RESUMEN
Calcium aluminate of a mayenite structure, 12CaOâ7Al2O3 (C12A7), is widely applicable in many fields of modern science and technology. Therefore, its behavior under various experimental conditions is of special interest. The present research aimed to estimate the possible impact of the carbon shell in core-shell materials of C12A7@C type on the proceeding of solid-state reactions of mayenite with graphite and magnesium oxide under High Pressure, High Temperature (HPHT) conditions. The phase composition of the solid-state products formed at a pressure of 4 GPa and temperature of 1450 °C was studied. As is found, the interaction of mayenite with graphite under such conditions is accompanied by the formation of an aluminum-rich phase of the CaOâ6Al2O3 composition, while in the case of core-shell structure (C12A7@C), the same interaction does not lead to the formation of such a single phase. For this system, a number of hardly identified calcium aluminate phases along with the carbide-like phrases have appeared. The main product of the interaction of mayenite and C12A7@C with MgO under HPHT conditions is the spinel phase Al2MgO4. This indicates that, in the case of the C12A7@C structure, the carbon shell is not able to prevent the interaction of the oxide mayenite core with magnesium oxide located outside the carbon shell. Nevertheless, the other solid-state products accompanying the spinel formation are significantly different for the cases of pure C12A7 and C12A7@C core-shell structure. The obtained results clearly illustrate that the HPHT conditions used in these experiments lead to the complete destruction of the mayenite structure and the formation of new phases, which compositions differ noticeably depending on the precursor used-pure mayenite or C12A7@C core-shell structure.
RESUMEN
The evolution of the structure and the phase composition of a dispersed mayenite at its interaction with metallic aluminum was studied in a temperature range from 900 to 1400 °C in both argon and air atmospheres. The aluminum loading was varied from 0 to 50 wt%. It was found that the addition of aluminum significantly affects the stability of the mayenite and other calcium aluminate phases within the studied temperature range. The formation of the electride state registered by the appearance of a characteristic electron paramagnetic resonance (EPR) signal from F+-like centers (g~1.994) in an argon atmosphere was shown to take place already at 1150 °C due to an aluminothermic reduction of this material. The super-narrow (Hp-p < 0.5 G) EPR spectra from F+-like centers, which were recently observed for the core−shell structures of the C12A7@C type only, were registered for mayenite for the first time. The results obtained in the present study testify firstly towards the possibility of significantly diminishing the temperatures required for the formation of the electride state in such systems and secondly towards the ability to stabilize the size of small electride nanoparticles within the synthesized calcium aluminate matrix.
RESUMEN
We studied the formation process of a mayenite structure from hydroxide precursors in different gas media. According to X-ray diffraction data, this method allows a well-crystallized mayenite (Ca12Al14O33 or C12A7) phase to be obtained at low (500-900 °C) temperatures with an insignificant impurity of CaO. It was shown that the lattice parameters for C12A7 obtained in an inert atmosphere (Ar) were lower when compared with similar samples in the air. These results can be explained by the different levels of oxygen nonstoichiometry in the resulting phase. We noted that sintering and crystallization of mayenite proceeds at lower temperatures in Ar than in the air medium. We found the presence of donor and acceptor active sites on the surface of mayenite, which was detected by the spin probe method. The specific (per unit surface) concentration of such sites (2.5 × 1016 m-2 and 1.5 × 1015 m-2 for donor and acceptor sites, respectively) is comparable to that of γ-Al2O3, which is traditionally used as catalyst support. This allows it to be used in adsorption and catalytic technologies, taking into account its high specific surface area (~30-50 m2/g at a low synthesis temperature).
RESUMEN
Pd-containing catalysts based on highly dispersed aerogel-derived mayenite were prepared via two approaches. The Pd@C12A7 sample was obtained through the addition of Pd nitrate solution to a fresh Ca(OH)2-Al(OH)3 gel. Pd/C12A7 was synthesized through conventional wet impregnation of the aerogel-derived mayenite. The evolution of the textural characteristics of the support (C12A7) depending on the calcination temperature was investigated. Pd-containing samples were explored using transmission electron microscopy and spin probe EPR spectroscopy. Using the latter method, the presence of active oxygen species capable of producing nitroxyl radicals from diphenylamine was observed. The activity of these species and the reproducibility of their redox behavior were studied in three cycles of temperature-programmed reduction in both hydrogen and CO atmospheres. A prompt thermal aging technique was used to access and compare the activity of the samples towards CO oxidation. The state of Pd species before and after the aging procedure was studied via UV-Vis spectroscopy. It was found that the dispersion of PdO was higher in the case of the Pd/C12A7 catalysts compared to the Pd@C12A7 sample. This is why the Pd/C12A7 catalyst demonstrated higher activity in CO oxidation and better reducibility in TPR cycles.
RESUMEN
The memory (memristive) properties of an electride material based on polycrystalline mayenite (C12A7:e-) were studied. The phase composition of the material has been confirmed by such methods as XRD, TEM, Raman, and infrared spectroscopy. The electride state was confirmed by conductivity measurements and EPR using a characteristic signal from F+-like centers, but the peak at 186 cm-1, corresponding to an electride with free electrons, was not observed explicitly in the Raman spectra. The temperature dependence of current-voltage characteristics in states with low and high resistance (LRS and HRS) has been studied. In the LRS state, the temperature dependence of the current has a non-Arrhenius character and is described by the Hurd quantum tunnelling model with a Berthelot temperature of 262 K, while in the HRS state, it can be described in terms of the Arrhenius model. In the latter case, the existence of two conduction regions, "impurity" and "intrinsic", with corresponding activation energies of 25.5 and 40.6 meV, was assumed. The difference in conduction mechanisms is most likely associated with a change in the concentration of free electrons.
RESUMEN
To overcome the key challenges associated with cement dust, such as inhalable size, toxic ions, and the existence of large quantities of useless materials, researchers investigated an innovative and unusual conversion of toxic cement dust into Mayenite nanoparticles. Mayenite is a natural structure that can be used as a filler in a variety of industrial applications. The formation of Mayenite nanoparticles was achieved through a thermal reaction at 1000°C for 2 h between cement dust and aluminum oxide. Different techniques were used to characterize the synthesized Mayenite nanoparticles, revealing the formation of the target phase as well as the reduction of toxic ions present in cement dust. According to Scherrer's equation, the crystallite size of bypass and synthesized Mayenite nanoparticles is 45 and 30 nm, respectively. Also, with the aid of TEM analysis, the particle size distribution of the produced Mayenite nanoparticles was found to be 27±7 nm. The toxic ions, especially chlorides and sulphates, were reduced by 86% and 50%, respectively, according to X-ray fluorescence results. These findings are important for the future use of Mayenite, 12CaO.7Al2O3 (C12A7), nanoparticles formed from toxic cement dust recycling.
Asunto(s)
Compuestos de Aluminio/química , Óxido de Aluminio/síntesis química , Compuestos de Calcio/química , Polvo , Minerales/síntesis química , Óxido de Aluminio/química , Cloruros , Calor , Minerales/química , Nanopartículas , Tamaño de la Partícula , Reciclaje , SulfatosRESUMEN
The effect of calcination temperature on the structural properties and phase formation of synthesized CaO-Al2O3 nanopowder was investigated and discussed. The calcination products were identified by differential thermal analysis (DTA) and the crystalline phase formation was analyzed by X-ray diffraction (XRD). The obtained results showed that the crystallization started at 460 °C. Finally, the microstructures of the nanoparticles were observed by scanning (SEM) and transmission electron (TEM) microscopes. The investigation showed that an increase in the calcination temperature led to the appreciable increase in the crystallite size and the crystallinity of the final product. The obtained data confirmed that the prepared materials were mayenite with different surface area in the range of 71.18 m2/g to 10.34 m2/g after annealing in the temperature range of 470 °C to 960 °C.
RESUMEN
This manuscript presented a large scale synthesis of Graphitic Shells like carbon nano onions (GS-CNOs) by direct solution method using mayenite electride as a catalyst for synthesis of CNOs. Thermal characterization, microstructural analysis, and high resolution electron microscopy have confirmed the graphitization and revealed the resulting GS-CNOs with particle size about 15 nm, maximum BET surface area of 214 m2.g-1, and moderate conductivity of 250 S.cm-1, thus providing a new approach to synthesize GS-CNOs. The reported GS-CNOs, which acts as more active but less expensive electrocatalysts with onset potential of 1.03 V, half wave potential of 0.88 V vs. the reversible hydrogen electrode (RHE), and limited current density of 5.9 mA.cm-2, higher than that of benchmark 20% Pt/C (1.02 eV, 0.82 V, 5.2 mA.cm-2). The synthesized nano-powder acts as an origin of ORR activity via a four electron (4e-) pathway, along with significantly enhanced stability, in alkaline media. The high ORR activity is ascribed to GS-CNOs embedded sufficient metallic C12A7:e- particles, which favor faster electron movement and better adsorption of oxygen molecules on catalyst surface. Hence, we explored first time large scale synthesis of GS-CNOs with gram level and provide efficient approach to prepare novel, lowest cost, potential non-noble metals catalyst for fuel cells.
RESUMEN
Influence of C12A7 (12CaO·7Al2O3) as a functional component on hydration properties of Ordinary Portland Cement is studied using isothermal microcalorimetric technique, X-ray diffraction analysis, and thermodynamic calculation. Meanwhile, hydrate assemblages are simulated by hydrothermal software. C2AH8 (2CaO·Al2O3·8H2O) is generated as a transition phase during the hydration of pure C12A7, while formation of CAH10 (CaO·Al2O3·10H2O) is uncertain. Heat-releasing behavior of Ordinary Portland Cement (OPC) could be noticeably affected by C12A7, especially for the duration of interaction at boundary stage reduces with C12A7 replacement. Correspondingly, all hydration kinetic parameters first increase and then diminish with C12A7 replacement. Simulation results manifest in the main hydration products of OPC being ettringite, C-S-H (Calcium-Silicate-Hydrate) gel, portlandite and brucite. Increasing C12A7 replacement accelerates the consumption rates of gypsum and calcite that are typically included in OPC, and thus the ettringite content is changed and carbonate phases will be produced. Therefore, the microstructure properties of hydrated products of OPC are affected and the compressive strength is influenced. These predications are in good agreement with experimental findings. C12A7 can be used as a functional component to adjust the consumption rate of suphates in OPC, and also components of carbonate phases can be modified in hydrate assemblage.
RESUMEN
Ca12Al14O33 (C12A7 or Mayenite) is a material whose caged clathrate structure and occluded anionic species leads to significant functionality. The creation of occluded anionic vacancies leads to the injection of localized electrons at the center of the cage, converting the wide band gap insulator to a semi- or metallic conducting material. The conversion to the electride historically requires the synthesis of oxy-C12A7, consolidation, and then reduction to introduce anionic vacancies. This report develops and characterizes an electride formation procedure from three starting points: unconsolidated oxy-C12A7, heterogenous solid-state reactants (CaCO3 and Al2O3), and homogenous non-carbonaceous polymer assisted sol-gel reactants. Electride-C12A7 formation is observed in a vacuum furnace where the reactants are in direct contact with a carbon source. Process time and temperature-dependent structural characterization provides insight into the source of high temperature C12A7 stability, the mechanism of anionic vacancy formation, and the magnitude of ultimate conductivity that cannot be explained by current reduction theories. A new theory is presented where mixed O- and C-occupied cages lead to high temperature stability, oxidation of C species creates anionic vacancies, and an equilibrium between the reducing power of the electride-C12A7 and of the C species leads to the ultimate conductivity achieved by the process. This represents a shift in understanding of the carbonaceous reduction process and the first report of high purity electride-C12A7 formation from heterogenous solid-state reactants and homogenous non-carbonaceous polymer assisted sol-gel reactants.
RESUMEN
In this paper we used hydrated mayenite as reactive substrate for NOx active sampling in the air, which is novel. The performance of the mayenite-based sorbent for the NOx tubes was evaluated in two different monitoring surveys (autumn 2015 and winter 2016), characterized by different environmental conditions. Sorbent tubes filled with mayenite were exposed simultaneously to triethanolamine (TEA)-based sorbent tubes and to a chemiluminescence detector, as reference. The comparison of the NOx concentration levels measured by active sampling, using mayenite as NOx sorbent, showed a close relationship with the chemiluminescence analyzer. The effect of the environmental conditions on the performance of both mayenite and TEA-based sorbent tubes was evaluated and limitations connected to the use of TEA were discussed.
RESUMEN
The recently published method for the structure refinement from three-dimensional precession electron diffraction data using dynamical diffraction theory [Palatinus et al. (2015). Acta Cryst. A71, 235-244] has been applied to a set of experimental data sets from five different samples - Ni2Si, PrVO3, kaolinite, orthopyroxene and mayenite. The data were measured on different instruments and with variable precession angles. For each sample a reliable reference structure was available. A large series of tests revealed that the method provides structure models with an average error in atomic positions typically between 0.01 and 0.02 Å. The obtained structure models are significantly more accurate than models obtained by refinement using kinematical approximation for the calculation of model intensities. The method also allows a reliable determination of site occupancies and determination of absolute structure. Based on the extensive tests, an optimal set of the parameters for the method is proposed.