Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Appl Clin Med Phys ; 20(10): 53-66, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31541542

RESUMEN

PURPOSE: To present lessons learned from magnetic resonance imaging (MRI) quality control (QC) tests for low-field MRI-guided radiation therapy (MR-IGRT) systems. METHODS: MRI QC programs were established for low-field MRI-60 Co and MRI-Linac systems. A retrospective analysis of MRI subsystem performance covered system commissioning, operations, maintenance, and quality control. Performance issues were classified into three groups: (a) Image noise and artifact; (b) Magnetic field homogeneity and linearity; and (c) System reliability and stability. RESULTS: Image noise and artifacts were attributed to room noise sources, unsatisfactory system cabling, and broken RF receiver coils. Gantry angle-dependent magnetic field inhomogeneities were more prominent on the MRI-Linac due to the high volume of steel shielding in the gantry. B0 inhomogeneities measured in a 24-cm spherical phantom were <5 ppm for both MR-IGRT systems after using MRI gradient offset (MRI-GO) compensation on the MRI-Linac. However, significant signal dephasing occurred on the MRI-Linac while the gantry was rotating. Spatial integrity measurements were sensitive to gradient calibration and vulnerable to shimming. The most common causes of MR-IGRT system interruptions were software disconnects between the MRI and radiation therapy delivery subsystems caused by patient table, gantry, and multi-leaf collimator (MLC) faults. The standard deviation (SD) of the receiver coil signal-to-noise ratio was 1.83 for the MRI-60 Co and 1.53 for the MRI-Linac. The SD of the deviation from the mean for the Larmor frequency was 1.41 ppm for the MRI-60 Co and 1.54 ppm for the MRI-Linac. The SD of the deviation from the mean for the transmitter reference amplitude was 0.90% for the MRI-60 Co and 1.68% for the MRI-Linac. High SDs in image stability data corresponded to reports of spike noise. CONCLUSIONS: There are significant technological challenges associated with implementing and maintaining MR-IGRT systems. Most of the performance issues were identified and resolved during commissioning.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Control de Calidad , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Artefactos , Radioisótopos de Cobalto , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Relación Señal-Ruido , Programas Informáticos
2.
J Appl Clin Med Phys ; 18(4): 161-171, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28681448

RESUMEN

The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system.


Asunto(s)
Imagen por Resonancia Magnética Intervencional/métodos , Neoplasias/radioterapia , Humanos , Imagen por Resonancia Magnética Intervencional/instrumentación , Neoplasias/diagnóstico por imagen , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
3.
Clin Transl Radiat Oncol ; 38: 161-168, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36466748

RESUMEN

Purpose/Objective: Magnetic resonance-guided radiation therapy (MRgRT) utilization is rapidly expanding worldwide, driven by advanced capabilities including continuous intrafraction visualization, automatic triggered beam delivery, and on-table adaptive replanning (oART). Our objective was to describe patterns of 0.35Tesla(T)-MRgRT (MRIdian) utilization in the United States (US) among early adopters of this novel technology. Materials/Methods: Anonymized administrative data from all US MRIdian treatment systems were extracted for patients completing treatment from 2014 to 2020. Detailed treatment information was available for all MRIdian linear accelerator (linac) systems and some cobalt systems. Results: Seventeen systems at 16 centers delivered 5736 courses and 36,389 fractions (fraction details unavailable for 1223 cobalt courses), of which 21.1% were adapted. Ultra-hypofractionation (UHfx) (1-5 fractions) was used in 70.3% of all courses. At least one adaptive fraction was used for 38.5% of courses (average 1.7 adapted fractions/course), with higher oART use in UHfx dose schedules (47.7% of courses, average 1.9 adapted fractions per course). The most commonly treated organ sites were pancreas (20.7%), liver (16.5%), prostate (12.5%), breast (11.5%), and lung (9.4%). Temporal trends show a compounded annual growth rate (CAGR) of 59.6% in treatment courses delivered, with a dramatic increase in use of UHfx to 84.9% of courses in 2020 and similar increase in use of oART to 51.0% of courses. Conclusions: This is the first comprehensive study reporting patterns of utilization among early adopters of MRIdian in the US. Intrafraction MR image-guidance, advanced motion management, and increasing adoption of adaptive radiation therapy has led to a substantial transition to ultra-hypofractionated regimens. 0.35 T-MRgRT has been predominantly used to treat abdominal and pelvic tumors with increasing use of on-table adaptive replanning, which represents a paradigm shift in radiation therapy.

4.
Radiat Oncol ; 17(1): 146, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996192

RESUMEN

BACKGROUND: Magnetic resonance-guided radiotherapy (MRgRT) utilization is rapidly expanding, driven by advanced capabilities including better soft tissue imaging, continuous intrafraction target visualization, automatic triggered beam delivery, and the availability of on-table adaptive replanning. Our objective was to describe patterns of 0.35 Tesla (T)-MRgRT utilization in Europe and Asia among early adopters of this novel technology. METHODS: Anonymized administrative data from all 0.35T-MRgRT treatment systems in Europe and Asia were extracted for patients who completed treatment from 2015 to 2020. Detailed treatment information was analyzed for all MR-linear accelerators (linac) and -cobalt systems. RESULTS: From 2015 through the end of 2020, there were 5796 completed treatment courses delivered in 46,389 individual fractions. 23.5% of fractions were adapted. Ultra-hypofractionated (UHfx) dose schedules (1-5 fractions) were delivered for 63.5% of courses, with 57.8% of UHfx fractions adapted on-table. The most commonly treated tumor types were prostate (23.5%), liver (14.5%), lung (12.3%), pancreas (11.2%), and breast (8.0%), with increasing compound annual growth rates (CAGRs) in numbers of courses from 2015 through 2020 (pancreas: 157.1%; prostate: 120.9%; lung: 136.0%; liver: 134.2%). CONCLUSIONS: This is the first comprehensive study reporting patterns of utilization among early adopters of a 0.35T-MRgRT system in Europe and Asia. Intrafraction MR image-guidance, advanced motion management, and increasing adoption of on-table adaptive RT have accelerated a transition to UHfx regimens. MRgRT has been predominantly used to treat tumors in the upper abdomen, pelvis and lungs, and increasingly with adaptive replanning, which is a radical departure from legacy radiotherapy practices.


Asunto(s)
Radiocirugia , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Aceleradores de Partículas , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos
5.
Med Phys ; 46(5): 2347-2355, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30838680

RESUMEN

PURPOSE: MR-guided radiation therapy (RT) offers unparalleled soft tissue contrast for localization and target tracking. However, MRI distortions may be detrimental to high precision RT. This work characterizes the gradient nonlinearity (GNL) and total distortions over the first year of clinical operation of a 0.35T MR-linac. METHODS: For GNL characterization, an in-house large field of view (FOV) phantom (60 × 42.5 × 55 cm3 , >6000 spherical landmarks) was configured and scanned at four timepoints with forward/reverse read polarities (Gradient Echo sequence, FA/TR/TE = 28°/30 ms/6 ms). GNL was measured in Anterior-Posterior (AP), Left-Right (LR), and Superior-Inferior (SI) frequency-encoding directions based on deviation of the auto-segmented landmark centroids between rigidly registered MR and CT images and assessed based on radial distance from magnet isocenter. Total distortion was assessed using a 30 × 30 cm2 grid phantom oriented along the cardinal axes over >1 year of operation. RESULTS: The scanner's spatial integrity within the first ~10 months was stable (maximum total distortion variation = 10/6/8%, maximum distortion = 1.41/0.99/1.56 mm in Axial/Coronal/Sagittal planes, respectively). GNL distortions measured during this time period <10 cm from isocenter were (-0.74, 0.45), (-0.67, 0.53), and (-0.86, 0.70) mm in AP/LR/SI directions. In the 10-20 cm range, <1.5% of the distortions exceeded 2 mm in the AP and LR axes while <4% of the distortions exceeded 2 mm for SI. After major repairs and magnet re-shim, detectable changes were observed in total and GNL distortions (20% reduction in AP and 36% increase in SI direction in the 20-25 cm range). Across all timepoints and axes, 38-53% of landmarks in the 20-25 cm range were displaced by >1 mm. CONCLUSIONS: GNL distortions were negligible within a 10 cm radius from isocenter. However, in the periphery, non-negligible distortions of up to ~7 mm were observed, which may necessitate GNL corrections for MR-IGRT for treatment sites distant from magnet isocenter.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Aceleradores de Partículas , Procesamiento de Imagen Asistido por Computador , Dinámicas no Lineales , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen
6.
Radiat Oncol ; 14(1): 105, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31196120

RESUMEN

BACKGROUND: The aim of this study was to compare the plan quality of magnetic-resonance image-based intensity modulated radiation therapy (MRI-based-IMRT) with the MRIdian Linac system to that of volumetric modulated arc therapy (VMAT) with the TrueBeam STx system for lung stereotactic ablative radiotherapy (SABR). METHODS: A total of 22 patients with tumors located in the lower lobe were retrospectively selected for the study. For each patient, both the MRI-based-IMRT and VMAT plans were generated using an identical CT image set and identical structures with the exception of the planning target volume (PTV). The PTVs of the MRI-based-IMRT were generated by adding an isotropic margin of 3 mm from the gross tumor volume, whereas those of VMAT were generated by adding an isotropic margin of 5 mm from the internal target volume. For both the MRI-based-IMRT and VMAT, the prescription doses to the PTVs were 60 Gy in four fractions. RESULTS: The average PTV volume of the MRI-based-IMRT was approximately 4-times smaller than that of VMAT (p <  0.001). The maximum dose to the bronchi for the MRI-based-IMRT was smaller than that for the VMAT (20.4 Gy versus 24.2 Gy, p <  0.001). In addition, V40Gy of the rib for the MRI-based-IMRT was smaller than that for the VMAT (1.8 cm3 versus 7.7 cm3, p = 0.008). However, the maximum doses to the skin and spinal cord for the MRI-based-IMRT (33.0 Gy and 14.5 Gy, respectively) were larger than those for the VMAT (27.8 Gy and 11.0 Gy, respectively) showing p values of less than 0.02. For the ipsilateral lung, the mean dose, V20Gy, V10Gy, and V5Gy for the MRI-based-IMRT were smaller than those for the VMAT (all with p <  0.05). For the contralateral lung, V5Gy, V10Gy, D1500cc, and D1000cc for the MRI-based-IMRT were larger than those for the VMAT (all with p <  0.05). The mean dose and V50% of the whole body for the MRI-based-IMRT were smaller than those for the VMAT (0.9 Gy versus 1.2 Gy, and 78.7 cm3 versus 103.5 cm3, respectively, all at p <  0.001). CONCLUSIONS: The MRI-based-IMRT using the MRIdian Linac system could reduce doses to bronchi, rib, ipsilateral lung, and whole body compared to VMAT for lung SABR when the tumor was located in the lower lobe.


Asunto(s)
Neoplasias Pulmonares/cirugía , Imagen por Resonancia Magnética/métodos , Órganos en Riesgo/efectos de la radiación , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Neoplasias Pulmonares/patología , Pronóstico , Dosificación Radioterapéutica , Estudios Retrospectivos
7.
Phys Med ; 60: 132-138, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31000073

RESUMEN

PURPOSE: To evaluate the effect of a low magnetic field (B-field, 0.35 T) on QED™ for clinical use. METHODS: Black and Blue QED were irradiated using tri-Co-60 magnetic resonance image-guided radiation therapy systems with and without the B-field. For both detectors, angular dependence of the beam orientation was evaluated by rotating the gantry and detector in parallel and perpendicular directions to the B-field. Angular dependence betweenthe directions of both QED and B-field was also measured. Response on the depth and output factor of both detectors was investigated for parallel and perpendicular setups, respectively. RESULTS: When Black QED was placed on a surface, detector response decreased by 1.8% and 4.5% for parallel and perpendicular setups, respectively, owing to the B-field. The angular dependence of the beam orientation was not affected by B-field for both detectors. There was a significant angular dependence between Black QED and B-field direction and for the Black QED when the gantry was rotated. Owing to the B-field, the detector response at 90° decreased by 2.4%, response of Black QED on the depth was changed only on the surface, and output factor of Black QED was changed only on the surface. The response of Blue QED was not affected by the B-field for all examined situations. CONCLUSIONS: Using Black QED on a surface in the same position as that in the calibration requires some correction to the B-field. Blue QED does not require correction as it is not affected by the B-field.


Asunto(s)
Dosimetría in Vivo , Campos Magnéticos , Calibración , Diseño de Equipo , Humanos , Dosimetría in Vivo/métodos , Imagen por Resonancia Magnética , Dosímetros de Radiación , Radioterapia Guiada por Imagen
8.
Radiother Oncol ; 132: 114-120, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30825959

RESUMEN

BACKGROUND: Magnetic Resonance linear accelerator (MR-linac) systems represent a new type of technology that allows for online MR-guidance for high precision radiotherapy (RT). Currently, the first MR-linac installations are being introduced clinically. Since the imaging performance of these integrated MR-linac systems is critical for their application, a thorough commissioning of the MRI performance is essential. However, guidelines on the commissioning of MR-guided RT systems are not yet defined and data on the performance of MR-linacs are not yet available. MATERIALS & METHODS: Here we describe a comprehensive commissioning protocol, which contains standard MRI performance measurements as well as dedicated hybrid tests that specifically assess the interactions between the Linac and the MRI system. The commissioning results of four MR-linac systems are presented in a multi-center study. RESULTS: Although the four systems showed similar performance in all the standard MRI performance tests, some differences were observed relating to the hybrid character of the systems. Field homogeneity measurements identified differences in the gantry shim configuration, which was later confirmed by the vendor. CONCLUSION: Our results highlight the importance of dedicated hybrid commissioning tests and the ability to compare the machines between institutes at this very early stage of clinical introduction. Until formal guidelines and tolerances are defined the tests described in this study may be used as a practical guideline. Moreover, the multi-center results provide initial bench mark data for future MR-linac installations.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Aceleradores de Partículas/instrumentación , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Aceleradores de Partículas/normas , Control de Calidad , Radioterapia Guiada por Imagen/instrumentación , Radioterapia Guiada por Imagen/métodos , Radioterapia Guiada por Imagen/normas
9.
Med Phys ; 46(9): 4148-4164, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31309585

RESUMEN

PURPOSE: Deep learning (DL)-based super-resolution (SR) reconstruction for magnetic resonance imaging (MRI) has recently been receiving attention due to the significant improvement in spatial resolution compared to conventional SR techniques. Challenges hindering the widespread implementation of these approaches remain, however. Low-resolution (LR) MRIs captured in the clinic exhibit complex tissue structures obfuscated by noise that are difficult for a simple DL framework to handle. Moreover, training a robust network for a SR task requires abundant, perfectly matched pairs of LR and high-resolution (HR) images that are often unavailable or difficult to collect. The purpose of this study is to develop a novel SR technique for MRI based on the concept of cascaded DL that allows for the reconstruction of high-quality SR images in the presence of insufficient training data, an unknown translation model, and noise. METHODS: The proposed framework, based on the concept named cascaded deep learning, consists of three components: (a) a denoising autoencoder (DAE) trained using clinical LR noisy MRI scans that have been processed with a nonlocal means filter that generates denoised LR data; (b) a down-sampling network (DSN) trained with a small amount of paired LR/HR data from volunteers that allows for the generation of perfectly paired LR/HR data for the training of a generative model; and (c) the proposed SR generative model (p-SRG) trained with data generated by the DSN that maps from LR inputs to HR outputs. After training, LR clinical images may be fed through the DAE and p-SRG to yield SR reconstructions of the LR input. The application of this framework was explored in two settings: 3D breath-hold MRI axial SR reconstruction from LR axial scans (<3 sec/vol) and in the enhancement of the spatial resolution of LR 4D-MRI acquisitions (0.5 sec/vol). RESULTS: The DSN produces LR scans from HR inputs with a higher fidelity to true, LR clinical scans compared to conventional k-space down-sampling methods based on the metrics of root mean square error (RMSE) and structural similarity index (SSIM). Furthermore, HR outputs generated by the p-SRG exhibit improved scores in the peak signal-to-noise ratio, normalized RMSE, SSIM, and in the blind/reference-less image spatial quality evaluator assessment compared to conventional approaches to MRI SR. CONCLUSIONS: The robust, SR reconstruction method for MRI based on the novel cascaded deep learning framework is an end-to-end method for producing detail-preserving SR reconstructions from noisy, LR clinical MRI scans. Fourfold enhancements in spatial resolution facilitate target delineation and motion management during radiation therapy, enabling precise MRI-guided radiation therapy with 3D LR breath-hold MRI and 4D-MRI in a clinically feasible time frame.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Radioterapia Guiada por Imagen , Humanos , Imagenología Tridimensional , Respiración , Relación Señal-Ruido
10.
Cureus ; 11(12): e6364, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31938646

RESUMEN

INTRODUCTION: Spine stereotactic body radiation therapy (SBRT) achieves favorable outcomes compared to conventional radiotherapy doses/fractionation. The spinal cord is the principal dose-limiting organ-at-risk (OAR), and safe treatment requires precise immobilization/localization. Therefore, image guidance is paramount to successful spine SBRT. Conventional X-ray imaging and alignment to surrogate bony anatomy may be inadequate, whereas magnetic resonance imaging (MRI) directly visualizes the dose-limiting cord. This work assessed the dosimetric capability of the ViewRay (ViewRay Inc. Oakwood Village, OH) magnetic resonance (MR) guided linac (MR-Linac) for spine SBRT. METHODS: Eight spine SBRT patients without orthopedic hardware who were previously treated on a TrueBeam using volumetric modulated arc therapy (VMAT) were re-planned using MR-Linac fixed-field intensity-modulated radiation therapy (IMRT). Phantom measurements using film, ionization chamber, and a commercial diode-array assessed feasibility. Plans included a variety of prescriptions (30-50 Gy in 3-10 fractions). RESULTS: MR-Linac plans satisfied all clinical goals. Compared to VMAT plans, both entrance dose and heterogeneity increased (Dmax: 134±3% vs. 120±2%, p=0.0270), while conformality decreased (conformity index: 1.28±0.06 vs. 1.06±0.06, p=0.0005), and heterogeneity increased. However, while not statistically significant, MR-linac cord sparing improved (cord Dmax: 16.1±2.7Gy vs. 19.5±1.6Gy, p=0.2066; cord planning organ at risk volume (cord PRV) Dmax: 20.0±2.6Gy vs. 24.5±2.0Gy, p=0.0996). Delivery time increased but was acceptable (14.39±1.26min vs. 9.57±1.19min). Ionization chamber measurements agreed with planned dose to within 2.5%. Film and diode measurements demonstrated accurate/precise delivery of dose gradients between the target and the cord. CONCLUSION: Spine SBRT with the MR-Linac is feasible as verified via re-planning eight clinical cases followed by delivery verification in phantoms using film, diodes, and an ionization chamber. Real-time visualization of the dose-limiting cord during spine SBRT may enable cord-based gating, reduced margins, alternate dose schemas, and/or adaptive therapy.

11.
Radiat Oncol ; 14(1): 92, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31167658

RESUMEN

Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk. Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless, the successful translation of new technologies into clinical practice remains challenging. To date, the initial availability of next-generation hybrid MR-linac (MRL) systems is still limited and therefore, the focus of the present preview was on the initial applicability in current clinical practice and on future perspectives of this new technology for different treatment sites.MRgRT can be considered a groundbreaking new technology that is capable of creating new perspectives towards an individualized, patient-oriented planning and treatment approach, especially due to the ability to use daily online adaptation strategies. Furthermore, MRL systems overcome the limitations of conventional image-guided radiotherapy, especially in soft tissue, where target and organs at risk need accurate definition. Nevertheless, some concerns remain regarding the additional time needed to re-optimize dose distributions online, the reliability of the gating and tracking procedures and the interpretation of functional MR imaging markers and their potential changes during the course of treatment. Due to its continuous technological improvement and rapid clinical large-scale application in several anatomical settings, further studies may confirm the potential disruptive role of MRgRT in the evolving oncological environment.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias/radioterapia , Radioterapia Guiada por Imagen , Humanos , Neoplasias/diagnóstico por imagen , Órganos en Riesgo/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Medicina de Precisión , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/tendencias , Radioterapia de Intensidad Modulada , Reproducibilidad de los Resultados
12.
Cureus ; 10(3): e2359, 2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29805928

RESUMEN

Fractionated radiotherapy presents a new challenge in the screening of patients undergoing magnetic resonance imaging-guided radiotherapy (MR-IGRT). In our institution, patients are evaluated at the time of consult, simulation, and first fraction using a thorough MRI questionnaire identical to the one used for diagnostic radiology patients. For each subsequent fraction, the therapists are trained to inquire about any procedures the patient may have had between the last and current fractions. Patients are also advised to avoid food and fluid intake at least two but not beyond four hours prior to treatment. Despite these screening efforts, we have observed several non-permanent imaging artifacts that, while not harmful to the patient, prevent the accurate delivery of MR-IGRT when using online adaptive radiotherapy due to interference with the identification of relevant anatomy. Two such cases are presented here: (1) an imaging artifact due to iron-enriched breakfast cereal that precluded treatment for that day, and (2) an imaging artifact due to an iron-containing multivitamin that necessitated a creative solution to enable the accurate visualization of the area to be treated.

13.
Radiother Oncol ; 126(3): 519-526, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29277446

RESUMEN

PURPOSE/OBJECTIVES: SBRT is used to treat oligometastatic or unresectable primary abdominal malignancies, although ablative dose delivery is limited by proximity of organs-at-risk (OAR). Stereotactic, magnetic resonance (MR)-guided online-adaptive radiotherapy (SMART) may improve SBRT's therapeutic ratio. This prospective Phase I trial assessed feasibility and potential advantages of SMART to treat abdominal malignancies. MATERIALS/METHODS: Twenty patients with oligometastatic or unresectable primary liver (n = 10) and non-liver (n = 10) abdominal malignancies underwent SMART. Initial plans prescribed 50 Gy/5 fractions (BED 100 Gy) with goal 95% PTV coverage by 95% of prescription, subject to hard OAR constraints. Daily real-time online-adaptive plans were created as needed, based on daily setup MR-image-set tumor/OAR "anatomy-of-the-day" to preserve hard OAR constraints, escalate PTV dose, or both. Treatment times, patient outcomes, and dosimetric comparisons between initial and adaptive plans were prospectively recorded. RESULTS: Online adaptive plans were created at time of treatment for 81/97 fractions, due to initial plan violation of OAR constraints (61/97) or observed opportunity for PTV dose escalation (20/97). Plan adaptation increased PTV coverage in 64/97 fractions. Zero Grade ≥ 3 acute (<6 months) treatment-related toxicities were observed. DISCUSSION: SMART is clinically deliverable and safe, allowing PTV dose escalation and/or simultaneous OAR sparing compared to non-adaptive abdominal SBRT.


Asunto(s)
Neoplasias Abdominales/diagnóstico por imagen , Neoplasias Abdominales/radioterapia , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Neoplasias Abdominales/patología , Anciano , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Órganos en Riesgo , Estudios Prospectivos , Dosificación Radioterapéutica
14.
Ann ICRP ; 47(3-4): 160-176, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29676166

RESUMEN

The introduction of image guidance in radiation therapy and its subsequent innovations have revolutionised the delivery of cancer treatment. Modern imaging systems can supplement and often replace the historical practice of relying on external landmarks and laser alignment systems. Rather than depending on markings on the patient's skin, image-guided radiation therapy (IGRT), using techniques such as computed tomography (CT), cone beam CT, MV on-board imaging (OBI), and kV OBI, allows the patient to be positioned based on the internal anatomy. These advances in technology have enabled more accurate delivery of radiation doses to anatomically complex and temporally changing tumour volumes, while simultaneously sparing surrounding healthy tissues. While these imaging modalities provide excellent bony anatomy image quality, magnetic resonance imaging (MRI) surpasses them in soft tissue image contrast for better visualisation and tracking of soft tissue tumours with no additional radiation dose to the patient. However, the introduction of MRI into a radiotherapy facility has a number of complications, including the influence of the magnetic field on the dose deposition, as well as the effects it can have on dosimetry systems. The development and introduction of these new IGRT techniques will be reviewed, and the benefits and disadvantages of each will be described.


Asunto(s)
Radioterapia Guiada por Imagen/normas , Tomografía Computarizada por Rayos X/normas , Tomografía Computarizada de Haz Cónico/normas , Humanos , Protección Radiológica , Radiometría
15.
Med Phys ; 45(6): 2647-2659, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29663429

RESUMEN

PURPOSE: Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. METHODS: A 40 × 30.5 × 37.5 cm3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm2 , 10.5 × 10.5 cm2 , and 14.7 × 14.7 cm2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. RESULTS: Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.60%, 0.56%, and 0.65% for the 4.2, 10.5, and 14.7 cm square beams, respectively. The relationships between pPDDs and central axis PDDs derived from the TPS were used to apply a weighting factor to the Cherenkov pPDD, so that the Cherenkov data could be directly compared to IC PDDs (average error of -0.07%, 0.10%, and -0.01% for the same sized beams, respectively). Finally, the composite image of the TG-119 C4 treatment plan achieved a 95.1% passing rate using 4%/4 mm gamma index agreement criteria between Cherenkov intensity and TPS dose volume data. CONCLUSIONS: This is the first examination of Cherenkov-generated pPDDs and pCBPs in an MR-IGRT system. Cherenkov imaging measurements were fast to acquire, and minimal error was observed overall. Cherenkov imaging also provided novel real-time data for IMRT QA. The strengths of this imaging are the rapid data capture ability providing real-time, high spatial resolution data, combined with the remote, noncontact nature of imaging. The biggest limitation of this method is the two-dimensional (2D) projection-based imaging of three-dimensional (3D) dose distributions through the transparent water tank.


Asunto(s)
Imagen por Resonancia Magnética Intervencional/métodos , Imagen Óptica/métodos , Garantía de la Calidad de Atención de Salud/métodos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Calibración , Simulación por Computador , Dosimetría por Película , Humanos , Imagen por Resonancia Magnética Intervencional/instrumentación , Método de Montecarlo , Imagen Óptica/instrumentación , Quinina , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/instrumentación , Radioterapia de Intensidad Modulada/instrumentación , Factores de Tiempo , Agua
16.
Radiother Oncol ; 129(2): 319-325, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30174107

RESUMEN

BACKGROUND/PURPOSE: Stereotactic-magnetic-resonance-guided-online-adaptive-radiotherapy (SMART) is a promising tool for pancreas stereotactic-body-radiotherapy. Our online-adaptive-radiotherapy (On-ART) process relies on daily image overview by the managing radiation-oncologist, who determines the need for creating a predicted plan if significant interfractional anatomical changes are noted. Predicted plans are achieved through applying the baseline plan on deformed and manually adjusted contours based on daily imaging. If the dose to the target volume or organs-at-risk (OARs) violate constraints, an adapted plan is generated and delivered for treatment. In-depth review of daily images and deformed contours is limited by time and inter-observer variations. This study evaluates the reliability of our On-ART decision-making process. All fractions retrospectively underwent a predicted plan for off-line decision-making to adapt (Off-ART). Decisions to adapt were compared using On-ART and Off-ART approaches. MATERIAL/METHODS: Thirty-five sets of daily images were analyzed from seven patients who underwent five fractions of SMART. Each OAR was fully re-contoured off-line by the same physician for each fraction. Off-ART decision was re-evaluated for each fraction. RESULTS: N = 14/35 fractions were adapted based on On-ART decision-making versus N = 25/35 with Off-ART. The concordance between On-ART and Off-ART decision was 87.5% for the 16 fractions using a predicted plan online and 42% for the 19 fractions using only visual image review for On-ART decision-making. CONCLUSIONS: Daily-image visual review is not reliable to determine benefit or not for adaptive radiation-therapy. Online predicted plan, based on deformed and manually adjusted contours, should be generated for every fraction that is delivered using SMART in order to reliably optimize treatment plans daily.


Asunto(s)
Neoplasias Pancreáticas/radioterapia , Radiocirugia/métodos , Femenino , Humanos , Imagen por Resonancia Magnética Intervencional/métodos , Masculino , Órganos en Riesgo , Páncreas/efectos de la radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos
17.
Radiat Oncol ; 13(1): 51, 2018 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-29573744

RESUMEN

BACKGROUND: To simplify the adaptive treatment planning workflow while achieving the optimal tumor-dose coverage in pancreatic cancer patients undergoing daily adaptive magnetic resonance image guided radiation therapy (MR-IGRT). METHODS: In daily adaptive MR-IGRT, the plan objective function constructed during simulation is used for plan re-optimization throughout the course of treatment. In this study, we have constructed the initial objective functions using two methods for 16 pancreatic cancer patients treated with the ViewRay™ MR-IGRT system: 1) the conventional method that handles the stomach, duodenum, small bowel, and large bowel as separate organs at risk (OARs) and 2) the OAR grouping method. Using OAR grouping, a combined OAR structure that encompasses the portions of these four primary OARs within 3 cm of the planning target volume (PTV) is created. OAR grouping simulation plans were optimized such that the target coverage was comparable to the clinical simulation plan constructed in the conventional manner. In both cases, the initial objective function was then applied to each successive treatment fraction and the plan was re-optimized based on the patient's daily anatomy. OAR grouping plans were compared to conventional plans at each fraction in terms of coverage of the PTV and the optimized PTV (PTV OPT), which is the result of the subtraction of overlapping OAR volumes with an additional margin from the PTV. RESULTS: Plan performance was enhanced across a majority of fractions using OAR grouping. The percentage of the volume of the PTV covered by 95% of the prescribed dose (D95) was improved by an average of 3.87 ± 4.29% while D95 coverage of the PTV OPT increased by 3.98 ± 4.97%. Finally, D100 coverage of the PTV demonstrated an average increase of 6.47 ± 7.16% and a maximum improvement of 20.19%. CONCLUSIONS: In this study, our proposed OAR grouping plans generally outperformed conventional plans, especially when the conventional simulation plan favored or disregarded an OAR through the assignment of distinct weighting parameters relative to the other critical structures. OAR grouping simplifies the MR-IGRT adaptive treatment planning workflow at simulation while demonstrating improved coverage compared to delivered pancreatic cancer treatment plans in daily adaptive radiation therapy.


Asunto(s)
Neoplasias Pancreáticas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Algoritmos , Humanos , Imagen por Resonancia Magnética , Órganos en Riesgo , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Flujo de Trabajo
18.
Cureus ; 10(4): e2431, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29876153

RESUMEN

The superior soft tissue contrast provided by magnetic resonance (MR) images on the 1.5T MR-linac allows for the incorporation of patient anatomy information. In this retrospective case study, we present the simulated dosimetric effects and timings of full online replanning as compared to the five plan adaptation methods currently available on the 1.5T MR-linac treatment system. For this case, it is possible to create treatment plans with all six methods within a time slot suitable for an online treatment procedure. However, large dosimetric differences between the plan adaptation methods and full online replanning are present with regards to target coverage and dose to organs at risk (OARs).

19.
Med Phys ; 44(12): 6504-6514, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28887825

RESUMEN

PURPOSE: The purpose of this study was to investigate and characterize the performance of a Multi Leaf Collimator (MLC) designed for Cobalt-60 based MR-guided radiation therapy system in a 0.35 T magnetic field. METHODS: The MLC design and unique assembly features in the ViewRay MRIdian system were first reviewed. The RF cage shielding of MLC motor and cables were evaluated using ACR phantoms with real-time imaging and quantified by signal-to-noise ratio. The dosimetric characterizations, including the leaf transmission, leaf penumbra, tongue-and-groove effect, were investigated using radiosensitive films. The output factor of MLC-defined fields was measured with ionization chambers for both symmetric fields from 2.1 × 2.1 cm2 to 27.3 × 27.3 cm2 and asymmetric fields from 10.5 × 10.5 cm2 to 10.5 × 2.0 cm2 . Multi leaf collimator (MLC) positional accuracy was assessed by delivering either a picket fence (PF) style pattern on radiochromic films with wire-jig phantom or double and triple-rectangular patterns on ArcCheck-MR (Sun Nuclear, Melbourne, FL, USA) with gamma analysis as the pass/fail indicator. Leaf speed tests were performed to assess the capability of full range leaf travel within manufacture's specifications. Multi leaf collimator plan delivery reproducibility was tested by repeatedly delivering both open fields and fields with irregular shaped segments over 1-month period. RESULTS: Comparable SNRs within 4% were observed for MLC moving and stationary plans on vendor-reconstructed images, and the direct k-space reconstructed images showed that the three SNRs are within 1%. The maximum leaf transmission for all three MLCs was less than 0.35% and the average leakage was 0.153 ± 0.006%, 0.151 ± 0.008%, and 0.159 ± 0.015% for head 1, 2, and 3, respectively. Both the leaf edge and leaf end penumbra showed comparable values within 0.05 cm, and the measured values are within 0.1 cm with TPS values. The leaf edge TG effect indicated 10% underdose and the leaf end TG showed a shifted dose distribution with 0.3 cm offset. The leaf positioning test showed a 0.2 cm accuracy in the PF style test, and a gamma passing rate above 96% was observed with a 3%/2 mm criteria when comparing the measured double/triple-rectangular pattern fluence with TPS calculated fluence. The average leaf speed when executing the test plan fell in a range from 1.86 to 1.95 cm/s. The measured and TPS calculated output factors were within 2% for squared fields and within 3% for rectangular fields. The reproducibility test showed the deviation of output factors were well within 2% for square fields and the gamma passing rate within 1.5% for fields with irregular segments. The Monte Carlo predicted output factors were within 2% compared to TPS values. 15 out of the 16 IMRT plans have gamma passing rate more than 98% compared to the TPS fluence with an average passing rate of 99.1 ± 0.6%. CONCLUSION: The MRIdian MLC has a good RF noise shielding design, low radiation leakage, good positioning accuracy, comparable TG effect, and can be modeled by an independent Monte Carlo calculation platform.


Asunto(s)
Imagen por Resonancia Magnética , Radioterapia Guiada por Imagen/instrumentación , Estudios de Factibilidad , Método de Montecarlo , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador
20.
Radiother Oncol ; 125(3): 426-432, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28964533

RESUMEN

BACKGROUND AND PURPOSE: The strong magnetic field of integrated magnetic resonance imaging (MRI) and radiation treatment systems influences secondary electrons resulting in changes in dose deposition in three dimensions. To fill the need for volumetric dose quality assurance, we investigated the effects of strong magnetic fields on 3D dosimeters for MR-image-guided radiation therapy (MR-IGRT) applications. MATERIAL AND METHODS: There are currently three main categories of 3D dosimeters, and the following were used in this study: radiochromic plastic (PRESAGE®), radiochromic gel (FOX), and polymer gel (BANG™). For the purposes of batch consistency, an electromagnet was used for same-day irradiations with and without a strong magnetic field (B0, 1.5T for PRESAGE® and FOX and 1.0T for BANG™). RESULTS: For PRESAGE®, the percent difference in optical signal with and without B0 was 1.5% at the spectral peak of 632nm. For FOX, the optical signal percent difference was 1.6% at 440nm and 0.5% at 585nm. For BANG™, the percent difference in R2 MR signal was 0.7%. CONCLUSIONS: The percent differences in responses with and without strong magnetic fields were minimal for all three 3D dosimeter systems. These 3D dosimeters therefore can be applied to MR-IGRT without requiring a correction factor.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Dosímetros de Radiación , Radioterapia Guiada por Imagen/métodos , Relación Dosis-Respuesta en la Radiación , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda