Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Molecules ; 29(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124939

RESUMEN

The detection of pathogens in medical wastewater is crucial due to the high content of pathogenic microorganisms that pose significant risks to public health and the environment. Medical wastewater, which includes waste from infectious disease and tuberculosis facilities, as well as comprehensive medical institutions, contains a variety of pathogens such as bacteria, viruses, fungi, and parasites. Traditional detection methods like nucleic acid detection and immunological assays, while effective, are often time-consuming, expensive, and not suitable for rapid detection in underdeveloped areas. Electrochemical biosensors offer a promising alternative with advantages including simplicity, rapid response, portability, and low cost. This paper reviews the sources of pathogens in medical wastewater, highlighting specific bacteria (e.g., E. coli, Salmonella, Staphylococcus aureus), viruses (e.g., enterovirus, respiratory viruses, hepatitis virus), parasites, and fungi. It also discusses various electrochemical biosensing techniques such as voltammetry, conductometry, impedance, photoelectrochemical, and electrochemiluminescent biosensors. These technologies facilitate the rapid, sensitive, and specific detection of pathogens, thereby supporting public health and environmental safety. Future research may should pay more attention on enhancing sensor sensitivity and specificity, developing portable and cost-effective devices, and innovating detection methods for diverse pathogens to improve public health protection and environmental monitoring.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Aguas Residuales , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Aguas Residuales/virología , Aguas Residuales/microbiología , Aguas Residuales/análisis , Virus/aislamiento & purificación , Bacterias/aislamiento & purificación , Humanos , Monitoreo del Ambiente/métodos , Hongos/aislamiento & purificación
2.
ACS Sens ; 9(3): 1252-1260, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38373338

RESUMEN

The monitoring of small extracellular vesicles (sEVs) in medical waste is of great significance for the prevention of the spread of infectious diseases and the treatment of environmental pollutants in medical waste. Highly sensitive and selective detection methods are urgently needed due to the low content of sEVs in waste samples and the complex sample composition. Herein, a glycosyl-imprinted electrochemical sensor was constructed and a novel strategy for rapid, sensitive, and selective sEVs detection was proposed. The characteristic trisaccharide at the end of the glycosyl chain of the glycoprotein carried on the surface of the sEVs was used as the template molecule. The glycosyl-imprinted polymer films was then prepared by electropolymerization with o-phenylenediamine (o-PD) and 3-aminophenylboronic acid (m-APBA) as functional monomers. sEVs were captured by the imprinted cavities through the recognition and adsorption of glycosyl chains of glycoproteins on sEVs. The m-APBA molecule also acted as a signal probe and was then attached on the immobilized glycoprotein on the surface of sEVs by boric acid affinity. The electrochemical signal of m-APBA was amplificated due to the abundant glycoproteins on the surface of sEVs. The detection range of the sensor was 2.1 × 104 to 8.7 × 107 particles/mL, and the limit of detection was 1.7 × 104 particles/mL. The sensor was then applied to the determination of sEVs in medical wastewater and urine, which showed good selectivity, low detection cost, and good sensitivity.


Asunto(s)
Residuos Sanitarios , Impresión Molecular , Aguas Residuales , Impresión Molecular/métodos , Límite de Detección , Glicoproteínas
3.
Water Res ; 264: 122205, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116612

RESUMEN

The severely low influent chemical oxygen demand (COD) concentration at wastewater treatment plants (WWTPs) has become a critical issue. A key factor is the excessive biodegradation of organic matter by microbial communities within sewer systems. Intense disinfection commonly adopted for medical wastewater leads to abundant residual chlorine entering sewers, likely causing significant changes in microbial communities and sewage quality in sewers, yet our understanding is limited. Through long-term sewer simulation batch tests, this study revealed the response mechanism of microbial communities to residual chlorine and its impact on organic matter concentration in sewage. Under residual chlorine stress, microbial community structure rapidly changed, and more complex microbial interactions were observed. Besides, pathways related to stress response such as two-component system were significantly enriched; pathways related to energy metabolism (such as carbon fixation in prokaryotes and citrate cycle) in microbial communities were inhibited, and carbon metabolism shifted from the Embden-Meyerhof pathway to the pentose phosphate pathway to enhance cellular reducing power, reduce oxidative stress, and consequently decrease organic matter degradation. Therefore, compared to sewers with normal disinfection, concentrations of COD and dissolved organic carbon in sewage under chlorine stress increased by 12.6 % and 7.4 %, respectively. Besides, the decay and transformation of residual chlorine in sewers were explored. These findings suggest a new approach to medical wastewater discharge management: placing the medical wastewater outlet at the upstream in sewer systems, which ensures that residual chlorine consumption reaches maximum during long-distance transportation, mitigating its harmful effects on WWTPs, and increases the influent organic matter concentration, thereby reducing the need for additional carbon sources.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Cloro , Desinfección
4.
Chemosphere ; 331: 138775, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37100249

RESUMEN

The COVID-19 pandemic has severely impacted public health and the worldwide economy. The overstretched operation of health systems around the world is accompanied by potential and ongoing environmental threats. At present, comprehensive scientific assessments of research on temporal changes in medical/pharmaceutical wastewater (MPWW), as well as estimations of researcher networks and scientific productivity are lacking. Therefore, we conducted a thorough literature study, using bibliometrics to reproduce research on medical wastewater over nearly half a century. Our primary goal is systematically to map the evolution of keyword clusters over time, and to obtain the structure and credibility of clusters. Our secondary objective was to measure research network performance (country, institution, and author) using CiteSpace and VOSviewer. We extracted 2306 papers published between 1981 and 2022. The co-cited reference network identified 16 clusters with well-structured networks (Q = 0.7716, S = 0.896). The main trends were as follows: 1) Early MPWW research prioritized sources of wastewater, and this cluster was considered to be the mainstream research frontier and direction, representing an important source and priority research area. 2) Mid-term research focused on characteristic contaminants and detection technologies. Particularly during 2000-2010, a period of rapid developments in global medical systems, pharmaceutical compounds (PhCs) in MPWW were recognized as a major threat to human health and the environment. 3) Recent research has focused on novel degradation technologies for PhC-containing MPWW, with high scores for research on biological methods. Wastewater-based epidemiology has emerged as being consistent with or predictive of the number of confirmed COVID-19 cases. Therefore, the application of MPWW in COVID-19 tracing will be of great interest to environmentalists. These results could guide the future direction of funding agencies and research groups.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Pandemias , COVID-19/epidemiología , Investigación , Preparaciones Farmacéuticas
5.
Front Chem ; 10: 1002038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186585

RESUMEN

Antibiotics widely exist in medical wastewater, which seriously endanger human health. With the spread of the COVID-19 and monkeypox around the world, a large number of antibiotics have been abused and discharged. How to realize the green and efficient treatment of medical wastewater has become a hot research topic. As a common electrochemical water treatment technology, electrochemical oxidation technology (EOT) could effectively achieve advanced treatment of medical wastewater. Since entering the 21st century, electrochemical oxidation water treatment technology has received more and more attention due to its green, efficient, and easy-to-operate advantages. In this study, the research progress of EOT for the treatment of medical wastewater was reviewed, including the exploration of reaction mechanism, the preparation of functional electrode materials, combining multiple technologies, and the design of high-efficiency reactors. The conclusion and outlook of EOT for medical wastewater treatment were proposed. It is expected that the review could provide prospects and guidance for EOT to treat medical wastewater.

6.
Front Microbiol ; 13: 1083974, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687586

RESUMEN

A large number of pathogenic microorganisms exist in medical wastewater, which could invade the human body through the water and cause harm to human health. With the global pandemic coronavirus (COVID-19), public health safety become particularly important, and medical wastewater treatment is an important part of it. In particular, electrochemical disinfection technology has been widely studied in medical wastewater treatment due to its greenness, high efficiency, convenient operation, and other advantages. In this paper, the development status of electrochemical disinfection technology in the treatment of medical wastewater is reviewed, and an electrochemical three-stage disinfection system is proposed for the treatment of medical wastewater. Moreover, prospects for the electrochemical treatment of medical wastewater will be presented. It is hoped that this review could provide insight and guidance for the research and application of electrochemical disinfection technology to treat medical wastewater.GRAPHICAL ABSTRACT.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35010642

RESUMEN

Medical wastewater originating from hospitals specializing in infectious diseases pose a major risk to human and environmental health during pandemics. However, there have been few systematic studies on the management of this type of wastewater management. The function of the Huoshenshan Hospital as a designated emergency field hospital for the treatment of COVID-19 has provided lessons for the management measures of medical wastewater, mainly including: (1) Modern information technology, management schemes, and related standard systems provided the legislative foundation for emergency management of medical wastewater. (2) The three-tier prevention and control medical wastewater management system ensured the discharged wastewater met water quality standards, especially for the leak-proof sealed collection system of the first tier, and the biological and chemical treatment technology of the second tier. (3) The establishment of an effective three-tier medical wastewater quality monitoring accountability system. This system was particularly relevant for ensuring continuous data monitoring and dynamic analysis of characteristic indicators. (4) Information disclosure by government and public supervision promoted successful implementation of medical wastewater management and control measures. Public questionnaires (n = 212) further confirmed the effectiveness of information disclosure. The results of this study can act as methodological reference for the emergency management of wastewater in designated infectious disease hospitals under similar situations.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , China , Enfermedades Transmisibles/epidemiología , Hospitales , Humanos , SARS-CoV-2 , Aguas Residuales
8.
Sci Total Environ ; 650(Pt 1): 1122-1130, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308800

RESUMEN

A total of 58 samples were collected from hospitals, municipal wastewater treatment plants (WWTPs), a receiving water body (Dagu Drainage Canal, DDC), and adjacent farmland in Tianjin City, China, in May and November 2013 and were analyzed for five common ß-blockers (atenolol, sotalol, metoprolol, propranolol, and nadolol) to elucidate their source, occurrence and fate in a typical city in China. The profiles of the enantiomers of the ß-blockers in some samples were examined. Sotalol, metoprolol and propranolol were frequently detected, atenolol was less frequently detected, and nadolol was mostly not detected. Generally, the concentrations in hospital wastewaters occurred from

Asunto(s)
Antagonistas Adrenérgicos beta/análisis , Monitoreo del Ambiente , Eliminación de Residuos Líquidos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Atenolol/análisis , China , Metoprolol/análisis , Propranolol/análisis , Suelo , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda