Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 8.377
Filtrar
Más filtros

Publication year range
1.
Annu Rev Biochem ; 92: 273-298, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001135

RESUMEN

Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.


Asunto(s)
Colesterol , Proteínas Hedgehog , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ligandos , Colesterol/metabolismo , Transducción de Señal , Esteroles/metabolismo
2.
Annu Rev Cell Dev Biol ; 38: 125-153, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35850151

RESUMEN

The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.


Asunto(s)
Bacterias , Pared Celular , Transporte Biológico , Membrana Celular/metabolismo , Lípidos/química
3.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169217

RESUMEN

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Asunto(s)
Arabidopsis/metabolismo , Transporte de Proteínas/fisiología , Sistema de Translocación de Arginina Gemela/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Orgánulos/metabolismo , Transición de Fase , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Sistema de Translocación de Arginina Gemela/fisiología
4.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730852

RESUMEN

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Asunto(s)
Células/metabolismo , Metabolismo Energético , Adaptación Fisiológica/efectos de la radiación , Adenosina Trifosfato/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Células/efectos de la radiación , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusión , Transporte de Electrón/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Ambiente , Enlace de Hidrógeno , Cinética , Luz , Simulación de Dinámica Molecular , Fenotipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiología , Rhodobacter sphaeroides/efectos de la radiación , Electricidad Estática , Estrés Fisiológico/efectos de la radiación , Temperatura
5.
Cell ; 167(3): 789-802.e12, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768897

RESUMEN

Two complementary approaches were used in search of the intracellular targets of the toxic PR poly-dipeptide encoded by the repeat sequences expanded in the C9orf72 form of amyotrophic lateral sclerosis. The top categories of PRn-bound proteins include constituents of non-membrane invested cellular organelles and intermediate filaments. PRn targets are enriched for the inclusion of low complexity (LC) sequences. Evidence is presented indicating that LC sequences represent the direct target of PRn binding and that interaction between the PRn poly-dipeptide and LC domains is polymer-dependent. These studies indicate that PRn-mediated toxicity may result from broad impediments to the dynamics of cell structure and information flow from gene to message to protein.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Dipéptidos/metabolismo , Demencia Frontotemporal/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72 , Expansión de las Repeticiones de ADN , Dipéptidos/química , Dipéptidos/genética , Demencia Frontotemporal/genética , Células HeLa , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Péptidos/química , Péptidos/genética , Dominios Proteicos , Proteínas/genética
6.
Annu Rev Biochem ; 83: 99-128, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24580642

RESUMEN

Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host-pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.


Asunto(s)
Lipopolisacáridos/biosíntesis , Lipopolisacáridos/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Glucolípidos/metabolismo , Glicosilación , Bacterias Gramnegativas/metabolismo , Antígenos O/metabolismo , Permeabilidad , Polisacáridos/metabolismo
7.
Mol Cell ; 76(2): 295-305, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31604601

RESUMEN

Biomolecular condensation is emerging as an essential process for cellular compartmentalization. The formation of biomolecular condensates can be driven by liquid-liquid phase separation, which arises from weak, multivalent interactions among proteins and nucleic acids. A substantial body of recent work has revealed that diverse cellular processes rely on biomolecular condensation and that aberrant phase separation may cause disease. Many proteins display an intrinsic propensity to undergo phase separation. However, the mechanisms by which cells regulate phase separation to build functional condensates at the appropriate time and location are only beginning to be understood. Here, we review three key cellular mechanisms that enable the control of biomolecular phase separation: membrane surfaces, post-translational modifications, and active processes. We discuss how these mechanisms may function in concert to provide robust control over biomolecular condensates and suggest new research avenues that will elucidate how cells build and maintain these key centers of cellular compartmentalization.


Asunto(s)
Compartimento Celular , Membrana Celular/metabolismo , Ácidos Nucleicos/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas/metabolismo , Animales , Membrana Celular/química , Endocitosis , Humanos , Membranas Intracelulares/metabolismo , Chaperonas Moleculares/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Conformación Proteica , Proteínas/química , Solubilidad , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 121(36): e2404790121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39186653

RESUMEN

Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization. There is a need to mimic autonomous signaling between compartments, which in living cells, is often regulated at the genetic level within the nucleus. This advancement is key to unlocking the potential of synthetic cells as cell models and as microdevices in biotechnology. However, a technological bottleneck exists preventing the creation of synthetic cells with a defined nucleus-like compartment capable of genetically programmed intercompartment signaling events. Here, we present an approach for creating synthetic cells with distinct nucleus-like compartments that can encapsulate different biochemical mixtures in discrete compartments. Our system enables in situ protein expression of membrane proteins, enabling autonomous chemical communication between nuclear and cytoplasmic compartments, leading to downstream activation of enzymatic pathways within the cell.


Asunto(s)
Células Artificiales , Núcleo Celular , Biología Sintética , Biología Sintética/métodos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Células Artificiales/metabolismo , Transducción de Señal , Citoplasma/metabolismo , Comunicación Celular
9.
Trends Biochem Sci ; 47(1): 39-51, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583871

RESUMEN

Lipid droplets (LDs) are the main organelles for lipid storage, and their surfaces contain unique proteins with diverse functions, including those that facilitate the deposition and mobilization of LD lipids. Among organelles, LDs have an unusual structure with an organic, hydrophobic oil phase covered by a phospholipid monolayer. The unique properties of LD monolayer surfaces require proteins to localize to LDs by distinct mechanisms. Here we review the two pathways known to mediate direct LD protein localization: the CYTOLD pathway mediates protein targeting from the cytosol toLDs, and the ERTOLD pathway functions in protein targeting from the endoplasmic reticulum toLDs. We describe the emerging principles for each targeting pathway in animal cells and highlight open questions in the field.


Asunto(s)
Retículo Endoplásmico , Gotas Lipídicas , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Transporte de Proteínas , Proteínas/metabolismo
10.
EMBO J ; 41(8): e108272, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35211994

RESUMEN

Most cancer deaths result from progression of therapy resistant disease, yet our understanding of this phenotype is limited. Cancer therapies generate stress signals that act upon mitochondria to initiate apoptosis. Mitochondria isolated from neuroblastoma cells were exposed to tBid or Bim, death effectors activated by therapeutic stress. Multidrug-resistant tumor cells obtained from children at relapse had markedly attenuated Bak and Bax oligomerization and cytochrome c release (surrogates for apoptotic commitment) in comparison with patient-matched tumor cells obtained at diagnosis. Electron microscopy identified reduced ER-mitochondria-associated membranes (MAMs; ER-mitochondria contacts, ERMCs) in therapy-resistant cells, and genetically or biochemically reducing MAMs in therapy-sensitive tumors phenocopied resistance. MAMs serve as platforms to transfer Ca2+ and bioactive lipids to mitochondria. Reduced Ca2+ transfer was found in some but not all resistant cells, and inhibiting transfer did not attenuate apoptotic signaling. In contrast, reduced ceramide synthesis and transfer was common to resistant cells and its inhibition induced stress resistance. We identify ER-mitochondria-associated membranes as physiologic regulators of apoptosis via ceramide transfer and uncover a previously unrecognized mechanism for cancer multidrug resistance.


Asunto(s)
Mitocondrias , Neuroblastoma , Apoptosis , Ceramidas , Resistencia a Múltiples Medicamentos , Humanos , Membranas Mitocondriales , Neuroblastoma/tratamiento farmacológico
11.
EMBO J ; 41(7): e108747, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35266581

RESUMEN

Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.


Asunto(s)
Gastrulación , Mesodermo , Animales , Embrión de Mamíferos , Membranas Extraembrionarias , Queratinas/genética , Queratinas/metabolismo , Mesodermo/metabolismo , Ratones
12.
Circ Res ; 135(5): 554-574, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011635

RESUMEN

BACKGROUND: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS: We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.


Asunto(s)
Cardiomegalia , Disferlina , Ratones Noqueados , Miocitos Cardíacos , Retículo Sarcoplasmático , Animales , Disferlina/metabolismo , Disferlina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Humanos , Ratones , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , Ratones Endogámicos C57BL , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proliferación Celular , Células Cultivadas , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Quinasa de Cadena Ligera de Miosina
13.
Proc Natl Acad Sci U S A ; 120(24): e2220127120, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276390

RESUMEN

The need for energy-efficient recovery of organic solutes from aqueous streams is becoming more urgent as chemical manufacturing transitions toward nonconventional and bio-based feedstocks and processes. In addition to this, many aqueous waste streams contain recalcitrant organic contaminants, such as pharmaceuticals, industrial solvents, and personal care products, that must be removed prior to reuse. We observe that rigid carbon membrane materials can remove and concentrate organic contaminants via an unusual liquid-phase membrane permeation modality. Surprisingly, detailed thermodynamic calculations on the chemical potential of the organic contaminant reveal that the organic species has a higher chemical potential on the permeate side of the membrane than on the feed side of the membrane. This unusual observation challenges conventional membrane transport theory that posits that all permeating species move from high chemical potential states to lower chemical potential states. Based on experimental measurements, we hypothesize that the organic is concentrated in the membrane relative to water via favorable binding interactions between the organic and the carbon membrane. The concentrated organic is then swept through the membrane via the bulk flow of water in a modality known as "sorp-vection." We highlight via simplified nonequilibrium thermodynamic models that this "uphill" chemical potential permeation of the organic does not result in second-law violations and can be deduced via measurements of the organic and water sorption and diffusion rates into the carbon membrane. Moreover, this work identifies the need to consider such nonidealities when incorporating unique, rigid materials for the separations of aqueous waste streams.

14.
Proc Natl Acad Sci U S A ; 120(35): e2307772120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603747

RESUMEN

Artificial cells are biomimetic structures formed from molecular building blocks that replicate biological processes, behaviors, and architectures. Of these building blocks, hydrogels have emerged as ideal, yet underutilized candidates to provide a gel-like chassis in which to incorporate both biological and nonbiological componentry which enables the replication of cellular functionality. Here, we demonstrate a microfluidic strategy to assemble biocompatible cell-sized hydrogel-based artificial cells with a variety of different embedded functional subcompartments, which act as engineered synthetic organelles. The organelles enable the recreation of increasingly biomimetic behaviors, including stimulus-induced motility, content release through activation of membrane-associated proteins, and enzymatic communication with surrounding bioinspired compartments. In this way, we showcase a foundational strategy for the bottom-up construction of hydrogel-based artificial cell microsystems which replicate fundamental cellular behaviors, paving the way for the construction of next-generation biotechnological devices.


Asunto(s)
Células Artificiales , Biomimética , Hidrogeles , Comunicación , Orgánulos
15.
Proc Natl Acad Sci U S A ; 120(15): e2301009120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011185

RESUMEN

In the state-of-the-art membrane industry, membranes have linear life cycles and are commonly disposed of by landfill or incineration, sacrificing their sustainability. To date, little or no thought is given in the design phase to the end-of-life management of membranes. For the first time, we have innovated high-performance sustainable membranes, which can be closed-loop recycled after long-term usage for water purification. By synergizing membrane technology and dynamic covalent chemistry, covalent adaptable networks (CANs) with thermally reversible Diels-Alder (DA) adducts were synthesized and employed to fabricate integrally skinned asymmetric membranes via the nonsolvent-induced phase separation technique. Due to the stable and reversible features of CAN, the closed-loop recyclable membranes exhibit excellent mechanical properties and thermal and chemical stabilities as well as separation performance, which are comparable to or even higher than the state-of-the-art nonrecyclable membranes. Moreover, the used membranes can be closed-loop recycled with consistent properties and separation performance by depolymerization to remove contaminants, followed by refabrication into new membranes through the dissociation and reformation of DA adducts. This study may fill in the gaps in closed-loop recycling of membranes and inspire the advancement of sustainable membranes for a green membrane industry.

16.
Proc Natl Acad Sci U S A ; 120(25): e2216002120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37314933

RESUMEN

We present two binary lipid-sterol membrane systems that exhibit fluid-fluid coexistence. Partial phase diagrams of binary mixtures of dimyristoylphosphatidylcholine with 25-hydroxyxholesterol and 27-hydroxycholesterol, determined from small-angle X-ray scattering and fluorescence microscopy studies, show closed-loop fluid-fluid immiscibility gaps, with the appearance of a single fluid phase both at higher and lower temperatures. Computer simulations suggest that this unusual phase behavior results from the ability of these oxysterol molecules to take different orientations in the membrane depending on the temperature.

17.
Proc Natl Acad Sci U S A ; 120(24): e2221064120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276401

RESUMEN

Semipermeable membranes are a key feature of all living organisms. While specialized membrane transporters in cells can import otherwise impermeable nutrients, the earliest cells would have lacked a mechanism to import nutrients rapidly under nutrient-rich circumstances. Using both experiments and simulations, we find that a process akin to passive endocytosis can be recreated in model primitive cells. Molecules that are too impermeable to be absorbed can be taken up in a matter of seconds in an endocytic vesicle. The internalized cargo can then be slowly released over hours, into the main lumen or putative cytoplasm. This work demonstrates a way by which primitive life could have broken the symmetry of passive permeation prior to the evolution of protein transporters.


Asunto(s)
Células Artificiales , Endocitosis , Vesículas Transportadoras
18.
Proc Natl Acad Sci U S A ; 120(32): e2303402120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523531

RESUMEN

The endoplasmic reticulum (ER) and mitochondria form a unique subcellular compartment called mitochondria-associated ER membranes (MAMs). Disruption of MAMs impairs Ca2+ homeostasis, triggering pleiotropic effects in the neuronal system. Genome-wide kinase-MAM interactome screening identifies casein kinase 2 alpha 1 (CK2A1) as a regulator of composition and Ca2+ transport of MAMs. CK2A1-mediated phosphorylation of PACS2 at Ser207/208/213 facilitates MAM localization of the CK2A1-PACS2-PKD2 complex, regulating PKD2-dependent mitochondrial Ca2+ influx. We further reveal that mutations of PACS2 (E209K and E211K) associated with developmental and epileptic encephalopathy-66 (DEE66) impair MAM integrity through the disturbance of PACS2 phosphorylation at Ser207/208/213. This, in turn, causes the reduction of mitochondrial Ca2+ uptake and the dramatic increase of the cytosolic Ca2+ level, thereby, inducing neurotransmitter release at the axon boutons of glutamatergic neurons. In conclusion, our findings suggest a molecular mechanism that MAM alterations induced by pathological PACS2 mutations modulate Ca2+-dependent neurotransmitter release.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Fosforilación , Neurotransmisores/metabolismo
19.
Immunol Rev ; 308(1): 149-167, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35285967

RESUMEN

Human parturition at term and preterm is an inflammatory process synchronously executed by both fetomaternal tissues to transition them from a quiescent state t an active state of labor to ensure delivery. The initiators of the inflammatory signaling mechanism can be both maternal and fetal. The placental (fetal)-maternal immune and endocrine mediated homeostatic imbalances and inflammation are well reported. However, the fetal inflammatory response (FIR) theories initiated by the fetal membranes (amniochorion) at the choriodecidual interface are not well established. Although immune cell migration, activation, and production of proparturition cytokines to the fetal membranes are reported, cellular level events that can generate a unique set of inflammation are not well discussed. This review discusses derangements to fetal membrane cells (physiologically and pathologically at term and preterm, respectively) in response to both endogenous and exogenous factors to generate inflammatory signals. In addition, the mechanisms of inflammatory signal propagation (fetal signaling of parturition) and how these signals cause immune imbalances at the choriodecidual interface are discussed. In addition to maternal inflammation, this review projects FIR as an additional mediator of inflammatory overload required to promote parturition.


Asunto(s)
Trabajo de Parto , Placenta , Membranas Extraembrionarias/metabolismo , Femenino , Humanos , Recién Nacido , Inflamación/metabolismo , Trabajo de Parto/metabolismo , Parto/metabolismo , Placenta/metabolismo , Embarazo
20.
Traffic ; 24(6): 234-250, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37089068

RESUMEN

Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.


Asunto(s)
Endosomas , Interacciones Huésped-Patógeno , Complejos Multiproteicos , Receptores de Superficie Celular , Nexinas de Clasificación , Humanos , Nexinas de Clasificación/metabolismo , Endosomas/metabolismo , Complejos Multiproteicos/metabolismo , Red trans-Golgi/metabolismo , Salmonella typhimurium/metabolismo , Chlamydia trachomatis/metabolismo , Virus/metabolismo , Receptores de Superficie Celular/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda