Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.465
Filtrar
Más filtros

Publication year range
1.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34245671

RESUMEN

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Asunto(s)
Proteínas de la Matriz de Golgi/genética , Proteoma/genética , Proteómica , Estrés Fisiológico/genética , Matriz Extracelular/genética , Aparato de Golgi/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Transducción de Señal/genética
2.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345299

RESUMEN

Drosophila matrix metalloproteinase 2 (MMP2) is specifically expressed in posterior follicle cells of stage-14 egg chambers (mature follicles) and is crucial for the breakdown of the follicular wall during ovulation, a process that is highly conserved from flies to mammals. The factors that regulate spatiotemporal expression of MMP2 in follicle cells remain unknown. Here, we demonstrate crucial roles for the ETS-family transcriptional activator Pointed (Pnt) and its endogenous repressor Yan in the regulation of MMP2 expression. We found that Pnt is expressed in posterior follicle cells and overlaps with MMP2 expression in mature follicles. Genetic analysis demonstrated that pnt is both required and sufficient for MMP2 expression in follicle cells. In addition, Yan was temporally upregulated in stage-13 follicle cells to fine-tune Pnt activity and MMP2 expression. Furthermore, we identified a 1.1 kb core enhancer that is responsible for the spatiotemporal expression of MMP2 and contains multiple pnt/yan binding motifs. Mutation of pnt/yan binding sites significantly impaired the Mmp2 enhancer activity. Our data reveal a mechanism of transcriptional regulation of Mmp2 expression in Drosophila ovulation, which could be conserved in other biological systems.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transducción de Señal/fisiología , Ovulación/genética , Mamíferos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/genética
3.
J Pathol ; 264(1): 30-41, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38989633

RESUMEN

The basement membrane zone is the interface between the epidermis and dermis, and it is disrupted in several skin conditions. Here, we report the results of a comprehensive investigation into the structural and molecular factors of the basement membrane zone in vitiligo, a dermatological disorder characterised by depigmented patches on the skin. Using electron microscopy and immunofluorescence staining, we confirmed abnormal basement membrane zone morphology and disrupted basement membrane zone architecture in human vitiliginous skin. Furthermore, we identified elevated expression of matrix metalloproteinase 2 (MMP2) in human dermal fibroblasts as a key factor responsible for basement membrane zone matrix degradation. In our in vitro and ex vivo models, overexpression of MMP2 in fibroblasts led to basement membrane zone disruption and melanocyte disappearance. Importantly, we reveal that the loss of melanocytes in vitiligo is primarily linked to their weakened adhesion to the basement membrane, mediated by binding between integrin ß1 and laminin and discoidin domain receptor 1 and collagen IV. Finally, inhibition of matrix metalloproteinase 2 expression reversed depigmentation in a mouse model of vitiligo. In conclusion, our research shows the importance of basement membrane zone integrity in melanocyte residence and offers new avenues for therapeutic interventions to address this challenging skin condition. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Membrana Basal , Melanocitos , Vitíligo , Vitíligo/patología , Vitíligo/metabolismo , Melanocitos/patología , Melanocitos/metabolismo , Membrana Basal/patología , Membrana Basal/metabolismo , Humanos , Animales , Ratones , Metaloproteinasa 2 de la Matriz/metabolismo , Fibroblastos/patología , Fibroblastos/metabolismo , Masculino , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
4.
J Cell Mol Med ; 28(19): e70132, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39350724

RESUMEN

Aging is a risk factor for various human disorders, including cancer. Current literature advocates that the primary principles of aging depend on the endogenous stress-induced DNA damage caused by reactive oxygen species 50 Hz low-frequency magnetic field was suggested to induce DNA damage and chromosomal instability. NF-kB, activated by DNA damage, is upregulated in age-related cancers and inhibition of NF-kB results in aging-related delayed pathologies. Metformin (Met), an NF-kB inhibitor, significantly reduces both NF-kB activation and expression in aging and cancer. This in vitro study, therefore, was set out to assess the effects of 5mT MF in 50 Hz frequency and Met treatment on the viability and proliferation of aged mouse NIH/3T3 fibroblasts and expression of RELA/p65, matrix metalloproteinases MMP2 and MMP9, and E-cadherin (CDH1) genes. The trypan blue exclusion assay was used to determine cell viability and the BrdU incorporation assay to determine cell proliferation. The MMP-2/9 protein analysis was carried out by immunocytochemistry, NF-kB activity by ELISA and the expressions of targeted genes by qRT-PCR methods. Four doses of Met (500 uM, 1 mM, 2 mM and 10 mM) suppressed both the proliferation and viability of fibroblasts exposed to the MF in a dose-dependent pattern, and the peak inhibition was recorded at the 10 mM dose. Met reduced the expression of NF-kB, and MMP2/9, elevated CDH1 expression and suppressed NF-kB activity. These findings suggest that Met treatment suppresses the carcinogenic potential of 50 Hz MFs in aged mouse fibroblasts, possibly through modulation of NF-kB activation and epithelial-mesenchymal transition modulation.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Fibroblastos , Campos Magnéticos , Metformina , FN-kappa B , Animales , Metformina/farmacología , Ratones , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Células 3T3 NIH , FN-kappa B/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/patología , Factor de Transcripción ReIA/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Cadherinas/metabolismo , Cadherinas/genética , Senescencia Celular/efectos de los fármacos
5.
J Neurochem ; 168(9): 1877-1894, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38148633

RESUMEN

We have previously demonstrated a rapid secretion of matrix metalloproteinase-2 (MMP-2) in the ischemic brain. Since Scube2 can interact with Sonic hedgehog (Shh) to maintain blood-brain barrier (BBB) integrity via regulating the interaction between brain capillary endothelial cells (ECs) and perivascular astrocytes, and it is also a substrate of MMP-2, we hypothesized that the secreted MMP-2 could degrade Scube2 and contribute to ischemic BBB disruption. Using an in vitro ischemic model of 90-min oxygen-glucose deprivation/3-h reoxygenation (OGD/R) and an in vivo mouse stroke model of 90-min middle cerebral artery occlusion (MCAO) with 3-h reperfusion, we established an important role of MMP-2-mediated Scube2 degradation in early ischemic BBB disruption. Exposure of C8-D1A cells and bEnd.3 cells to OGD/R increased MMP secretion in both cells, and C8-D1A cells appeared to secrete more MMPs than bEnd.3 cells. Co-IP and double-immunostaining revealed that Scube2 co-localized well with MMP-2 in C8-D1A cells and could be pulled down by MMP-2 antibodies. In MCAO mice, Scube2 protein showed a drastic reduction in ischemic brain tissue, which was accompanied by suppressed expression of Shh and its downstream molecules. Of note, specific knockdown of astrocytic Scube2 with AAV-shScube2 augmented MCAO-induced Shh suppression and exacerbated BBB leakage and inflammatory reactions in the ischemic brain. Last, incubation of bEnd.3 cells with conditioned medium derived from OGD-treated C8-D1A cells led to a significant inhibition of the Shh pathway in bEnd.3 cells and degradation of VE-cadherin and ZO-1. Inhibition of MMP-2 with SB-3CT or over-expression of Scube2 with plasmids in C8-D1A cells alleviated the above effect of C8-D1A cells-derived conditioned medium. Taken together, our data indicate that ischemia-induced secretion of MMP-2 may contribute to early BBB disruption in ischemic stroke via interrupting the shared Scube2-Shh pathway between brain capillary ECs and perivascular astrocytes.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Isquemia Encefálica , Proteínas de Unión al Calcio , Células Endoteliales , Proteínas Hedgehog , Metaloproteinasa 2 de la Matriz , Animales , Masculino , Ratones , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Comunicación Celular/fisiología , Células Endoteliales/metabolismo , Proteínas Hedgehog/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Proteínas de Unión al Calcio/metabolismo
6.
J Neuroinflammation ; 21(1): 57, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388415

RESUMEN

BACKGROUND: Neuropathic pain (NP) is a kind of intractable pain. The pathogenesis of NP remains a complicated issue for pain management practitioners. SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 2 (SPOCK2) are members of the SPOCK family that play a significant role in the development of the central nervous system. In this study, we investigated the role of SPOCK2 in the development of NP in a rat model of chronic constriction injury (CCI). METHODS: Sprague-Dawley rats were randomly grouped to establish CCI models. We examined the effects of SPOCK2 on pain hpersensitivity and spinal astrocyte activation after CCI-induced NP. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to reflects the pain behavioral degree. Molecular mechanisms involved in SPOCK2-mediated NP in vivo were examined by western blot analysis, immunofluorescence, immunohistochemistry, and co-immunoprecipitation. In addition, we examined the SPOCK2-mediated potential protein-protein interaction (PPI) in vitro coimmunoprecipitation (Co-IP) experiments. RESULTS: We founded the expression level of SPOCK2 in rat spinal cord was markedly increased after CCI-induced NP, while SPOCK2 downregulation could partially relieve pain caused by CCI. Our research showed that SPOCK2 expressed significantly increase in spinal astrocytes when CCI-induced NP. In addition, SPOCK2 could act as an upstream signaling molecule to regulate the activation of matrix metalloproteinase-2 (MMP-2), thus affecting astrocytic ERK1/2 activation and interleukin (IL)-1ß production in the development of NP. Moreover, in vitro coimmunoprecipitation (Co-IP) experiments showed that SPOCK2 could interact with membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14) to regulate MMP-2 activation by the SPARC extracellular (SPARC_EC) domain. CONCLUSIONS: Research shows that SPOCK2 can interact with MT1-MMP to regulate MMP-2 activation, thus affecting astrocytic ERK1/2 activation and IL-1ß production to achieve positive promotion of NP.


Asunto(s)
Astrocitos , Neuralgia , Animales , Ratas , Astrocitos/metabolismo , Constricción , Metaloproteinasa 14 de la Matriz , Metaloproteinasa 2 de la Matriz , Neuralgia/etiología , Neuralgia/metabolismo , Ratas Sprague-Dawley
7.
J Vasc Res ; 61(2): 77-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38503274

RESUMEN

INTRODUCTION: Previous studies have confirmed that low shear stress (LSS) induces glycocalyx disruption, leading to endothelial dysfunction. However, the role of autophagy in LSS-induced glycocalyx disruption and relevant mechanism are not clear. In this study, we hypothesized that LSS may promote autophagy, disrupting the endothelium glycocalyx. METHODS: Human umbilical vein endothelial cells were subjected to physiological shear stress and LSS treatments, followed by the application of autophagy inducers and inhibitors. Additionally, cells were treated with specific matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) inhibitor. The expression of autophagic markers, glycocalyx, MMP-2, and MMP-9 was measured. RESULTS: LSS impacted the expression of endothelium autophagy markers, increasing the expression of LC3II.LC3I-1 and Beclin-1, and decreasing the levels of p62, accompanied by glycocalyx disturbance. Moreover, LSS upregulated the expression of MMP-2 and MMP-9 and downregulated the levels of syndecan-1 and heparan sulfate (HS). Additionally, expression of MMP-2 and MMP-9 was increased by an autophagy promoter but was decreased by autophagy inhibitor treatment under LSS. Autophagy and MMP-2 and MMP-9 further caused glycocalyx disruption. CONCLUSION: LSS promotes autophagy, leading to glycocalyx disruption. Autophagy increases the expression of MMP-2 and MMP-9, which are correlated with the glycocalyx destruction induced by LSS.


Asunto(s)
Glicocálix , Metaloproteinasa 2 de la Matriz , Humanos , Glicocálix/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Autofagia , Estrés Mecánico
8.
BMC Cancer ; 24(1): 1065, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210344

RESUMEN

INTRODUCTION: Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are critical components of the extracellular matrix (ECM) in colorectal cancer (CRC). We aimed to evaluate the prognostic value of MMP-2 and MMP-9 in patients with CRC. METHODS: We performed a meta-analysis of cohort studies with available data on the effect of MMP-2 and MMP-9 expression on both disease-free survival (DFS) and overall survival (OS) by the risk ratios (RRs) with their 95% confidence intervals (CIs). Studies were subgrouped based on the different tissue types, including cancer tissue and normal tissue, and the subgroup effect of MMP expression in different tissues was analyzed through meta-regression. To ensure the quality and reduce the risk of bias, the Newcastle‒Ottawa Scale (NOS) was used to assess the included studies. A sensitivity analysis was randomly performed to assess the potential impact of each study on our results. RESULTS: Eighteen trials were selected (Table 1) and included a total of 3944 patients. According to our primary meta-analysis, the expression of MMP-2 was significantly associated with a decrease in OS (RR = 1.75, 95% CI = 1.34 to 2.29, P < 0.001) and DFS (RR = 2.62, 95% CI = 1.25 to 5.49, P < 0.001), and the expression of MMP-9 was not significantly associated with a decrease in OS (RR = 1.48, 95% CI = 0.97 to 2.24, P = 0.069) or DFS (RR = 1.60, 95% CI = 0.87 to 2.94, P = 0.133). According to the subgroup analysis of MMPs in different tissues, high MMP-2 expression in cancer tissue (RR = 1.90, 95% CI = 1.29 to 2.79) and normal tissue (RR = 1.59, 95% CI = 1.17 to 2.17) were significant indicators of poor OS. High MMP-2 expression in cancer tissue was significant indicator of poor DFS (RR = 2.12, 95% CI = 1.09 to 4.11). MMP-9 expression was also associated with poor OS (RR = 1.40, 95% CI = 0.85 to 2.29), but the difference in OS between the high and low expression groups was not statistically significant. CONCLUSIONS: High MMP-2 expression, especially in cancer tissue, is significantly associated with both poor DFS and poor OS in patients with CRC. High MMP-9 expression tended to indicate a poor prognosis of CRC but the correlation was not significant.


Asunto(s)
Neoplasias Colorrectales , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Humanos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Supervivencia sin Enfermedad , Metaloproteinasa 2 de la Matriz/análisis , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/metabolismo , Pronóstico
9.
Clin Sci (Lond) ; 138(5): 251-268, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38362910

RESUMEN

Vascular stiffness increases with aging, obesity and hypertension and predicts cardiovascular risk. The levels of histone H3-lysine-27 methylation (H3K27me) and the histone methyltransferase EZH2 both decrease in aging vessels, driving vascular stiffness. The impact of EZH2 inhibitors on vascular stiffness is unknown. We tested the hypothesis that the EZH2 inhibitor GSK126, currently in development for cancer treatment, increases vascular stiffness and explored underlying molecular mechanisms. Young (3 month) and middle-aged (12 month) male mice were treated with GSK126 for 1-2 months and primary human aortic smooth muscle cells (HASMCs) from young male and female donors were treated with GSK126 for 24-48 h. Stiffness was measured in vivo by pulse wave velocity and in vitro by atomic force microscopy (AFM) and vascular structure was quantified histologically. Extracellular matrix proteins were studied by qRT-PCR, immunoblotting, zymography and chromatin immunoprecipitation. GSK126 treatment decreased H3K27 methylation (H3K27me) and increased acetylation (H3K27ac) in mouse vessels and in HASMCs. In GSK126-treated mice, aortic stiffness increased without changes in vascular fibrosis. EZH2 inhibition enhanced elastin fiber degradation and matrix metalloprotease-2 (MMP2) expression. In HASMCs, GSK126 treatment increased synthetic phenotype markers and intrinsic HASMCs stiffness by AFM with altered cytoskeletal structure and increased nuclear actin staining. GSK126 also increased MMP2 protein expression, activity and enrichment of H3K27ac at the MMP2 promoter in HASMCs. GSK126 causes vascular stiffening, inducing MMP2 activity, elastin degradation, and modulation of SMC phenotype and cytoskeletal stiffness. These findings suggest that EZH2 inhibitors used to treat cancer could negatively impact the vasculature by enhancing stiffness and merits examination in human trials.


Asunto(s)
Rigidez Vascular , Animales , Femenino , Masculino , Ratones , Elastina , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/farmacología , Histona Metiltransferasas , Metaloproteinasa 2 de la Matriz , Análisis de la Onda del Pulso
10.
Mol Cell Biochem ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302836

RESUMEN

The use of inhibitors of gastric acid secretion (IGAS), especially proton pump inhibitors (PPI), has been associated with increased cardiovascular risk. While the mechanisms involved are not known, there is evidence supporting increased oxidative stress, a major activator of matrix metalloproteinases (MMP), as an important player in such effect. However, there is no study showing whether other IGAS such as histamine H2-receptor blockers (H2RB) cause similar effects. This study aimed at examining whether treatment with the H2RB ranitidine promotes oxidative stress resulting in vascular MMP activation and corresponding functional and structural alterations in the vasculature, as compared with those found with the PPI omeprazole. Male Wistar rats were treated (4 weeks) with vehicle (2% tween 20), omeprazole (10 mg/Kg/day; i.p.) or ranitidine (100 mg/Kg/day; gavage). Then the aorta was collected to perform functional, biochemical, and morphometric analysis. Both ranitidine and omeprazole increased gastric pH and oxidative stress assessed in situ with the fluorescent dye dihydroethidium (DHE) and with lucigenin chemiluminescence assay. Both IGAS augmented vascular activated MMP-2. These findings were associated with aortic remodeling (increased media/lumen ratio and number of cells/µm2). Both IGAS also impaired the endothelium-dependent relaxation induced by acetylcholine (isolated aortic ring preparation). This study provides evidence that the H2RB ranitidine induces vascular dysfunction, redox alterations, and remodeling similar to those found with the PPI omeprazole. These findings strongly suggest that IGAS increase oxidative stress and matrix metalloproteinase-2 activity leading to vascular remodeling, which helps to explain the increased cardiovascular risk associated with the use of those drugs.

11.
Biomarkers ; 29(4): 205-210, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588595

RESUMEN

BACKGROUND: Currently available risk scores fail to accurately predict morbidity and mortality in patients with severe symptomatic aortic stenosis who undergo transcatheter aortic valve implantation (TAVI). In this context, biomarkers like matrix metalloproteinase-2 (MMP-2) and Galectin-3 (Gal-3) may provide additional prognostic information. METHODS: Patients with severe aortic stenosis undergoing consecutive, elective, transfemoral TAVI were included. Baseline demographic data, functional status, echocardiographic findings, clinical outcomes and biomarker levels were collected and analysed. RESULTS: The study cohort consisted of 89 patients (age 80.4 ± 5.1 years, EuroScore II 7.1 ± 5.8%). During a median follow-up period of 526 d, 28 patients (31.4%) died. Among those who died, median baseline MMP-2 (alive: 221.6 [170.4; 263] pg/mL vs. deceased: 272.1 [225; 308.8] pg/mL, p < 0.001) and Gal-3 levels (alive: 19.1 [13.5; 24.6] pg/mL vs. deceased: 25 [17.6; 29.5] pg/mL, p = 0.006) were higher than in survivors. In ROC analysis, MMP-2 reached an acceptable level of discrimination to predict mortality (AUC 0.733, 95% CI [0.62; 0.83], p < 0.001), but the predictive value of Gal-3 was poor (AUC 0.677, 95% CI [0.56; 0.79], p = 0.002). Kaplan-Meier and Cox regression analyses showed that patients with MMP-2 and Gal-3 concentrations above the median at baseline had significantly impaired long-term survival (p = 0.004 and p = 0.02, respectively). CONCLUSIONS: In patients with severe aortic stenosis undergoing transfemoral TAVI, MMP-2 and to a lesser extent Gal-3, seem to have additive value in optimizing risk prediction and streamlining decision-making.


Asunto(s)
Estenosis de la Válvula Aórtica , Biomarcadores , Galectina 3 , Metaloproteinasa 2 de la Matriz , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Metaloproteinasa 2 de la Matriz/sangre , Reemplazo de la Válvula Aórtica Transcatéter/mortalidad , Biomarcadores/sangre , Masculino , Femenino , Estenosis de la Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/mortalidad , Estenosis de la Válvula Aórtica/sangre , Galectina 3/sangre , Anciano de 80 o más Años , Anciano , Pronóstico , Galectinas , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo
12.
Future Oncol ; : 1-8, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011948

RESUMEN

Aim: To evaluate the prognostic significance of CD44 variant v6 (CD44v6) and matrix metalloproteinases 2 (MMP2) expression in patients with surgically resected osteosarcoma. Methods: CD44v6 and MMP2 expression were immunohistochemically detected in 113 primary osteosarcoma patients at our institute between 2001 and 2019. Results: Both CD44v6 and MMP2 were independent predictors for metastasis-free and overall survival. An extended predictive range and improved sensitivity were observed when the combined effects of CD44v6 and MMP2 were considered. Specifically, patients with CD44v6+ and MMP2+ expression were more susceptible to lung metastasis and exhibited the poorest survival rates compared with the other groups. Conclusion: The combination of CD44v6 and MMP2 may serve as a precise prognostic indicator for predicting metastatic progression and survival outcomes in patients with osteosarcoma.


The most common type of bone cancer in children, teens and young adults is osteosarcoma, which often spreads to the lungs. With proper chemotherapy and surgery, many patients can recover, but if the diagnosis and treatment process go wrong, it could have serious consequences. The most common symptoms of osteosarcoma in its early stages are pain and swelling. The pain usually comes and goes, which can be easily mistaken for growing pains, resulting in a delayed diagnosis. In patients with metastatic (cancer cells spreading from the primary site to other parts of the body) osteosarcoma, the number of metastatic sites and whether they can be completely removed through surgery are factors that affect prognosis. So, starting appropriate treatment early for patients could effectively reduce tumor spread and increase survival time.

13.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992615

RESUMEN

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Asunto(s)
Modelos Animales de Enfermedad , Inflamasomas , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Proteína con Dominio Pirina 3 de la Familia NLR , Fenantrenos , Transducción de Señal , Quinasa Syk , Vasodilatación , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Quinasa Syk/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Fenantrenos/farmacología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Vasodilatación/efectos de los fármacos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/fisiopatología , Vasodilatadores/farmacología , Fosforilación , Ratones , Aorta/efectos de los fármacos , Aorta/fisiopatología , Aorta/metabolismo , Aorta/enzimología , Apolipoproteínas E
14.
Acta Pharmacol Sin ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060523

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3ß, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 µM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3ß pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3ß pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3ß, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3ß signaling pathway.

15.
Ann Hepatol ; 29(2): 101279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38123132

RESUMEN

INTRODUCTION AND OBJECTIVES: Cholangiocarcinoma (CCA) is characterized by early distant invasion and metastasis, whereas the underlying mechanism is still obscure. Increasing evidence shows that collagen type Ι alpha 1 (COL1A1) is a gene associated with the progression of multiple diseases. Here, we attempted to investigate the role of COL1A1 in CCA. MATERIALS AND METHODS: The expression of COL1A1 between tumor tissues and adjacent normal tissues obtained from CCA patients was detected by Western blot and immunofluorescence, followed by analysis of its clinical significance. Then, the biological effects of COL1A1 overexpression or knockdown on CCA cells were evaluated in vitro and in vivo. Finally, molecular mechanism of COL1A1 in regulating the invasion and metastasis of CCA cells was determined by a series of experiments. RESULTS: COL1A1 expression was significantly higher in CCA pathological tissues than in corresponding adjacent normal tissues. Analysis of 83 CCA patients showed that higher expression of COL1A1 was correlated with poorer patient prognosis. Notably, overexpression or knockdown experiments revealed that COL1A1 contributed to the migration and invasion, as well as epithelial-to-mesenchymal transition (EMT), in CCA cells. Further investigations demonstrated that matrix metalloproteinase-2 (MMP2) promoted COL1A1 upregulation via the integrin alpha Ⅴ pathway, therefore affecting ECM remodelling and inducing EMT in CCA cells. Moreover, COL1A1 expression was positively related to PD-1 and PD-L1 in CCA, and COL1A1 increased PD-L1 expression by activating the NF-κB pathway. CONCLUSIONS: COL1A1 plays an important role in regulating CCA progression and may act as a promising biomarker and therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Integrina alfaV/genética , Integrina alfaV/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo
16.
Caries Res ; : 1-11, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815561

RESUMEN

INTRODUCTION: Cariogenic bacterial acids dissolve the inorganic elements in dentine, leaving the dentine matrix exposed. Host-derived matrix metalloproteinases (MMPs) play an essential role in caries progression as they are significant regulators of extracellular matrix turnover and can degrade exposed collagen. This paper investigates the expression of MMP2 and MMP9 across various stages of caries in primary human teeth and relate this with a diagnosis recorded by the International Caries Detection and Assessment System (ICDAS). METHODS: Twenty-four sections (150 µm in thickness) from extracted teeth, clinically diagnosed using ICDAS, were immunohistochemically treated with monoclonal anti-MMP2 and anti-MMP9 antibodies. Positive staining was visualised by immunofluorescence using a VectorFluor Duet Double Labeling Kit. Images from triplicate samples for each ICDAS score were analysed using ImageJ software. Collagen degradation in caries lesions was detected using a hydroxyproline assay. RESULTS: MMPs were weakly detected in caries with ICDAS 1-2 scores, and an insignificant increase was detected in ICDAS 3. However, a significant increase in MMP expression was seen in caries with an ICDAS score of 4-6. There was a strong positive correlation between the ICDAS score and MMP2 (r [6] = 0.86, p = 0.002) and between ICDAS and MMP9 (r [6] = 0.82, p = 0.004). Data were analysed using two-way ANOVA followed by Tukey multiple comparison test (*p < 0.05). CONCLUSION: The use of ICDAS to assess the severity of caries lesions and how this correlates with the presence of MMP in these lesions validates the modern approach to caries management with a minimally invasive concept.

17.
Ecotoxicol Environ Saf ; 285: 117016, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288732

RESUMEN

Arsenic is a widespread environmental contaminant known to accumulate in the brain, leading to cognitive impairment. However, the exact mechanisms by which arsenic causes cognitive deficits remain unclear. The present study aims to discover whether the destruction of the blood-brain barrier (BBB) mediated by matrix metalloproteinases 2 and matrix metalloproteinases 9 (MMP-2 and MMP-9) and subsequent neuronal apoptosis are involved in arsenic-induced cognitive impairment. Ninety male mice were given 0, 25, and 50 mg/L NaAsO2 in drinking water and 30 mg/kg doxycycline hyclate (DOX, an inhibitor of MMPs) gavage for 12 weeks to observe the alterations in learning and memory of mice, the morphology of hippocampal neurons, as well as the BBB permeability and ultrastructure, the localization and expression of tight junction proteins, MMP-2, and MMP-9. Our findings indicated that arsenic exposure induced learning and memory impairment in mice, accompanied by neuronal loss and apoptosis. Furthermore, arsenic exposure increased hematogenous IgG leakage into the brain, disrupted the tight junctions, reduced the expression of Claudin5, Occludin, and ZO1 in the endothelial cells, and increased the expression of MMP-2 and MMP-9 in the endothelial cells and astrocytes. Finally, DOX intervention preserved BBB integrity, alleviated hippocampal neuronal apoptosis, and improved cognitive impairment in mice caused by arsenic exposure. Our research demonstrates that cognitive disfunction in mice induced by arsenic exposure is associated with MMP-2 and MMP-9-mediated BBB destruction and neuronal apoptosis. The current investigation provides new insights into mechanisms of arsenic neurotoxicity and suggests that MMP-2 and MMP-9 may serve as potential therapeutic targets for treating arsenic-induced cognitive dysfunction in the future.

18.
J Integr Neurosci ; 23(3): 52, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38538217

RESUMEN

BACKGROUND: A hospital-based case-control study was carried out to elucidate the association of Matrix metalloproteinase-2 (MMP-2) gene candidate polymorphisms with the susceptibility to Alzheimer's disease (AD) in the Chinese Han population. METHODS: A total of 200 AD cases and an equal number of healthy controls were recruited to undergo genotyping of specific loci within the MMP-2 gene loci (rs243866, rs2285053, rs243865). Logistic regression analysis was applied to examine the association of the genotypes and alleles of MMP-2 gene polymorphisms with AD after adjusting clinical confounding factors. RESULTS: Within AD group, a high proportion of rs243866 genotype carriers were found, and the difference remained significant despite adjusting for other clinical indicators. Among individuals with the rs243866 AA genotype and rs243865 TT genotype, the onset age of AD occurred at a younger age. Early-onset AD risk in rs243866 AA genotype carriers was 6.528 times higher than those in GG genotype carriers, and individuals with rs243865 TT genotype faced a 4.048-fold increased risk compared to those with CC genotype. CONCLUSIONS: MMP-2 gene rs243866 and rs243865 polymorphisms were closely associated with the onset age of AD. The presence of rs243866 AA genotype emerged as a crucial predictor of AD risk.


Asunto(s)
Enfermedad de Alzheimer , Metaloproteinasa 2 de la Matriz , Humanos , Metaloproteinasa 2 de la Matriz/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Enfermedad de Alzheimer/genética , Polimorfismo de Nucleótido Simple
19.
Environ Toxicol ; 39(2): 857-868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37860891

RESUMEN

Corosolic acid (CA), a plant-derived pentacyclic triterpenoid, has potent anti-inflammatory, anti-metabolic, and anti-neoplastic actions against a variety of human cancers. However, the specific mechanism by which CA inhibits the progression of renal cell carcinoma (RCC) is yet unclear. We found that CA (≤8 µM) had no influence on either the growth or viability of RCC cell lines (786-O, ACHN, and Caki-1) or normal HK2 cells. However, in a dose-dependent manner, CA prevented the invasion and migration of RCC cells. Human protease array analysis showed that CA reduced MMP2 expression. At increasing concentrations of CA, the expression of MMP2 was dose-dependently reduced, as shown by western blot and RT-PCR analyses as well as immunofluorescence staining. CA also stimulated ERK1/2 phosphorylation in 786-O and Caki-1 cells. Transfection of CA-treated RCC cells with siRNA-ERK restored MMP2 protein expression and the motility and invasion capabilities of RCC cells. Molecular docking study results showed that CA and MMP2 interact strongly. These findings elucidate the mechanism by which CA prevents RCC cells from migrating and invading, and these findings indicate that CA may be a potential anti-metastatic therapy for RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
20.
Environ Toxicol ; 39(5): 2768-2781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38264921

RESUMEN

PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one], a kind of the carbazole derivative containing chalcone moiety, induced cell apoptosis in human pancreatic carcinoma in vitro. There is no investigation to show that PW06 inhibits cancer cell metastasis in human pancreatic carcinoma in vitro. Herein, PW06 (0.1-0.8 µM) significantly exists in the antimetastatic activities of human pancreatic carcinoma MIA PaCa-2 cells in vitro. Wound healing assay shows PW06 at 0.2 µM suppressed cell mobility by 7.45 and 16.55% at 6 and 24 hours of treatments. PW06 at 0.1 and 0.2 µM reduced cell mobility by 14.72 and 21.8% for 48 hours of treatment. Transwell chamber assay indicated PW06 (0.1-0.2 µM) suppressed the cell migration (decreased 26.67-35.42%) and invasion (decreased 48.51-68.66%). Atomic force microscopy assay shows PW06 (0.2 µM) significantly changed the shape of cell morphology. The gelatin zymography assay indicates PW06 decreased MMP2's and MMP9's activities at 48 hours of treatment. Western blotting assay further confirms PW06 reduced levels of MMP2 and MMP9 and increased protein expressions of EGFR, SOS1, and Ras. PW06 also increased the p-JNK, p-ERK, and p-p38. PW06 increased the expression of PI3K, PTEN, Akt, GSK3α/ß, and E-cadherin. Nevertheless, results also show PW06 decreased p-Akt, mTOR, NF-κB, p-GSK3ß, ß-catenin, Snail, N-cadherin, and vimentin in MIA PaCa-2 cells. The confocal laser microscopy examination shows PW06 increased E-cadherin but decreased vimentin in MIA PaCa-2 cells. Together, our findings strongly suggest that PW06 inhibited the p-Akt/mTOR/NF-κB/MMPs pathways, increased E-cadherin, and decreased N-cadherin/vimentin, suppressing the migration and invasion in MIA PaCa-2 cells in vitro.


Asunto(s)
FN-kappa B , Neoplasias Pancreáticas , Humanos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vimentina/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Línea Celular Tumoral , Transducción de Señal , Cadherinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Movimiento Celular , Proliferación Celular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda