraperitoneal route. Neurological deficit, infarct volume, and oxidative stress were evaluated to assess the extent of injury in rats. Inflammatory reactivity and apoptotic activity were determined with alterations in myeloperoxidase (MPO) activity, blood-brain barrier (BBB) permeability, and DNA fragments. Reperfusion injury inflicted cerebral infarct, neurological deficit, and shattered BBB integrity. The combination treatment of PG and TMZ restricted cellular damage indicated by significant (p â< â0.05) decrease in infarct volume and improvement in free radical scavenging ability (SOD activity and GSH level). MPO activity and LPO decreased which contributed in improved BBB integrity in treated rats. We speculate that inhibition of inflammatory and optimum energy utilization would critically contribute to observed neuroprotection with combined PG and TMZ treatment. Further exploration of this neuroprotective approach for post-recovery cognitive improvement is worth investigating.
RESUMEN
Stroke is the leading cause of death and disability. Currently, there is no effective pharmacological treatment for this disease, which can be partially attributed to the inability to efficiently deliver therapeutics to the brain. Here we report the development of natural compound-derived nanoparticles (NPs), which function both as a potent therapeutic agent for stroke treatment and as an efficient carrier for drug delivery to the ischemic brain. First, we screened a collection of natural nanomaterials and identified betulinic acid (BA) as one of the most potent antioxidants for stroke treatment. Next, we engineered BA NPs for preferential drug release in acidic ischemic tissue through chemically converting BA to betulinic amine (BAM) and for targeted drug delivery through surface conjugation of AMD3100, a CXCR4 antagonist. The resulting AMD3100-conjugated BAM NPs, or A-BAM NPs, were then assessed as a therapeutic agent for stroke treatment and as a carrier for delivery of NA1, a neuroprotective peptide. We show that intravenous administration of A-BAM NPs effectively improved recovery from stroke and its efficacy was further enhanced when NA1 was encapsulated. Due to their multifunctionality and significant efficacy, we anticipate that A-BAM NPs have the potential to be translated both as a therapeutic agent and as a drug carrier to improve the treatment of stroke.
RESUMEN
BACKGROUND: The absolute number of new stroke patients is annually increasing and there still remains only a few Food and Drug Administration (FDA) approved treatments with significant limitations available to patients. Tanshinone IIA (Tan IIA) is a promising potential therapeutic for ischemic stroke that has shown success in pre-clinical rodent studies but lead to inconsistent efficacy results in human patients. The physical properties of Tan-IIA, including short half-life and low solubility, suggests that Poly (lactic-co-glycolic acid) (PLGA) nanoparticle-assisted delivery may lead to improve bioavailability and therapeutic efficacy. The objective of this study was to develop Tan IIA-loaded nanoparticles (Tan IIA-NPs) and to evaluate their therapeutic effects on cerebral pathological changes and consequent motor function deficits in a pig ischemic stroke model. RESULTS: Tan IIA-NP treated neural stem cells showed a reduction in SOD activity in in vitro assays demonstrating antioxidative effects. Ischemic stroke pigs treated with Tan IIA-NPs showed reduced hemispheric swelling when compared to vehicle only treated pigs (7.85 ± 1.41 vs. 16.83 ± 0.62%), consequent midline shift (MLS) (1.72 ± 0.07 vs. 2.91 ± 0.36 mm), and ischemic lesion volumes (9.54 ± 5.06 vs. 12.01 ± 0.17 cm3) when compared to vehicle-only treated pigs. Treatment also lead to lower reductions in diffusivity (-37.30 ± 3.67 vs. -46.33 ± 0.73%) and white matter integrity (-19.66 ± 5.58 vs. -30.11 ± 1.19%) as well as reduced hemorrhage (0.85 ± 0.15 vs 2.91 ± 0.84 cm3) 24 h post-ischemic stroke. In addition, Tan IIA-NPs led to a reduced percentage of circulating band neutrophils at 12 (7.75 ± 1.93 vs. 14.00 ± 1.73%) and 24 (4.25 ± 0.48 vs 5.75 ± 0.85%) hours post-stroke suggesting a mitigated inflammatory response. Moreover, spatiotemporal gait deficits including cadence, cycle time, step time, swing percent of cycle, stride length, and changes in relative mean pressure were less severe post-stroke in Tan IIA-NP treated pigs relative to control pigs. CONCLUSION: The findings of this proof of concept study strongly suggest that administration of Tan IIA-NPs in the acute phase post-stroke mitigates neural injury likely through limiting free radical formation, thus leading to less severe gait deficits in a translational pig ischemic stroke model. With stroke as one of the leading causes of functional disability in the United States, and gait deficits being a major component, these promising results suggest that acute Tan IIA-NP administration may improve functional outcomes and the quality of life of many future stroke patients.
RESUMEN
Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.
RESUMEN
Background: As not all ischemic stroke patients benefit from currently available treatments, there is considerable need for neuroprotective co-therapies. Therapeutic hypothermia is one such co-therapy, but numerous issues have hampered its clinical use (e.g., pneumonia risk with whole-body cooling). Some problems may be avoided with brain-specific methods, such as intra-arterial selective cooling infusion (IA-SCI) into the arteries supplying the ischemic tissue. Objective: Our research question was about the efficacy of IA-SCI in animal middle cerebral artery occlusion models. We hypothesized that IA-SCI would be beneficial, but translationally-relevant study elements may be missing (e.g., aged animals). Methods: We completed a systematic review of the PubMed database following the PRISMA guidelines on May 21, 2020 for animal studies that administered IA-SCI in the peri-reperfusion period and assessed infarct volume, behavior (primary meta-analytic endpoints), edema, or blood-brain barrier injury (secondary endpoints). Our search terms included: "focal ischemia" and related terms, "IA-SCI" and related terms, and "animal" and related terms. Nineteen studies met inclusion criteria. We adapted a methodological quality scale from 0 to 12 for experimental design assessment (e.g., use of blinding/randomization, a priori sample size calculations). Results: Studies were relatively homogenous (e.g., all studies used young, healthy animals). Some experimental design elements, such as blinding, were common whereas others, such as sample size calculations, were infrequent (median methodological quality score: 5; range: 2-7). Our analyses revealed that IA-SCI provides benefit on all endpoints (mean normalized infarct volume reduction = 23.67%; 95% CI: 19.21-28.12; mean normalized behavioral improvement = 35.56%; 95% CI: 25.91-45.20; mean standardized edema reduction = 0.95; 95% CI: 0.56-1.34). Unfortunately, blood-brain barrier assessments were uncommon and could not be analyzed. However, there was substantial statistical heterogeneity and relatively few studies. Therefore, exploration of heterogeneity via meta-regression using saline infusion parameters, study quality, and ischemic duration was inconclusive. Conclusion: Despite convincing evidence of benefit in ischemic stroke models, additional studies are required to determine the scope of benefit, especially when considering additional elements (e.g., dosing characteristics). As there is interest in using this treatment alongside current ischemic stroke therapies, more relevant animal studies will be critical to inform patient studies.
RESUMEN
OBJECTIVE: Here, the aim is to improve the bioavailability of Naringenin (NRG) in brain and to establish the highest remedial benefit from a novel anti-ischemic medicine i.e. NRG. METHODS: A novel Naringenin-loaded-nanoemulsion (NE)-(in situ)-gel (i.e. thermoresponsive), was formulated with the help of Poloxamer-407 (20.0% w/v). Chitosan (CS, 0.50% w/v) was used to introduce the mucoadhesive property of NE-(in situ)-gel and finally called as NRG-NE-gelâ¯+â¯0.50%CS. A novel UHPLC-ESI-Q-TOF-MS/MS-method was optimized and used for NRG-NE-gelâ¯+â¯0.50%CS to quantify the Pharmacokinetic-(PK)-parameters in plasma as well as brain and to evaluate the cerebral ischemic parameters after MCAO i.e. locomotor activity, grip strength, antioxidant activity, and quantity the infarction volume in neurons with the safety/toxicity of NRG-NE-gelâ¯+â¯0.50%CS after i.n. administration in the rats. RESULTS: The mucoadhesive potency and gelling temperature of NRG-NE-gelâ¯+â¯0.50%CS were observed 6245.38 dynes/cm2 and 28.3⯱â¯1.0⯰C, respectively. Poloxamer-407 based free micelles size was observed 98.31⯱â¯1.17â¯nm with PDI (0.386⯱â¯0.021). The pH and viscosity of NRG-NE-gelâ¯+â¯0.50%CS were found to be 6.0⯱â¯0.20 and 2447⯱â¯24cp (at 35.0⯱â¯1.0⯰C temperature), respectively. An elution time and m/z NRG were observed 1.78â¯min and 270.97/150.96 with 1.22â¯min and m/z of 301.01/150.98 for Quercetin (IS) respectively. Inter and intra %precision and %accuracy was validated 1.01-3.37% and 95.10-99.30% with a linear dynamic range (1.00 to 2000.00â¯ng/ml). AUC0-24 of plasma & brain were observed 995.60⯱â¯24.59 and 5600.99⯱â¯144.92 (ng min/ml g) in the rats after the intranasal (i.n.) administration of NRG-NE-gelâ¯+â¯0.50%CS. No toxicological response were not found in terms of mortalities, any-change morphologically i.e. in the microstructure of brain as well as nasal mucosa tissues, and also not found any visual signs in terms of inflammatory or necrosis. CONCLUSION: Intranasally administered NRG-NE-gelâ¯+â¯0.50%CS enhanced the bioavailability of Naringenin in the brain. In the cerebral ischemic rats, significantly improved the neurobehavioral activity (locomotor & grip strength) followed by antioxidant activity as well as infarction volume. Finally, the toxicity studies carried out and established the safe nature of optimized-NRG-NE-gelâ¯+â¯0.50%CS.
RESUMEN
Nowadays, nanotechnology is revolutionizing the approaches to different fields from manufacture to health. Carbon nanotubes (CNTs) as promising candidates in nanomedicine have great potentials in developing novel entities for central nervous system pathologies, due to their excellent physicochemical properties and ability to interface with neurons and neuronal circuits. However, most of the studies mainly focused on the drug delivery and bioimaging applications of CNTs, while neglect their application prospects as therapeutic drugs themselves. At present, the relevant reviews are not available yet. Herein we summarized the latest advances on the biomedical and therapeutic applications of CNTs in vitro and in vivo for neurological diseases treatments as inherent therapeutic drugs. The biological mechanisms of CNTs-mediated bio-medical effects and potential toxicity of CNTs were also intensely discussed. It is expected that CNTs will exploit further neurological applications on disease therapy in the near future.
RESUMEN
The urokinase-type plasminogen activator (uPA) loaded hollow nanogels (nUK) were synthesized by a one-step reaction of glycol chitosan and aldehyde capped poly (ethylene oxide). The resultant formulation is sensitive to diagnostic ultrasound (US) of 2 MHz. Herein, we evaluated the in vivo sonothrombolysis performance of the nUK on acute ischemic stroke rat model which was established by suture embolization of middle cerebral artery (MCA). Via intravenous (i.v.) administration, the experimental data prove a controlled release of the therapeutic protein around the clots under ultrasound stimulation, leading to enhanced thrombolysis efficiency of the nUK, evidenced from smaller infarct volume and better clinical scores when compared to the i.v. dose of free uPA no matter with or without US intervention. Meanwhile, the preservation ability of the nanogels not only prolonged the circulation duration of the protein, but also resulted in the better blood-brain barrier protection of the nUK formulation, showing no increased risk on the hemorrhagic transformation than the controls. This work suggests that the nUK is a safe sonothrombolytic formulation for the treatment of acute ischemic stroke.
RESUMEN
OBJECTIVE: Remote ischemic postconditioning (RIPostC) has been recognized as an applicable strategy for protecting against cerebral ischemia/reperfusion (I/R) injury. This study was performed to examine the effect of RIPostC on cerebral I/R and to explore its underlying mechanism. METHODS: Healthy male SD rats (N = 36) were assigned randomly into 3 groups of 12 each: sham group, I/R model group and RIPostC group. Animal models were performed by filament insertion for 2 h with middle cerebral artery occlusion(MCAO) followed by 24 h of reperfusion. RIPostC was induced by 15 min occlusion of femoral arteries followed by 15 min of reperfusion for 3 cycles at the beginning of middle cerebral artery reperfusion. The neurological deficits, infarct size and brain edema were determined. Autophagy was examined by transmission electron microscopy (TEM). The protein levels of microtubule-associated protein light chain 3 (LC3-II), mammalian target of rapamycin (mTOR), serine/threonine kinase p70S6 kinase (p70S6K), and their phosphorylation (p-mTOR and p-p70S6K) in the brain tissue of the rats were determined by western blotting. RESULTS: Our results suggested that RIPostC significantly reduced I/R-induced brain injury, as exhibited by a significantly decreased infarct size, mitigated brain edema and improved neurological deficits. RIPostC also significantly reduced the LC3-II/LC3-I ratio and protein expression of Beclin 1. Much less severe neuronal injury and fewer autophagosomes were observed by TEM in the RIPostC group. CONCLUSIONS: These results suggest that RIPostC attenuates cerebral I/R injury by inhibiting autophagy through the activation of the mTOR/p70S6K signaling pathway.
Asunto(s)
Autofagia/fisiología , Lesiones Encefálicas/prevención & control , Poscondicionamiento Isquémico/métodos , Daño por Reperfusión/complicaciones , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Encéfalo/patología , Encéfalo/ultraestructura , Edema Encefálico/etiología , Edema Encefálico/prevención & control , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Masculino , Microscopía Electrónica de Transmisión , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/prevención & control , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismoRESUMEN
Albumin is known to have neuroprotective effects. The protein has a long half-life circulation, and its effects can therefore persist for a long time to aid in the recovery of brain ischemia. In the present study, we investigated the neuroprotective effects of human serum albumin (HSA) on brain hemodynamics. Albumin is administrated using repeated oral gavage to the rodents. Sprague-Dawley rats underwent middle cerebral artery occlusion procedures and served as a stroke model. Afterwards, 25% human serum albumin (1.25 g/kg) or saline (5 ml/kg) was orally administrated for 2 weeks in alternating days. After 2 weeks, the rodents were assessed for levels of brain ischemia. Our testing battery consists of behavioral tests and in vivo optical imaging sessions. Modified neurological severity scores (mNSS) were obtained to assess the levels of ischemia and the effects of HSA oral administration. We found that the experimental group demonstrated larger hemodynamic responses following sensory stimulation than controls that were administered with saline. HSA administration resulted in more significant changes in cerebral blood volume following direct cortical electric stimulation. In addition, the mNSS of the treatment group was lower than the control group. In particular, brain tissue staining revealed that the infarct size was also much smaller with HSA administration. This study provides support for the efficacy of HSA, and that long-term oral administration of HSA may induce neuroprotective effects against brain ischemia.
RESUMEN
OBJECTIVES: Apoptosis plays an important role in the progression of the ischemic penumbra after reperfusion. Estrogen and progesterone have neuroprotective effects against ischemic brain damage, however the exact mechanisms of neuroprotection and signaling pathways is not completely understood. In this study, we investigated the possible regulatory effects of a combined steroid treatment on extrinsic and intrinsic apoptotic signaling pathways after cerebral ischemia. METHODS: Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (tMCAO) using an intraluminal filament technique for 1 h followed by 23 h reperfusion. Estrogen and progesterone were immediately injected after tMCAO subcutaneously. Sensorimotor functional tests and the infarct volume were evaluated 24 h after ischemia. Protein expression of calpain-1 and Fas receptor (FasR), key members of intrinsic and extrinsic apoptosis, were determined in the penumbra region of the ischemic brain using western blot analysis, immunohistochemistry, and TUNEL staining. RESULTS: Neurological deficits and infarct volume were significantly reduced following hormone therapy. Calpain-1 up-regulation and caspase-3 activation were apparent 24 h after ischemia in the peri-infarct area of the cerebral cortex. Steroid hormone treatment reduced infarct pathology and attenuated the induction of both proteases. FasR protein levels were not affected by ischemia and hormone application. CONCLUSION: We conclude that a combined steroid treatment inhibits ischemia-induced neuronal apoptosis through the regulation of intrinsic pathways.
Asunto(s)
Apoptosis/efectos de los fármacos , Calpaína/metabolismo , Infarto de la Arteria Cerebral Media , Transducción de Señal/fisiología , Esteroides/uso terapéutico , Animales , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/etiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Circulación Cerebrovascular/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Etiquetado Corte-Fin in Situ , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Flujometría por Láser-Doppler , Masculino , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Estadísticas no ParamétricasRESUMEN
Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound TCM preparation, Chinese materia medica, and active components on I/R-induced cerebral microcirculatory disturbances, brain injury and neuron damage.
RESUMEN
With the goal to enhance the distribution of cationic Mn porphyrins within mitochondria, the lipophilic Mn(III)meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) has been synthesized and tested in several different model of diseases, where it shows remarkable efficacy at as low as 50 µg/kg single or multiple doses. Yet, in a rat lung radioprotection study, at higher 0.6-1 mg/kg doses, due to its high accumulation and micellar character, it became toxic. To avoid the toxicity, herein the pulmonary radioprotection of MnTnHex-2-PyP(5+) was assessed at 50 µg/kg. Fischer rats were irradiated to their right hemithorax (28 Gy) and treated with 0.05 mg/kg/day of MnTnHex-2-PyP(5+) for 2 weeks by subcutaneously-implanted osmotic pumps, starting at 2 h post-radiation. The body weights and breathing frequencies were followed for 10 weeks post-radiation, when the histopathology and immunohistochemistry were assessed. Impact of MnTnHex-2-PyP(5+) on macrophage recruitment (ED-1), DNA oxidative damage (8-OHdG), TGF-ß1, VEGF(A) and HIF-1α were measured. MnTnHex-2-PyP(5+) significantly decreased radiation-induced lung histopathological (H&E staining) and functional damage (breathing frequencies), suppressed oxidative stress directly (8-OHdG), or indirectly, affecting TGF-ß1, VEGF (A) and HIF-1α pathways. The magnitude of the therapeutic effects is similar to the effects demonstrated under same experimental conditions with 120-fold higher dose of ~5000-fold less lipophilic Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+).
Asunto(s)
Pulmón/efectos de los fármacos , Pulmón/efectos de la radiación , Metaloporfirinas/administración & dosificación , Protectores contra Radiación/administración & dosificación , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Esquema de Medicación , Femenino , Infusiones Subcutáneas , Pulmón/patología , Metaloporfirinas/farmacología , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Protectores contra Radiación/farmacología , Ratas , Ratas Endogámicas F344 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiaciónRESUMEN
Albumin is known to have neuroprotective effects. The protein has a long half-life circulation, and its effects can therefore persist for a long time to aid in the recovery of brain ischemia. In the present study, we investigated the neuroprotective effects of human serum albumin (HSA) on brain hemodynamics. Albumin is administrated using repeated oral gavage to the rodents. Sprague-Dawley rats underwent middle cerebral artery occlusion procedures and served as a stroke model. Afterwards, 25% human serum albumin (1.25 g/kg) or saline (5 ml/kg) was orally administrated for 2 weeks in alternating days. After 2 weeks, the rodents were assessed for levels of brain ischemia. Our testing battery consists of behavioral tests and in vivo optical imaging sessions. Modified neurological severity scores (mNSS) were obtained to assess the levels of ischemia and the effects of HSA oral administration. We found that the experimental group demonstrated larger hemodynamic responses following sensory stimulation than controls that were administered with saline. HSA administration resulted in more significant changes in cerebral blood volume following direct cortical electric stimulation. In addition, the mNSS of the treatment group was lower than the control group. In particular, brain tissue staining revealed that the infarct size was also much smaller with HSA administration. This study provides support for the efficacy of HSA, and that long-term oral administration of HSA may induce neuroprotective effects against brain ischemia.
Asunto(s)
Animales , Humanos , Ratas , Administración Oral , Hipoxia , Escala de Evaluación de la Conducta , Volumen Sanguíneo , Isquemia Encefálica , Encéfalo , Estimulación Eléctrica , Semivida , Hemodinámica , Infarto de la Arteria Cerebral Media , Isquemia , Neuroprotección , Fármacos Neuroprotectores , Imagen Óptica , Ratas Sprague-Dawley , Roedores , Albúmina Sérica , Accidente CerebrovascularRESUMEN
Adipose tissue may represent an alternative source of cells capable of neuronal differentiation, potentially enhancing their usefulness in the treatment of neurological disease. We examined that human adipose tissue stromal cells (ATSCs) can be induced to undergo neuronal differentiation. After neuronal induction, the phenotype of hATSCs changed towards neuronal morphology and hATSCs were injected into the lateral ventricle of the rat brain. Implanted cells migrated to brain injury region which was induced by middle cerebral artery occlusion (MCAO). Intracerebral grafting of hATSCs significantly enhances sensory and motor recovery of functional deficits in MCAO rats. These data indicate that transplanted hATSCs survive, migrate and differentiate in the ischemic microenvironment and improve neurological function recovery after stroke in rats. Therefore, we anticipate that transplantation of hATSCs may provide a powerful autoplastic therapy for human neurological injury and degenerative disorders.