Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Geochem Health ; 45(1): 41-52, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35124755

RESUMEN

Understanding and prediction of mercury (Hg) phytoavailability in vegetable-soil systems is essential for controlling food chain contamination and safe vegetable production as Hg-contaminated soils pose a serious threat to human health. In this study, four typical Chinese soils (Heilongjiang, Chongqing, Yunnan, and Jilin) with varied physicochemical properties were spiked with HgCl2 to grow sweet pepper (Capsicum annuum L.) in a pot experiment under greenhouse condition. The chemical fractionation revealed a significant decrease in exchangeable Hg, while an increase in organically bound Hg in the rhizosphere soil (RS) compared to bulk soil (BS). This observation strongly highlights the vital role of organic matter on the rhizospheric Hg transformation irrespective of contamination levels and soil properties. Stepwise multiple linear regression (SMLR) analysis between Hg concentration in plants, Hg fractions in RS and BS, and soil properties showed that Hg in plant parts was significantly influenced by soil total Hg (THg) (R2 = 0.90), soil clay (R2 = 0.99), amorphous manganese oxides (amorphous Mn) (R2 = 0.97), amorphous iron oxides (amorphous Fe) (R2 = 0.70), and available Hg (R2 = 0.97) in BS. Nevertheless, in the case of RS, Hg accumulation in plants was affected by soil THg (R2 = 0.99), amorphous Mn (R2 = 0.97), amorphous Fe oxides (R2 = 0.66), soil pH, and organically bound Hg fraction (R2 = 0.96). Among all the evaluated soils (n = 04), metal (mercury) concentration in terms of plant uptake was reported highest in the Jilin soil. Based on SMLR analysis, the results suggested that the phytoavailability of Hg was mainly determined by THg and metal oxides regardless of the rhizospheric effect. These findings facilitate the estimation of Hg phytoavailability and ecological risk that may exist from Hg-contaminated areas where pepper is the dominant vegetable.


Asunto(s)
Mercurio , Contaminantes del Suelo , Disponibilidad Biológica , China , Mercurio/análisis , Óxidos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Verduras/metabolismo
2.
Chemosphere ; 352: 141348, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340998

RESUMEN

The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.


Asunto(s)
Ecosistema , Mercurio , Agua/análisis , Oro/análisis , Suelo/química , Colombia , Mercurio/análisis , Bacterias/genética , Minería , Monitoreo del Ambiente/métodos
3.
Sci Total Environ ; 847: 157432, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35853525

RESUMEN

Soil mercury (Hg) and its bioaccumulation in food crops have attracted widespread concerns globally due to its harmful effects on biota. However, soil mercury fractionation, bioavailability, and the major factors predicting its transfer and accumulation in soil-wheat-systems have not been thoroughly explored. Twenty-one (21) soil samples collected throughout China with a wide spectrum of physico-chemical characteristics were contaminated with HgCl2 and winter wheat (Triticum aestivum L.) was grown on the soils in a greenhouse pot-culture experiment for 180 days. A four-step sequential extraction was used segregating soil Hg into water-soluble (F1, 0.21 %), exchangeable (F2, 0.07 %), organically bound (F3, 16.40 %), and residual fractions (F4, 83.32 %). Step-wise multiple linear regression (SMLR) and path analysis (PA) were used to develop a prediction model and identify the major controlling factors of soil-wheat Hg transference. The SMLR results revealed that wheat Hg in leaves, husk, and grain was positively correlated with soil total and available Hg, and crystalline manganese (Cryst-Mn), while negatively correlated with soil pH, amorphous manganese (Amor-Mn) and crystalline aluminium (Cryst-Al). Bioconcentration factor (BCF) values were significantly higher in acidic soils (highest 0.05), with phytotoxic effects in some soils, as compared to alkaline soils (lowest 0.006). Furthermore, wheat grain Hg was significantly correlated with total (R2 = 0.25), water-soluble (R2 = 0.54) and NH4Ac-extractable Hg (R2 = 0.43) while also had a good correlation with soil pH (R2 = -0.20). In conclusion, the soil total and available Hg (water-soluble + exchangeable fraction), pH, organic matter, and Amor-Mn are the most important soil variables that support Hg uptake in the wheat plants, which benefit managing Hg-enriched agricultural soils for safe wheat production.


Asunto(s)
Mercurio , Contaminantes del Suelo , Aluminio/metabolismo , Disponibilidad Biológica , Grano Comestible/química , Manganeso/análisis , Mercurio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Triticum/metabolismo , Agua/análisis
4.
Sci Total Environ ; 657: 938-944, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677959

RESUMEN

We studied the effect of different doses (0.5%, 2% and 5% (w/w)) of ammonium thiosulfate on mercury (Hg) speciation fractionation following its addition to the soil, as well as its accumulation by oilseed rape (Brassica napus L.), corn (Zea mays L.), and sweet potato (Ipomoea batatas L.), and compared them to a non-treated control in a historically polluted soil. The oilseed rape, corn, and sweet potato were planted consecutively in the same soils on days 30, 191, and 276, respectively after the addition of thiosulfate to the soil. The key results showed that bioavailable Hg contents in the rhizosphere soils ranged from 0.18 to 2.54 µg kg-1, 0.28 to 2.77 µg kg-1, and 0.24 to 2.22 µg kg-1, respectively, for the 0.5%, 2% and 5% thiosulfate treatments, which were close to the control soil (0.25 to 1.98 µg kg-1). The Hg L3-edge X-ray absorption near edge structure (XANES) results showed a tendency of the Hg speciation to transform from the Hg(SR)2 (initial soil, 56%; day-191 soil, 43%; day-276 soil, 46%, and day-356 soil, 16%) to nano particulated HgS (initial soil, 26%; day-191 soil, 42%; day-276 soil, 42%, and day-356 soil, 73%) with time in the soil treated with a 5% dose of thiosulfate. The Hg contents in the tissues of the crops, except for oilseed rape, were slightly affected by the addition of thiosulfate to the soil at all dosages, compared to the control. The addition of thiosulfate did not induce the movement of bioavailable Hg to the lower layer of the soil profile. We conclude a promotion of Hg immobilization by thiosulfate in the soil for over one year, offering a promising method for in-situ Hg remediation at Hg mining regions in China.


Asunto(s)
Productos Agrícolas/efectos de los fármacos , Restauración y Remediación Ambiental/métodos , Mercurio/química , Contaminantes del Suelo/química , Tiosulfatos/química , Disponibilidad Biológica , Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , China , Productos Agrícolas/química , Ipomoea batatas/efectos de los fármacos , Ipomoea batatas/metabolismo , Mercurio/análisis , Mercurio/farmacocinética , Minería , Rizosfera , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Espectroscopía de Absorción de Rayos X , Zea mays/efectos de los fármacos , Zea mays/metabolismo
5.
Environ Sci Pollut Res Int ; 25(28): 28682-28694, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30097984

RESUMEN

Mercury (Hg) can be introduced into the marine environment in many different ways. In the case of the Baltic Sea, rivers and atmospheric deposition are the predominant ones. However, in the face of ongoing climate change, a new potential source, coastal erosion, is starting to become more important and is currently considered to be the third largest source of Hg in the Gdansk Basin region. It is especially significant along sections of coastline where, due to the higher frequency of extreme natural phenomena such as storms, heavy rains, and floods, increased erosion processes have already been noted. Cliffs, which account for about 20% of the Polish coastline, are particularly vulnerable. The aim of the study was to estimate the annual load of labile Hg entering the Gdansk Basin as a result of coastal erosion. Samples of down-core sediments (0-65 cm) were collected in the years 2016-2017 from selected cliffs situated in the Gulf of Gdansk area. The thermodesorption method was used to distinguish between labile and stable fractions of Hg. Considering the mean total Hg concentrations in the collected sediments (9.7 ng g-1) and the mean share of labile (64%), bioavailable mercury, it was estimated that the load of labile Hg originating from coastal erosion entering the Gdansk Basin is 10.0 kg per year. The load can increase by up to 50% in the case of episodic abrasion events during heavy storms and rains.


Asunto(s)
Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Países Bálticos , Disponibilidad Biológica , Monitoreo del Ambiente , Inundaciones , Sedimentos Geológicos , Mercurio/farmacocinética , Polonia , Lluvia , Ríos , Contaminantes Químicos del Agua/farmacocinética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda