Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Saudi Pharm J ; 30(6): 669-678, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35812144

RESUMEN

Background: Ischemia reperfusion (I/R) play an imperative role in the expansion of cardiovascular disease. Sinomenine (SM) has been exhibited to possess antioxidant, anticancer, anti-inflammatory, antiviral and anticarcinogenic properties. The aim of the study was scrutinized the cardioprotective effect of SM against I/R injury in rat. Methods: Rat were randomly divided into normal control (NC), I/R control and I/R + SM (5, 10 and 20 mg/kg), respectively. Ventricular arrhythmias, body weight and heart weight were estimated. Antioxidant, inflammatory cytokines, inflammatory mediators and plasmin system indicator were accessed. Results: Pre-treated SM group rats exhibited the reduction in the duration and incidence of ventricular fibrillation, ventricular ectopic beat (VEB) and ventricular tachycardia along with suppression of arrhythmia score during the ischemia (30 and 120 min). SM treated rats significantly (P < 0.001) altered the level of antioxidant parameters. SM treatment significantly (P < 0.001) repressed the level of creatine kinase MB (CK-MB), creatine kinase (CK) and troponin I (Tnl). SM treated rats significantly (P < 0.001) repressed the tissue factor (TF), thromboxane B2 (TXB2), plasminogen activator inhibitor 1 (PAI-1) and plasma fibrinogen (Fbg) and inflammatory cytokines and inflammatory mediators. Conclusion: Our result clearly indicated that SM plays anti-arrhythmia effect in I/R injury in the rats via alteration of oxidative stress and inflammatory reaction.

2.
S Afr J Bot ; 135: 240-251, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32963416

RESUMEN

Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lactones constitute a large and diverse group of biologically active compounds widely distributed in several medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spectrum of biological activities of these compounds drew significant interests in the pharmacological applications. This review describes selected sesquiterpene lactones that have been experimentally validated for their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that these substances represent remarkable compounds with a diversity of molecular structure and high biological activity, providing new insights into the possible role in metabolic syndrome management.

3.
Neurol Psychiatry Brain Res ; 37: 27-32, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32834527

RESUMEN

OBJECTIVE: To describe the main neurological manifestations related to coronavirus infection in humans. METHODOLOGY: A systematic review was conducted regarding clinical studies on cases that had neurological manifestations associated with COVID-19 and other coronaviruses. The search was carried out in the electronic databases PubMed, Scopus, Embase, and LILACS with the following keywords: "coronavirus" or "Sars-CoV-2" or "COVID-19" and "neurologic manifestations" or "neurological symptoms" or "meningitis" or "encephalitis" or "encephalopathy," following the Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Seven studies were included. Neurological alterations after CoV infection may vary from 17.3% to 36.4% and, in the pediatric age range, encephalitis may be as frequent as respiratory disorders, affecting 11 % and 12 % of patients, respectively. The Investigation included 409 patients diagnosed with CoV infection who presented neurological symptoms, with median age range varying from 3 to 62 years. The main neurological alterations were headache (69; 16.8 %), dizziness (57, 13.9 %), altered consciousness (46; 11.2 %), vomiting (26; 6.3 %), epileptic crises (7; 1.7 %), neuralgia (5; 1.2 %), and ataxia (3; 0.7 %). The main presumed diagnoses were acute viral meningitis/encephalitis in 25 (6.1 %) patients, hypoxic encephalopathy in 23 (5.6 %) patients, acute cerebrovascular disease in 6 (1.4 %) patients, 1 (0.2 %) patient with possible acute disseminated encephalomyelitis, 1 (0.2 %) patient with acute necrotizing hemorrhagic encephalopathy, and 2 (1.4 %) patients with CoV related to Guillain-Barré syndrome. CONCLUSION: Coronaviruses have important neurotropic potential and they cause neurological alterations that range from mild to severe. The main neurological manifestations found were headache, dizziness and altered consciousness.

4.
Pharm Res ; 35(1): 20, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29305668

RESUMEN

PURPOSE: The hypothesis that locally-released iloprost, a synthetic prostacyclin analog, affects macrophage phenotype at a microdialysis implant in the subcutaneous space of rats was tested. Macrophage activation towards alternatively-activated phenotypes using pharmaceutical release is of interest to improve integration of implants and direct the foreign body reaction toward a successful outcome. METHODS: Macrophage cell culture was used to test iloprost macrophage activation in vitro. Microdialysis sampling probes were implanted into the subcutaneous space of Sprague-Dawley rats to locally deliver iloprost in awake- and freely-moving rats. Monocyte chemoattractant protein -1 (CCL2) was quantified from collected dialysates using ELISA. Immunohistochemical staining was used to determine the presence of CD163+ macrophages in explanted tissues. RESULTS: Iloprost reduced CCL2 concentrations in NR8383 macrophages stimulated with lipopolysaccharide. CCL2 concentrations in collected dialysates were similarly reduced in the presence of iloprost. Iloprost caused an increase in CD163+ cells in explanted tissue surrounding implanted microdialysis probes at two days post probe implantation. CONCLUSIONS: Localized delivery of iloprost caused macrophage activation at the tissue interface of a microdialysis subcutaneous implant in rat. This model system may be useful for testing other potential macrophage modulators in vivo.


Asunto(s)
Quimiocina CCL2/metabolismo , Iloprost/química , Iloprost/farmacología , Activación de Macrófagos/efectos de los fármacos , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Liberación de Fármacos , Humanos , Iloprost/administración & dosificación , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Microdiálisis , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/metabolismo , Distribución Tisular
5.
Nutr Res Rev ; 31(2): 239-247, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29871706

RESUMEN

Obesity represents one of major health problems strongly linked to other co-morbidities, such as type 2 diabetes, CVD, gastrointestinal disorders and cognitive impairment. In this context, nutritional stress, such as an excess of fat intake, promotes a systemic oxidative stress, characterised by hyperproduction of reactive oxygen species, leading to cellular alterations that include impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity. Flavonoids, dietary components of plant foods, are endowed with a wide spectrum of biological activities, including antioxidant activity, and have been proposed to reduce the risk of major chronic diseases. The present review intends to highlight and critically discuss the current scientific evidence on the possible effects of flavonoids in counteracting obesity and related co-morbidities (i.e. type 2 diabetes mellitus, CVD, gastrointestinal disorders and cognitive impairment) through a decrease in oxidative stress and related inflammatory conditions.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Disfunción Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Flavonoides/uso terapéutico , Enfermedades Gastrointestinales/metabolismo , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/dietoterapia , Disfunción Cognitiva/dietoterapia , Comorbilidad , Diabetes Mellitus Tipo 2/dietoterapia , Dieta , Metabolismo Energético/efectos de los fármacos , Flavonoides/farmacología , Enfermedades Gastrointestinales/dietoterapia , Humanos , Obesidad/dietoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Plantas Comestibles/química , Polifenoles/farmacología , Polifenoles/uso terapéutico
6.
Br J Nutr ; 117(10): 1368-1378, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28606215

RESUMEN

The prevalence of type 2 diabetes (T2D) is low in populations with a high fish intake; however prospective studies with fish intake have shown positive, negative or no association between fish intake and the risk for T2D. The aim of this study was to investigate the effects of high intake of lean or fatty fish on glucose tolerance, leucocyte membrane fatty acid composition and leucocyte function in overweight/obese adults. In this randomised clinical trial, sixty-eight healthy overweight/obese participants consumed 750 g/week of either lean or fatty fish as dinners, or were instructed to continue their normal eating habits but to avoid fish intake (control group), for 8 weeks. Energy and macronutrient intake and physical activity were not changed within the groups during the study period. High intake of fatty fish, but not of lean fish, significantly improved glucose regulation 120 min postprandially (P=0·012), but did not affect fasting glucose concentration. A smaller increase in fasting to 120 min postprandial insulin C-peptide concentration was seen after fatty fish intake (P=0·012). Lean fish increased the DHA content in leucocyte membranes (P=0·010), and fatty fish increased the total content of n-3 PUFA (P=0·00016) and reduced the content of n-6 PUFA (P=0·00057) in leucocyte membranes. Lean and fatty fish intake did not affect phagocytosis of bacteria ex vivo. The findings suggest that high intake of fatty fish, but not of lean fish, beneficially affected postprandial glucose regulation in overweight/obese adults, and may therefore prevent or delay the development of T2D in this population.


Asunto(s)
Glucemia , Ácidos Grasos Omega-3/metabolismo , Peces , Hiperglucemia , Leucocitos/metabolismo , Sobrepeso , Adulto , Animales , Biomarcadores , Grasas de la Dieta , Femenino , Análisis de los Alimentos , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad
7.
Br J Nutr ; 115(11): 1938-46, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27153203

RESUMEN

Studies have emerged to demonstrate bidirectional changes in circulating cytokines of inflammation in active diabetic foot ulcers (DFU). To further expand the understanding of inflammatory status present in chronic active DFU, we comparatively assessed the associations of selected pro-inflammatory cytokines and 25-hydroxyvitamin D (25(OH)D) with the presence of DFU. In a cross-sectional setting, thirty patients with type 2 diabetes and active DFU matched with thirty control non-ulcerative patients with type 2 diabetes and twenty-eight healthy subjects underwent anthropometric and biochemical assessment of study parameters. Recruited patients with DFU were selected from the grade II active chronic DFU at the time of hospitalisation according to the University of Texas wound classification system. Patients with DFU and controls had comparable age, sexual distribution, diastolic blood pressure and TAG, LDL-cholesterol and glycated Hb. The trend changes from healthy controls towards DFU showed a significant increase for serum monocyte chemoattractant protein-1, IL-6, 25(OH)D and highly sensitive C-reactive protein and a decrease for IL-8. In the multivariate adjusted logistic regression model, 25(OH)D emerged as the only independent correlate of DFU (OR 2·194; 95 % CI 1·003, 4·415). Unprecedented increase of serum 25(OH)D in chronic active DFU is possibly related to a selective alteration in the inflammatory status. In particular, 25(OH)D and IL-8 seem to share a common pathway in the pathogenesis of diabetic foot.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Pie Diabético/sangre , Inflamación/sangre , Vitamina D/análogos & derivados , Adulto , Anciano , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Quimiocina CCL2/sangre , Estudios Transversales , Citocinas/sangre , Diabetes Mellitus Tipo 2/sangre , Pie Diabético/patología , Femenino , Humanos , Inflamación/etiología , Modelos Logísticos , Masculino , Persona de Mediana Edad , Vitamina D/sangre , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/complicaciones
8.
Br J Nutr ; 116(3): 470-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27215379

RESUMEN

We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1ß, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1ß, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.


Asunto(s)
Alanina/farmacología , Antiinflamatorios/farmacología , Suplementos Dietéticos , Dipéptidos/farmacología , Glutamina/farmacología , Músculo Esquelético/efectos de los fármacos , Entrenamiento de Fuerza/efectos adversos , Alanina/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Creatina Quinasa/sangre , Citocinas/sangre , Dipéptidos/uso terapéutico , Glutamina/sangre , Glutamina/metabolismo , Glutamina/uso terapéutico , Proteínas HSP70 de Choque Térmico/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , L-Lactato Deshidrogenasa/sangre , Leucocitos Mononucleares/metabolismo , Masculino , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Ratas Wistar
9.
Br J Nutr ; 116(2): 223-46, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27264638

RESUMEN

The endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.


Asunto(s)
Antioxidantes/farmacología , Enfermedades Cardiovasculares/fisiopatología , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus/fisiopatología , Endotelio Vascular/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Animales , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/prevención & control , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus/sangre , Diabetes Mellitus/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Humanos , Inflamación/etiología , Óxido Nítrico Sintasa/sangre , Estrés Oxidativo , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/sangre
10.
Br J Nutr ; 114(8): 1123-31, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26314315

RESUMEN

Dietary anthocyanins have been shown to reduce inflammation in animal models and may ameliorate obesity-related complications. Black elderberry is one of the richest sources of anthocyanins. We investigated the metabolic effects of anthocyanin-rich black elderberry extract (BEE) in a diet-induced obese C57BL/6J mouse model. Mice were fed either a low-fat diet (n 8), high-fat lard-based diet (HFD; n 16), HFD+0·25 % (w/w) BEE (0·25 %-BEE; n 16) or HFD+1·25 % BEE (1·25 %-BEE; n 16) for 16 weeks. The 0·25 % BEE (0·034 % anthocyanin, w/w) and 1·25 % BEE (0·17 % anthocyanin, w/w) diets corresponded to estimated anthocyanin doses of 20-40 mg and 100-200 mg per kg of body weight, respectively. After 16 weeks, both BEE groups had significantly lower liver weights, serum TAG, homoeostasis model assessment and serum monocyte chemoattractant protein-1 compared with HFD. The 0·25 %-BEE also had lower serum insulin and TNFα compared with HFD. Hepatic fatty acid synthase mRNA was lower in both BEE groups, whereas PPARγ2 mRNA and liver cholesterol were lower in 1·25 %-BEE, suggesting decreased hepatic lipid synthesis. Higher adipose PPARγ mRNA, transforming growth factor ß mRNA and adipose tissue histology suggested a pro-fibrogenic phenotype that was less inflammatory in 1·25 %-BEE. Skeletal muscle mRNA expression of the myokine IL-6 was higher in 0·25 %-BEE relative to HFD. These results suggest that BEE may have improved some metabolic disturbances present in this mouse model of obesity by lowering serum TAG, inflammatory markers and insulin resistance.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Inflamación/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Sambucus nigra/química , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Quimiocina CCL2/sangre , Dieta con Restricción de Grasas , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Insulina/sangre , Resistencia a la Insulina , Interleucina-6/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/sangre
11.
J Med Life ; 16(9): 1388-1392, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38107701

RESUMEN

This study aimed to investigate the role of inflammatory processes in benign prostatic enlargement among men with elevated prostate-specific antigen (PSA) levels without a history of prostatic disease. Additionally, we aimed to examine the influence of serum zinc levels on prostate volume. We investigated the associations between systemic inflammatory markers, serum PSA, and serum zinc levels in 48 men without a history of prostatic disease, aged between 60-72 years, and 30 healthy men in the same age range. Data collection occurred between 1/2/2022 to 1/10/2022. The results are presented as mean values ± standard error (SE), and statistical significance was determined at p≤0.05. The levels of sIL-8 (P: 44.295±1.002, C: 1.404±0.2562), IL-6 (P: 7.406±0.5632, C: 4.468±0.830), CRP (P: 14.765±0.565, C: 6.267±0.538), increased significantly in patients with high PSA, while zinc levels (P: 92.305±2.8235, C: 114.565±8.861) decreased in the patient group. Regarding white blood cell (WBC) parameters, patients exhibited a significant increase in WBC total count (P: 12995.00±488.47, C: 7713.333±777.778), neutrophil % (P: 69.450±1.619, C: 51.200±1.826), lymphocyte % (P: 39.50±2.024, C: 30.867±1.268), and NLR (2.013±0.105). Conversely, there were no significant differences in eosinophil % (P: 3.450±0.4558, C: 3.267±0.5297), basophil % (P: 0.300±0.105, C: 0.267±1182), or monocyte % (P: 3.450±0.4558, C: 3.267±0.5297) between the two groups. In men without known prostatic illness, increased PSA was linked to markers of systemic inflammation. The results indicate the role of inflammatory processes in increasing the size of the prostate gland, as evidenced by the increased levels of immune markers like white blood cells and interleukins, along with the influence of zinc. Future research is required to determine how these markers relate to the development and incidence of prostate cancer.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Anciano , Antígeno Prostático Específico , Irak , Recuento de Leucocitos
12.
Med Drug Discov ; 17: 100148, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36466363

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) induced cytokine storm is the major cause of COVID-19 related deaths. Patients have been treated with drugs that work by inhibiting a specific protein partly responsible for the cytokines production. This approach provided very limited success, since there are multiple proteins involved in the complex cell signaling disease mechanisms. We targeted five proteins: Angiotensin II receptor type 1 (AT1R), A disintegrin and metalloprotease 17 (ADAM17), Nuclear Factor­Kappa B (NF­κB), Janus kinase 1 (JAK1) and Signal Transducer and Activator of Transcription 3 (STAT3), which are involved in the SARS­CoV­2 induced cytokine storm pathway. We developed machine-learning (ML) models for these five proteins, using known active inhibitors. After developing the model for each of these proteins, FDA-approved drugs were screened to find novel therapeutics for COVID­19. We identified twenty drugs that are active for four proteins with predicted scores greater than 0.8 and eight drugs active for all five proteins with predicted scores over 0.85. Mitomycin C is the most active drug across all five proteins with an average prediction score of 0.886. For further validation of these results, we used the PyRx software to conduct protein-ligand docking experiments and calculated the binding affinity. The docking results support findings by the ML model. This research study predicted that several drugs can target multiple proteins simultaneously in cytokine storm-related pathway. These may be useful drugs to treat patients because these therapies can fight cytokine storm caused by the virus at multiple points of inhibition, leading to synergistically effective treatments.

13.
Mater Today Bio ; 13: 100219, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35243294

RESUMEN

Organ-on-a-chip models have emerged as a powerful tool to model cancer metastasis and to decipher specific crosstalk between cancer cells and relevant regulators of this particular niche. Recently, the sympathetic nervous system (SNS) was proposed as an important modulator of breast cancer bone metastasis. However, epidemiological studies concerning the benefits of the SNS targeting drugs on breast cancer survival and recurrence remain controversial. Thus, the role of SNS signaling over bone metastatic cancer cellular processes still requires further clarification. Herein, we present a novel humanized organ-on-a-chip model recapitulating neuro-breast cancer crosstalk in a bone metastatic context. We developed and validated an innovative three-dimensional printing based multi-compartment microfluidic platform, allowing both selective and dynamic multicellular paracrine signaling between sympathetic neurons, bone tropic breast cancer cells and osteoclasts. The selective multicellular crosstalk in combination with biochemical, microscopic and proteomic profiling show that synergistic paracrine signaling from sympathetic neurons and osteoclasts increase breast cancer aggressiveness demonstrated by augmented levels of pro-inflammatory cytokines (e.g. interleukin-6 and macrophage inflammatory protein 1α). Overall, this work introduced a novel and versatile platform that could potentially be used to unravel new mechanisms involved in intracellular communication at the bone metastatic niche.

14.
Ophthalmol Sci ; 2(2): 100123, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36249694

RESUMEN

Purpose: Various pathways and cytokines are implicated in pathogenesis of diabetic macular edema (DME). Computational imaging biomarkers (CIBs) of vessel tortuosity from ultra-widefield fluorescein angiography (UWFA) and texture patterns from OCT images have been associated with anti-vascular endothelial growth factor (VEGF) therapy treatment response in DME. This analysis was a radiogenomic assessment of the association between underlying cytokines, UWFA, and OCT-based DME CIBs. Design: Biclustering analysis based on UWFA and OCT CIBs to identify a common imaging phenotype across patients with subsequent assessment of underlying cytokine signatures and treatment response attributes. Participants: The IMAGINE DME study was a post hoc study of cytokine expressions that included 24 eyes with sufficient baseline aqueous humor samples and an in-depth assessment of the imaging studies obtained during the phase I/II DmeAntiVEgf study (DAVE) that measured different cytokine expressions. Methods: A total of 151 graph or morphologic features quantifying leakage shape, size, density, interobject distance, and architecture of leakage spots and 5 vessel tortuosity features were extracted from the baseline UWFA scans, and 494 texture-based radiomics features were extracted from each of the fluid and retinal tissue compartments of OCT images. Biclustering enables simultaneous clustering of patients and features and was used to aggregate patients in terms of their commonality of phenotypes (based on similar imaging attributes) and to identify commonality in terms of cytokine expression and treatment response to anti-VEGF therapy. Main Outcome Measures: Identification of eyes with similar imaging phenotypes to evaluate commonalities of patterns and underlying cytokine expression. Results: Strong correlations between VEGF and 7 UWFA leakage morphologic features (Pearson correlation coefficient [PCC], 0.45-0.51; P < 0.05), 1 vascular tortuosity-based UWFA feature (PCC, 0.45; P = 0.00016), and 2 OCT-derived intraretinal fluid texture features (PCC, 0.58-0.63; P < 0.05) were identified. Strong correlation between intraretinal fluid features and other cytokines (PCC, 0.41-0.59; P < 0.05) were also observed. Conclusions: This study identified groups of eyes with similar imaging phenotypes as defined by UWFA and OCT CIBs that demonstrated similar treatment response patterns and cytokine expression, including a strong association between VEGF with UWFA-derived leakage morphologic and vessel tortuosity features.

15.
J Clin Exp Hepatol ; 12(6): 1428-1437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340302

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent conditions characterized by inflammation and fibrosis of the liver, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Conventional modalities are mainly symptomatic, with no definite solution. Beta-glucan-based biological response modifiers are a potential strategy in lieu of their beneficial metabolic effects. Aureobasidium pullulans strains AFO-202 and N-163 beta-glucans were evaluated for anti-fibrotic and anti-inflammatory hepatoprotective potentials in a NASH animal model in this study. Methods: In the STAM™ murine model of NASH, five groups were studied for 8 weeks: (1) vehicle (RO water), (2) AFO-202 beta-glucan; (3) N-163 beta-glucan, (4) AFO-202+N-163 beta-glucan, and (5) telmisartan (standard pharmacological intervention). Evaluation of biochemical parameters in plasma and hepatic histology including Sirius red staining and F4/80 immunostaining were performed. Results: AFO-202 beta-glucan significantly decreased inflammation-associated hepatic cell ballooning and steatosis. N-163 beta-glucan decreased fibrosis and inflammation significantly (P value < 0.05). The combination of AFO-202 with N-163 significantly decreased the NAFLD Activity Score (NAS) compared with other groups. Conclusion: This preclinical study supports the potential of N-163 and AFO-202 beta-glucans alone or in combination as potential preventive and therapeutic agent(s), for NASH.

16.
JHEP Rep ; 4(10): 100545, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36097583

RESUMEN

Background & Aims: Acetaminophen (APAP)-induced acute liver injury (ALI) is a global health issue characterised by an incomplete understanding of its pathogenesis and unsatisfactory therapies. NEK7 plays critical roles in both cell cycle regulation and inflammation. In the present study, we investigated the role and mechanism of NEK7 in APAP-induced ALI. Methods: In mice with NEK7 overexpression (hydrodynamic tail vein injection of NEK7 plasmids), hepatocyte-specific NEK7 knockout (cKO), and inducible NEK7 knockout (iKO), an overdose of APAP was administered to induce ALI. Liver injury was determined by an analysis of serum liver enzymes, pathological changes, inflammatory cytokines, and metabonomic profiles. In vitro, hepatocyte damage was evaluated by an analysis of cell viability, the reactive oxygen species levels, and mitochondrial function in different cell lines. Hepatocyte proliferation and the cell cycle status were determined by Ki-67 staining, EdU staining, and the cyclin levels. Results: NEK7 was markedly downregulated in APAP-induced injured liver and damaged hepatocytes. NEK7 overexpression in the liver significantly alleviated APAP-induced liver injury, as shown by the restored liver function, reduced pathological injury, and decreased inflammation and oxidative stress, which was confirmed in a hepatocyte cell line. Moreover, both NEK7 cKO and iKO mice exhibited exacerbation of APAP-induced ALI. Finally, we determined that cyclin B1-mediated cell cycle progression could mediate the protective effect of NEK7 against APAP-induced ALI. Conclusions: Reduced NEK7 contributes to APAP-induced ALI, possibly by dysregulating cyclins and disturbing cell cycle progression. Lay summary: Acetaminophen-induced acute liver injury is one of the major global health issues, owing to its high incidence, potential severity, and limited therapeutic options. Our current understanding of its pathogenesis is incomplete. Herein, we have shown that reduced NEK7 (a protein with a key role in the cell cycle) exacerbates acetaminophen-induced acute liver injury. Hence, NEK7 could be a possible therapeutic target for the prevention or treatment of this condition.

17.
Acta Pharm Sin B ; 12(2): 801-820, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35256948

RESUMEN

Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) is well-known to increase drug metabolism and reduce inflammation. Little is known regarding their physiological functions on the gut microbiome. In this study, we discovered bivalent hormetic functions of PXR/CAR modulating the richness of the gut microbiome using genetically engineered mice. The absence of PXR or CAR increased microbial richness, and absence of both receptors synergistically increased microbial richness. PXR and CAR deficiency increased the pro-inflammatory bacteria Helicobacteraceae and Helicobacter. Deficiency in both PXR and CAR increased the relative abundance of Lactobacillus, which has bile salt hydrolase activity, corresponding to decreased primary taurine-conjugated bile acids (BAs) in feces, which may lead to higher internal burden of taurine and unconjugated BAs, both of which are linked to inflammation, oxidative stress, and cytotoxicity. The basal effect of PXR/CAR on the gut microbiome was distinct from pharmacological and toxicological activation of these receptors. Common PXR/CAR-targeted bacteria were identified, the majority of which were suppressed by these receptors. hPXR-TG mice had a distinct microbial profile as compared to wild-type mice. This study is the first to unveil the basal functions of PXR and CAR on the gut microbiome.

18.
Food Chem X ; 13: 100211, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35498979

RESUMEN

A water-soluble heteropolysaccharide (SGP2-1) was purified from Suillus granulatus fruiting bodies by anion-exchange chromatography and gel permeation chromatography. The structural characteristics were analyzed by high-performance gel permeation chromatography, high-performance liquid chromatography, Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy. The immunostimulatory activity was investigated using RAW 264.7 macrophages. Results showed that SGP2-1 with weight average molecular weight of 150.75 kDa was composed of mannose, glucose, and xylose. The backbone of SGP2-1 was mainly composed of â†’ 4)-α-Glcp-(1→, and the terminal group α-d-Glcp â†’ was linked to the main chain by O-6 position. SGP2-1 could significantly enhance pinocytic capacity, reactive oxygen species production, and cytokines secretion. SGP2-1 exerted immunomodulatory effects through interacting with toll-like receptor 2, and activating mitogen-activated protein kinase, phosphatidylinositol-3-kinase/protein kinase B, and nuclear factor-kappa B signaling pathways. These findings indicated that SGP2-1 could be explored as a potential immunomodulatory agent for application in functional foods.

19.
Acta Pharm Sin B ; 12(4): 1899-1912, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847503

RESUMEN

Atherosclerosis is a chronic multifactorial cardiovascular disease. Western diets have been reported to affect atherosclerosis through regulating adipose function. In high cholesterol diet-fed ApoE -/- mice, adipocyte HIF-1α deficiency or direct inhibition of HIF-1α by the selective pharmacological HIF-1α inhibitor PX-478 alleviates high cholesterol diet-induced atherosclerosis by reducing adipose ceramide generation, which lowers cholesterol levels and reduces inflammatory responses, resulting in improved dyslipidemia and atherogenesis. Smpd3, the gene encoding neutral sphingomyelinase, is identified as a new target gene directly regulated by HIF-1α that is involved in ceramide generation. Injection of lentivirus-SMPD3 in epididymal adipose tissue reverses the decrease in ceramides in adipocytes and eliminates the improvements on atherosclerosis in the adipocyte HIF-1α-deficient mice. Therefore, HIF-1α inhibition may constitute a novel approach to slow atherosclerotic progression.

20.
JHEP Rep ; 4(9): 100532, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36035360

RESUMEN

Background & Aims: The stimulator of interferon genes (STING)/TANK-binding kinase 1 (TBK1) pathway is vital in mediating innate immune and inflammatory responses during oxidative/endoplasmic reticulum (ER) stress. However, it remains unknown whether macrophage thioredoxin-interacting protein (TXNIP) may regulate TBK1 function and cell death pathways during oxidative/ER stress. Methods: A mouse model of hepatic ischaemia/reperfusion injury (IRI), the primary hepatocytes, and bone marrow-derived macrophages were used in the myeloid-specific TXNIP knockout (TXNIPM-KO) and TXNIP-proficient (TXNIPFL/FL) mice. Results: The TXNIPM-KO mice were resistant to ischaemia/reperfusion (IR) stress-induced liver damage with reduced serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators compared with the TXNIPFL/FL controls. IR stress increased TXNIP, p-STING, and p-TBK1 expression in ischaemic livers. However, TXNIPM-KO inhibited STING, TBK1, interferon regulatory factor 3 (IRF3), and NF-κB activation with interferon-ß (IFN-ß) expression. Interestingly, TXNIPM-KO augmented nuclear factor (erythroid-derived 2)-like 2 (NRF2) activity, increased antioxidant gene expression, and reduced macrophage reactive oxygen species (ROS) production and hepatic apoptosis/necroptosis in IR-stressed livers. Mechanistically, macrophage TXNIP deficiency promoted cylindromatosis (CYLD), which colocalised and interacted with NADPH oxidase 4 (NOX4) to enhance NRF2 activity by deubiquitinating NOX4. Disruption of macrophage NRF2 or its target gene 2',5' oligoadenylate synthetase-like 1 (OASL1) enhanced Ras GTPase-activating protein-binding protein 1 (G3BP1) and TBK1-mediated inflammatory response. Notably, macrophage OASL1 deficiency induced hepatocyte apoptotic peptidase activating factor 1 (APAF1), cytochrome c, and caspase-9 activation, leading to increased caspase-3-initiated apoptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated necroptosis. Conclusions: Macrophage TXNIP deficiency enhances CYLD activity and activates the NRF2-OASL1 signalling, controlling IR stress-induced liver injury. The target gene OASL1 regulated by NRF2 is crucial for modulating STING-mediated TBK1 activation and Apaf1/cytochrome c/caspase-9-triggered apoptotic/necroptotic cell death pathway. Our findings underscore a novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death, implying the potential therapeutic targets in liver inflammatory diseases. Lay summary: Liver inflammation and injury induced by ischaemia and reperfusion (the absence of blood flow to the liver tissue followed by the resupply of blood) is a significant cause of hepatic dysfunction and failure following liver transplantation, resection, and haemorrhagic shock. Herein, we uncover an underlying mechanism that contributes to liver inflammation and cell death in this setting and could be a therapeutic target in stress-induced liver inflammatory injury.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda