RESUMEN
Before fertilization, ovulated mammalian oocytes are arrested at the metaphase of second meiosis (MII), which is maintained by the so-called cytostatic factor (CSF). It is well known that the continuous synthesis and accumulation of cyclin B is critical for maintaining the CSF-mediated MII arrest. Recent studies by us and others have shown that Ccnb3 is required for the metaphase-to-anaphase transition during the first meiosis of mouse oocytes, but whether Ccnb3 plays a role in MII arrest and exit remains unknown. Here, we showed that the protein level of Ccnb3 gradually decreased during oocyte meiotic maturation, and exogenous expression of Ccnb3 led to release of MII arrest, degradation of securin, separation of sister chromatids, extrusion of the second polar body (PB2), and finally entry into interphase. These phenotypes could be rescued by inhibition of Wee1B or CDK2. Our results indicate that Ccnb3 plays a critical regulatory role in MII arrest and exit in mouse oocytes.
Asunto(s)
Ciclina B/metabolismo , Meiosis/genética , Oocitos/citología , Oocitos/metabolismo , Animales , Células Cultivadas , Ciclina B/genética , Femenino , Metafase/genética , Ratones , Ratones Endogámicos ICR , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
The generation of mature and healthy oocytes is the most critical event in the entire female reproductive process, and the mechanisms regulating this process remain to be studied. Here, we demonstrate that Smith-like (LSM) family member 14B (LSM14B) regulates oocyte maturation, and the loss of LSM14B in mouse ovaries leads to abnormal oocyte MII arrest and female infertility. Next, we find the aberrant transcriptional activation, indicated by abnormal non-surrounded nucleolus and surrounded nucleolus oocyte proportions, and abnormal chromosome assembly and segregation in Lsm14b-deficient mouse oocytes. The global transcriptome analysis suggests that many transcripts involved in cytoplasmic processing body (P-body) function are altered in Lsm14b-deficient mouse oocytes. Deletion of Lsm14b results in the expression and/or localization changes of P-body components (such as LSM14A, DCP1A, and 4E-T). Notably, DDX6, a key component of the P-body, is downregulated and accumulates in the nuclei in Lsm14b-deficient mouse oocytes. Taken together, our data suggest that LSM14B links mouse oocyte maturation to female fertility through the regulation of the P-body.