Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Brain ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990981

RESUMEN

Both sleep alterations and epileptiform activity are associated with the accumulation of amyloid-ß and tau pathology and are currently investigated for potential therapeutic interventions in Alzheimer's disease (AD). However, a bidirectional intertwining relation between sleep and neuronal hyperexcitability might modulate the effects of AD pathology on the corresponding associations. To investigate this, we performed multiple day simultaneous foramen ovale (FO) plus scalp EEG and polysomnography (PSG) recordings and acquired 18F-MK6240 tau PET-MR in three patients in the prodromal stage of AD and in two patients with mild and moderate dementia due to AD, respectively. As an eligibility criterion for the present study, subjects either had a history of a recent seizure (n = 2) or subclinical epileptiform activity (SEA) on a previous scalp EEG taken in a research context (n = 3). The 18F-MK6240 standard uptake value ratio (SUVR) and asymmetry index (AI) were calculated in a priori defined volumes of interest (VOIs). Linear mixed effects models were used to study associations between interictal epileptiform discharges (IEDs), PSG parameters and 18F-MK6240 SUVR. Epileptiform activity was bilateral but asymmetrically present on FO electrodes in all patients and ≥ 95% of IEDs were not visible on scalp EEG. In one patient two focal seizures were detected on FO electrodes, both without visual scalp EEG correlate. We observed lateralized periodic discharges, brief potentially ictal rhythmic discharges and lateralized rhythmic delta activity on FO electrodes in four patients. Unlike scalp EEG, intracranial electrodes showed a lateralization of epileptiform activity. Although the amount of IEDs on intracranial electrodes was not associated to the 18F-MK6240 SUVR binding in different VOIs, there was a congruent asymmetry of the 18F-MK6240 binding towards the most epileptic hemisphere for the mesial (P = 0.007) and lateral temporal cortex (P = 0.006). IEDs on intracranial electrodes were most abundant during slow wave sleep (SWS) (92/h) and N2 (81/h), followed by N1 (33/h) and least frequent during wakefulness (17/h) and REM sleep (9/h). The extent of IEDs during sleep was not reflected in the relative time in each sleep stage spent (REM% (P = 0.415), N1% (P = 0.668), N2% (P = 0.442), SWS% (P = 0.988)), and not associated with the arousal index (P = 0.317), apnea-hypopnea index (P = 0.846) or oxygen desaturation index (P = 0.746). Together, our observations suggest a multi-directional interaction between sleep, epileptiform activity and tau pathology in AD.

2.
Neurobiol Dis ; 199: 106596, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986718

RESUMEN

Mesial temporal lobe epilepsy (MTLE) is characterized by recurring focal seizures that arise from limbic areas and are often refractory to pharmacological interventions. We have reported that optogenetic stimulation of PV-positive cells in the medial septum at 0.5 Hz exerts seizure-suppressive effects. Therefore, we compared here these results with those obtained by optogenetic stimulation of medial septum PV-positive neurons at 8 Hz in male PV-ChR2 mice (P60-P100) undergoing an initial, pilocarpine-induced status epilepticus (SE). Optogenetic stimulation (5 min ON, 10 min OFF) was performed from day 8 to day 12 after SE at a frequency of 8 Hz (n = 6 animals) or 0.5 Hz (n = 8 animals). Surprisingly, in both groups, no effects were observed on the occurrence of interictal spikes and interictal high frequency oscillations (HFOs). However, 0.5 Hz stimulation induced a significant decrease of seizure occurrence (p < 0.05). Such anti-ictogenic effect was not observed in the 8 Hz protocol that instead triggered seizures (p < 0.05); these seizures were significantly longer under optogenetic stimulation compared to when optogenetic stimulation was not implemented (p < 0.05). Analysis of ictal HFOs revealed that in the 0.5 Hz group, but not in the 8 Hz group, seizures occurring under optogenetic stimulation were associated with significantly lower rates of fast ripples compared to when optogenetic stimulation was not performed (p < 0.05). Our results indicate that activation of GABAergic PV-positive neurons in the medial septum exerts seizure-suppressing effects that are frequency-dependent and associated with low rates of fast ripples. Optogenetic activation of medial septum PV-positive neurons at 0.5 Hz is efficient in blocking seizures in the pilocarpine model of MTLE, an effect that did not occur with 8 Hz stimulation.


Asunto(s)
Epilepsia del Lóbulo Temporal , Optogenética , Convulsiones , Animales , Optogenética/métodos , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/terapia , Masculino , Convulsiones/fisiopatología , Ratones , Pilocarpina/toxicidad , Ratones Transgénicos , Modelos Animales de Enfermedad , Tabique del Cerebro , Núcleos Septales/fisiopatología , Ratones Endogámicos C57BL
3.
Epilepsia ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302665

RESUMEN

OBJECTIVE: E2730, an uncompetitive γ-aminobutyric acid (GABA) transporter-1 (GAT-1) inhibitor, has potent anti-seizure effects in a rodent model of chronic temporal lobe epilepsy, the kainic acid status epilepticus (KASE) rat model. In this study, we examined purported neuroimaging and physiological surrogate biomarkers of the effect of E2730 on brain GABAergic function. METHODS: We conducted a randomized cross-over study, incorporating 1-week treatments with E2730 (100 mg/kg/day subcutaneous infusion) or vehicle in epileptic post-KASE rats. KASE rats underwent serial 9.4 T magnetic resonance spectroscopy (MRS) measuring GABA and other brain metabolites, [18F]Flumazenil positron emission tomography (PET) quantifying GABAA receptor availability, quantitative electroencephalography (qEEG) and transcranial magnetic stimulation (TMS)-mediated motor activity, as well as continuous video-EEG recording to measure spontaneous seizures during each treatment. Age-matched, healthy control animals treated with E2730 or vehicle were also studied. RESULTS: E2730 treatment significantly reduced spontaneous seizures, with 8 of 11 animals becoming seizure-free. MRS revealed that E2730-treated animals had significantly reduced taurine levels. [18F]Flumazenil PET imaging revealed no changes in GABA receptor affinity or density during E2730 treatment. The power of gamma frequency oscillations in the EEG was decreased significantly in the auditory cortex and hippocampus of KASE and control rats during E2730 treatment. Auditory evoked gamma frequency power was enhanced by E2730 treatment in the auditory cortex of KASE and healthy controls, but only in the hippocampus of KASE rats. E2730 did not influence motor evoked potentials triggered by TMS. SIGNIFICANCE: This study identified clinically relevant changes in multimodality imaging and functional purported biomarkers of GABAergic activity during E2730 treatment in epileptic and healthy control animals. These biomarkers could be utilized in clinical trials of E2730 and potentially other GABAergic drugs to provide surrogate endpoints, thereby reducing the cost of such trials.

4.
Epilepsia ; 65(5): 1451-1461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491957

RESUMEN

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Esclerosis del Hipocampo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Epilepsia Refractaria/genética , Epilepsia Refractaria/etiología , Epilepsia Refractaria/patología , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Filaminas/genética , Variación Genética , Esclerosis del Hipocampo/genética , Esclerosis del Hipocampo/patología , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/patología
5.
Epilepsy Behav ; 155: 109669, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663142

RESUMEN

The purpose of this study was to systematically examine three different surgical approaches in treating left medial temporal lobe epilepsy (mTLE) (viz., subtemporal selective amygdalohippocampectomy [subSAH], stereotactic laser amygdalohippocampotomy [SLAH], and anterior temporal lobectomy [ATL]), to determine which procedures are most favorable in terms of visual confrontation naming and seizure relief outcome. This was a retrospective study of 33 adults with intractable mTLE who underwent left temporal lobe surgery at three different epilepsy surgery centers who also underwent pre-, and at least 6-month post-surgical neuropsychological testing. Measures included the Boston Naming Test (BNT) and the Engel Epilepsy Surgery Outcome Scale. Fisher's exact tests revealed a statistically significant decline in naming in ATLs compared to SLAHs, but no other significant group differences. 82% of ATL and 36% of subSAH patients showed a significant naming decline whereas no SLAH patient (0%) had a significant naming decline. Significant postoperative naming improvement was seen in 36% of SLAH patients in contrast to 9% improvement in subSAH patients and 0% improvement in ATLs. Finally, there were no statistically significant differences between surgical approaches with regard to seizure freedom outcome, although there was a trend towards better seizure relief outcome among the ATL patients. Results support a possible benefit of SLAH in preserving visual confrontation naming after left TLE surgery. While result interpretation is limited by the small sample size, findings suggest outcome is likely to differ by surgical approach, and that further research on cognitive and seizure freedom outcomes is needed to inform patients and providers of potential risks and benefits with each.


Asunto(s)
Lobectomía Temporal Anterior , Epilepsia del Lóbulo Temporal , Pruebas Neuropsicológicas , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Resultado del Tratamiento , Epilepsia del Lóbulo Temporal/cirugía , Estudios Retrospectivos , Lobectomía Temporal Anterior/métodos , Lobectomía Temporal Anterior/efectos adversos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Adulto Joven , Convulsiones/cirugía , Procedimientos Neuroquirúrgicos/métodos , Lóbulo Temporal/cirugía
6.
Neurol Sci ; 45(5): 2223-2243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37994963

RESUMEN

OBJECTIVE: The aim of this investigation was to determine whether a correlation could be discerned between perfusion acquired through ASL MRI and metabolic data acquired via 18F-fluorodeoxyglucose (18F-FDG) PET in mesial temporal lobe epilepsy (mTLE). METHODS: ASL MRI and 18F-FDG PET data were gathered from 22 mTLE patients. Relative cerebral blood flow (rCBF) asymmetry index (AIs) were measured using ASL MRI, and standardized uptake value ratio (SUVr) maps were obtained from 18F-FDG PET, focusing on bilateral vascular territories and key bitemporal lobe structures (amygdala, hippocampus, and parahippocampus). Intra-group comparisons were carried out to detect hypoperfusion and hypometabolism between the left and right brain hemispheres for both rCBF and SUVr in right and left mTLE. Correlations between the two AIs computed for each modality were examined. RESULTS: Significant correlations were observed between rCBF and SUVr AIs in the middle temporal gyrus, superior temporal gyrus, and hippocampus. Significant correlations were also found in vascular territories of the distal posterior, intermediate anterior, intermediate middle, proximal anterior, and proximal middle cerebral arteries. Intra-group comparisons unveiled significant differences in rCBF and SUVr between the left and right brain hemispheres for right mTLE, while hypoperfusion and hypometabolism were infrequently observed in any intracranial region for left mTLE. CONCLUSION: The study's findings suggest promising concordance between hypometabolism estimated by 18F-FDG PET and hypoperfusion determined by ASL perfusion MRI. This raises the possibility that, with prospective technical enhancements, ASL perfusion MRI could be considered an alternative modality to 18F-FDG PET in the future.


Asunto(s)
Epilepsia del Lóbulo Temporal , Radioisótopos de Flúor , Fluorodesoxiglucosa F18 , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Estudios Prospectivos , Perfusión , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
7.
Neurol Neurochir Pol ; 58(3): 292-299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393960

RESUMEN

AIM OF THE STUDY: To assess whether the middle temporal gyrus (MTG) approach to mesial temporal lobe (MTL) tumours is an effective procedure for the treatment of epilepsy in children. CLINICAL RATIONALE FOR THE STUDY: MTL tumours are a common cause of drug-resistant epilepsy in children. There is as yet no consensus regarding their treatment. One possibility is resection via a MTG approach. MATERIAL AND METHODS: We assessed the medical records of patients treated at the Department of Neurosurgery, Children's Memorial Health Institute,Warsaw, Poland between 2002 and 2020. A prospectively maintained database including clinical, laboratory, and radiographic presentation, as well as pre- and post-operative course, was analysed. Patients with at least a one- -year follow-up were included. RESULTS: There were 14 patients aged 4-18 years who underwent a MTG approach for a MTL tumour. All presented with epileptic seizure, and none had neurological deficit on admission to hospital. Median follow-up was 2.5 years. Neuronavigation was used to adjust the approach, localise the temporal horn, and achieve radical resection of the tumour and the hippocampus. Gross total resection was performed in all cases. In most patients, histopathological examination revealed ganglioglioma. One patient had transient aphasia. Two patients developed hemiparesis after surgery, which later improved. One of them also experienced visual disturbances. Acute complications were more frequent in younger patients (p = 0.024). In all cases, MRI confirmed complete resection and there was no tumour recurrence during the follow-up period. 13/14 patients remained seizure-free (Engel class I). CONCLUSIONS AND CLINICAL IMPLICATIONS: The MTG approach to MTL tumours is an effective procedure for the treatment of epilepsy in children. It avoids removal of the lateral temporal lobe and poses only a minor risk of permanent neurological complications.


Asunto(s)
Neoplasias Encefálicas , Lóbulo Temporal , Humanos , Niño , Femenino , Masculino , Adolescente , Preescolar , Lóbulo Temporal/cirugía , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Polonia , Procedimientos Neuroquirúrgicos/métodos , Resultado del Tratamiento , Ganglioglioma/cirugía , Ganglioglioma/patología , Ganglioglioma/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Neuronavegación/métodos
8.
J Neurophysiol ; 129(5): 1218-1223, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37073973

RESUMEN

Emerging evidence suggests that the medial septum can control seizures occurring in focal epileptic disorders, thus representing a therapeutic target. Therefore, we investigated whether continuous optogenetic activation of inhibitory parvalbumin (PV)-positive interneurons in the medial septum can reduce the occurrence of spontaneous seizures in the pilocarpine model of mesial temporal lobe epilepsy (MTLE). Light pulses (450 nm, 25 mW, 20-ms pulse duration) were delivered at 0.5 Hz (5 min ON, 10 min OFF) with a laser diode fiber light source between day 8 and day 12 after status epilepticus (SE) in PV-ChR2 mice (n = 8). Seizure rates were significantly lower during time periods of optogenetic stimulation (days 8-12) compared with before implementation of optogenetics (days 4-7) (P < 0.05). Moreover, between day 13 and day 21 after SE seizure rates were still significantly lower compared with before optogenetic stimulation (i.e., between day 4 and day 7) (P < 0.05). No seizures were recorded between day 10 and day 12 in all animals, and no seizures occurred up to 3 days after the end of optogenetic stimulation (days 13-15). Our findings indicate that activation of PV interneurons in the medial septum abates seizures in the pilocarpine model of MTLE. Moreover, the persisting anti-ictogenic effects suggest that stimulation of the medial septum could alter the progression of MTLE.NEW & NOTEWORTHY The medial septum could represent a therapeutic target to treat patients with focal epilepsy. In this study, we show that optogenetic activation of inhibitory parvalbumin-positive interneurons in the medial septum can block spontaneous seizures and prevents their reoccurrence for ∼5 days after the end of stimulation. Our findings suggest that the anti-ictogenic effects induced by stimulation of the medial septum could also alter the progression of mesial temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratones , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/terapia , Optogenética , Pilocarpina/toxicidad , Parvalbúminas/metabolismo , Estado Epiléptico/inducido químicamente , Hipocampo/metabolismo , Modelos Animales de Enfermedad
9.
Neurobiol Dis ; 180: 106065, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907521

RESUMEN

Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Humanos , Epilepsia del Lóbulo Temporal/inducido químicamente , Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Electroencefalografía
10.
Hippocampus ; 33(11): 1189-1196, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37587770

RESUMEN

Mesial temporal lobe epilepsy is one of the most common causes of refractory epilepsy worldwide. A good percentage of patients do not have detectable hippocampal atrophy on magnetic resonance imaging (MRI). The objective of this study is to evaluate whether T2 relaxometry can identify hippocampal pathology and lateralize the epileptic focus in patients with intractable temporal lobe epilepsy (TLE). T2 relaxometry can also be used to correlate the clinical severity of the disease with the relaxometry readings in those who have hippocampal atrophy as well as those who do not. Thirty two patients having clinical and electrophysiological features of TLE were enrolled and a MRI brain with T2 relaxometry was done. Hippocampal T2 relaxometry values were calculated in the head, body, and tail of the hippocampus and average T2 relaxometry values were calculated, and a comparison was done with the controls. For patients with unilateral involvement, the contralateral side was taken as control and in cases of bilateral involvement, controls were identified from normal subjects. T2 relaxometry is found to be superior to MR visual analysis in the early detection of cases of hippocampal sclerosis where there is no atrophy on visual analysis. Nine out of 32 patients (28%) were normal on MR visual analysis; however, showed increased values on T2 relaxometry, correlating with clinical and electrophysiological diagnosis. The rest of the patients with hippocampal atrophy showed a correlation of T2 relaxometry values with the degree of atrophy. The hippocampal T2 measurement is thus more sensitive and specific. The study was clinically significant (p < .0001). There was a mild female predilection of the disease and there was no significant correlation with comorbidities. There was a strong positive correlation with patients having a history of febrile seizures in childhood. T2 relaxometry may accurately lateralize the majority of patients with persistent TLE and offers evidence of hippocampus injury in those patients who do not show evidence of atrophy on MRI and also the T2 relaxometry values correlated with the degree of atrophy. Early identification of hippocampal sclerosis is crucial for prompt management which offers better outcomes.


Asunto(s)
Epilepsia del Lóbulo Temporal , Esclerosis del Hipocampo , Enfermedades Neurodegenerativas , Humanos , Femenino , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Estudios Transversales , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Imagen por Resonancia Magnética/métodos , Enfermedades Neurodegenerativas/patología , Atrofia , Esclerosis/diagnóstico por imagen , Esclerosis/patología
11.
Hippocampus ; 33(3): 223-240, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36421040

RESUMEN

The CA2 pyramidal cells are mostly resistant to cell death in mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis, but they are aberrantly integrated into the epileptic hippocampal network via mossy fiber sprouting. Furthermore, they show increased excitability in vitro in hippocampal slices obtained from human MTLE specimens or animal epilepsy models. Although these changes promote CA2 to contribute to epileptic activity (EA) in vivo, the role of CA2 in the epileptic network within and beyond the sclerotic hippocampus is still unclear. We used the intrahippocampal kainate mouse model for MTLE, which recapitulates most features of the human disease including pharmacoresistant epileptic seizures and hippocampal sclerosis, with preservation of dentate gyrus (DG) granule cells and CA2 pyramidal cells. In vivo recordings with electrodes in CA2 and the DG showed that EA occurs at high coincidence between the ipsilateral DG and CA2 and current source density analysis of silicon probe recordings in dorsal ipsilateral CA2 revealed CA2 as a local source of EA. Cell-specific viral tracing in Amigo2-icreERT2 mice confirmed the preservation of the axonal projection from ipsilateral CA2 pyramidal cells to contralateral CA2 under epileptic conditions and indeed, EA propagated from ipsi- to contralateral CA2 with increasing likelihood with time after KA injection, but always at lower intensity than within the ipsilateral hippocampus. Furthermore, we show that CA2 presents with local theta oscillations and like the DG, shows a pathological reduction of theta frequency already from 2 days after KA onward. The early changes in activity might be facilitated by the loss of glutamic acid decarboxylase 67 (Gad67) mRNA-expressing interneurons directly after the initial status epilepticus in ipsi- but not contralateral CA2. Together, our data highlight CA2 as an active player in the epileptic network and with its contralateral connections as one possible router of aberrant activity.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Ratones , Humanos , Animales , Giro Dentado/metabolismo , Hipocampo/metabolismo , Epilepsia/patología , Epilepsia del Lóbulo Temporal/patología , Convulsiones/patología , Ácido Kaínico , Fibras Musgosas del Hipocampo/metabolismo
12.
Neuropathol Appl Neurobiol ; 49(4): e12926, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37483117

RESUMEN

AIMS: Mesial temporal lobe epilepsy without hippocampal sclerosis (no-HS MTLE) refers to those MTLE patients who have neither magnetic resonance imaging (MRI) lesions nor definite pathological evidence of hippocampal sclerosis. They usually have resistance to antiepileptic drugs, difficulties in precise seizure location and poor surgical outcomes. Adenosine is a neuroprotective neuromodulator that acts as a seizure terminator in the brain. The role of adenosine in no-HS MTLE is still unclear. Further research to explore the aetiology and pathogenesis of no-HS MTLE may help to find new therapeutic targets. METHODS: In surgically resected hippocampal specimens, we examined the maladaptive changes of the adenosine system of patients with no-HS MTLE. In order to better understand the dysregulation of the adenosine pathway in no-HS MTLE, we developed a rat model based on the induction of focal cortical lesions through a prenatal freeze injury. RESULTS: We first examined the adenosine system in no-HS MTLE patients who lack hippocampal neuronal loss and found ectopic expression of the astrocytic adenosine metabolising enzyme adenosine kinase (ADK) in hippocampal pyramidal neurons, as well as downregulation of neuronal A1 receptors (A1 Rs) in the hippocampus. In the no-HS MTLE model rats, the transition of ADK from neuronal expression to an adult pattern of glial expression in the hippocampus was significantly delayed. CONCLUSIONS: Ectopic expression of neuronal ADK might be a pathological hallmark of no-HS MTLE. Maladaptive changes in adenosine metabolism might be a novel target for therapeutic intervention in no-HS MTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Esclerosis del Hipocampo , Animales , Ratas , Epilepsia del Lóbulo Temporal/patología , Adenosina Quinasa/metabolismo , Expresión Génica Ectópica , Convulsiones/patología , Imagen por Resonancia Magnética , Hipocampo/patología , Biomarcadores/metabolismo , Esclerosis/patología
13.
Cell Mol Neurobiol ; 43(1): 367-380, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35061107

RESUMEN

The pilocarpine-induced (PILO) model has helped elucidate the electrophysiological and molecular aspects related to mesial temporal lobe epilepsy. It has been suggested that the extensive cell death and edema observed in the brains of these animals could be induced by increased inflammatory responses, such as the rapid release of the inflammatory cytokine interleukin 1 beta (Il1b). In this study, we investigate the role of endogenous Il1b in the acute phase of the PILO model. Our aim is twofold. First, we want to determine whether it is feasible to silence Il1b in the central nervous system using a non-invasive procedure. Second, we aim to investigate the effect of silencing endogenous Il1b and its antagonist, Il1rn.We used RNA interference applied non-invasively to knockdown Il1b and its endogenous antagonist Il1rn. We found that knocking down Il1b prior to pilocarpine injection increased the mortality rate of treated animals. Furthermore, we observed that, when exposing the animals to more Il1b by silencing its endogenous antagonist Il1rn, there was a better response to status epilepticus with decreased animal mortality in the acute phase of the PILO model. Thus, we show the feasibility of using a novel, less invasive approach to study genes involved in the inflammatory response in the central nervous system. Furthermore, our results provide suggestive evidence that modulating endogenous Il1b improves animal survival in the acute phase of the PILO model and may have effects that extend into the chronic phase.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Animales , Pilocarpina/efectos adversos , Pilocarpina/metabolismo , Interleucina-1beta/metabolismo , Epilepsia/inducido químicamente , Epilepsia/genética , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo
14.
Epilepsia ; 64(5): 1175-1189, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36807867

RESUMEN

Animal models of human brain disorders permit researchers to explore disease mechanisms and to test potential therapies. However, therapeutic molecules derived from animal models often translate poorly to the clinic. Although human data may be more relevant, experiments on patients are constrained, and living tissue is unavailable for many disorders. Here, we compare work on animal models and on human tissue for three epileptic syndromes where human tissue is excised therapeutically: (1) acquired temporal lobe epilepsies, (2) inherited epilepsies associated with cortical malformations, and (3) peritumoral epilepsies. Animal models rest on assumed equivalencies between human brains and brains of mice, the most frequently used model animal. We ask how differences between mouse and human brains could influence models. General principles and compromises in model construction and validation are examined for a range of neurological diseases. Models may be judged on how well they predict novel therapeutic molecules or new mechanisms. The efficacy and safety of new molecules are evaluated in clinical trials. We judge new mechanisms by comparing data from work on animal models with data from work on patient tissue. In conclusion, we stress the need to cross-verify findings from animal models and from living human tissue to avoid the assumption that mechanisms are identical.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Síndromes Epilépticos , Humanos , Animales , Ratones , Epilepsia/genética , Epilepsia/terapia , Encéfalo , Modelos Animales
15.
Eur J Neurol ; 30(12): 3692-3702, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650365

RESUMEN

BACKGROUND AND PURPOSE: The specific effects of antiseizure medications (ASMs) on cognition are a rich field of study, with many ongoing questions. The aim of this study was to evaluate these effects in a homogeneous group of patients with epilepsy to guide clinicians to choose the most appropriate medications. METHODS: We retrospectively identified 287 refractory patients with medial temporal lobe epilepsy associated with hippocampal sclerosis. Scores measuring general cognition (global, verbal and performance IQ), working memory, episodic memory, executive functions, and language abilities were correlated with ASM type, number, dosage and generation (old vs. new). We also assessed non-modifiable factors affecting cognition, such as demographics and epilepsy-related factors. RESULTS: Key parameters were total number of ASMs and specific medications, especially topiramate (TPM) and sodium valproate (VPA). Four cognitive profiles of the ASMs were identified: (i) drugs with an overall detrimental effect on cognition (TPM, VPA); (ii) drugs with negative effects on specific areas: verbal memory and language skills (carbamazepine), and language functions (zonisamide); (iii) drugs affecting a single function in a specific and limited area: visual denomination (oxcarbazepine, lacosamide); and (iv) drugs without documented cognitive side effects. Non-modifiable factors such as age at testing, age at seizure onset, and history of febrile seizures also influenced cognition and were notably influenced by total number of ASMs. CONCLUSION: We conclude that ASMs significantly impact cognition. Key parameters were total number of ASMs and specific medications, especially TPM and VPA. These results should lead to a reduction in the number of drugs received and the avoidance of medications with unfavorable cognitive profiles.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Anticonvulsivantes/efectos adversos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Estudios Retrospectivos , Fructosa/efectos adversos , Topiramato/uso terapéutico , Topiramato/farmacología , Epilepsia/tratamiento farmacológico , Cognición , Memoria a Corto Plazo
16.
Brain Topogr ; 36(2): 192-209, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732440

RESUMEN

Epileptic source detection relies mainly on visual expertise of scalp EEG signals, but it is recognised that epileptic discharges can escape to this expertise due to a deep localization of the brain sources that induce a very low, even negative, signal to noise ratio. In this methodological study, we aimed to investigate the feasibility of extracting deep mesial temporal sources that were invisible in scalp EEG signals using blind source separation (BSS) methods (infomax ICA, extended infomax ICA, and JADE) combined with a statistical measure (kurtosis). We estimated the effect of different methodological and physiological parameters that could alter or improve the extraction. Using nine well-defined mesial epileptic networks (1949 spikes) obtained from seven patients and simultaneous EEG-SEEG recordings, the first independent component extracted from the scalp EEG signals was validated in mean from 46 to 80% according to the different parameters. The three BSS methods equally performed (no significant difference) and no influence of the number of scalp electrodes used was found. At the opposite, the number and amplitude of spikes included in the averaging before the extraction modified the performance. Anyway, despite their invisibility in scalp EEG signals, this study demonstrates that deep source extraction is feasible under certain conditions and with the use of common signal analysis toolboxes. This finding confirms the crucial need to continue the signal analysis of scalp EEG recordings which contains subcortical signals that escape to expert visual analysis but could be found by signal processing.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Encéfalo , Electrodos , Mapeo Encefálico
17.
Epilepsy Behav ; 138: 109003, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470059

RESUMEN

OBJECTIVE: We investigated the network between the medial temporal lobe (MTL) and extratemporal structures in patients with mesial temporal lobe epilepsy (MTLE) in order to explain the recurrence of MTLE after surgery. This study contributes to our current understanding of MTLE with stereotactic electroencephalography (SEEG). METHODS: We conducted a retrospective study of SEEG in 20 patients with MTLE in order to observe and analyze the intensity of interictal high-frequency oscillations (HFOs), as well as the dynamic course of coherence connectivity values of the MTL and extratemporal structures during the initial phase of the seizure. The results correlated with the patient prognosis. RESULTS: First, the presence of HFOs was observed during the interictal period in all 20 patients; these were localized to the MTL in 17 patients and the orbitofrontal cortex in seven patients and the insula in six patients. The better the prognosis, the greater the localization of the HFOs concentration in the MTL structures (p < 0.05). Second, significantly enhanced connectivity of MTL structures with the orbitofrontal cortex and insula was observed in most patients with MTLE, before and after the seizure onset (p < 0.05). Finally, the connectivity between extratemporal structures, such as the orbitofrontal cortex and insula, and MTL structures was significantly stronger in patients who had a worse prognosis than in other patients, before and after seizure onset (p < 0.05). INTERPRETATION: The epileptogenic network in recurrent MTLE is not limited to MTL structures but is also associated with the orbitofrontal cortex and insula. This can be used as a potential indicator for predicting the prognosis of patients after surgery, providing an important avenue for future clinical evaluation.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Estudios Retrospectivos , Convulsiones , Electroencefalografía/métodos , Pronóstico , Corteza Prefrontal , Imagen por Resonancia Magnética , Hipocampo
18.
Epilepsy Behav ; 143: 109244, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37192585

RESUMEN

BACKGROUND AND OBJECTIVES: Neuropsychological research on mesial temporal lobe epilepsy (MTLE) often highlights material-specific memory deficits, but a lesion-focused model may not accurately reflect the underlying networks that support episodic memory in these patients. Our study evaluated the pathophysiology behind verbal learning/memory deficits as revealed by hypometabolism quantified through 18-fluorodeoxyglucose positron emission tomography (FDG-PET). METHODS: This retrospective study included thirty presurgical patients with intractable unilateral MTLE who underwent interictal FDG-PET and verbal memory assessment (12 females, mean age: 38.73 years). Fluorodeoxyglucose-positron emission tomography mapping was performed with voxel-based mapping of glucose utilization to a database of age-matched controls to derive regional Z-scores. Neuropsychological outcome variables included scores on learning and recall trials of two distinct verbal memory measures validated for use in epilepsy research. Pearson's correlations evaluated relationships between clinical variables and verbal memory. Linear regression was used to relate regional hypometabolism and verbal memory assessment. Post hoc analyses assessed areas of FDG-PET hypometabolism (threshold Z ≤ -1.645 below mean) where verbal memory was impaired. RESULTS: Verbal memory deficits correlated with hypometabolism in limbic structures ipsilateral to language dominance but also correlated with hypometabolism in networks involving the ipsilateral perisylvian cortex and contralateral limbic and nonlimbic structures. DISCUSSION: We conclude that traditional models of verbal memory may not adequately capture cognitive deficits in a broader sample of patients with MTLE. This study has important implications for epilepsy surgery protocols that use neuropsychological data and FDG-PET to draw conclusions about surgical risks.


Asunto(s)
Epilepsia del Lóbulo Temporal , Memoria Episódica , Femenino , Humanos , Adulto , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/psicología , Fluorodesoxiglucosa F18 , Estudios Retrospectivos , Tomografía de Emisión de Positrones/métodos , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/etiología
19.
Cereb Cortex ; 32(24): 5555-5568, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35149867

RESUMEN

Brain network alterations have been studied extensively in patients with mesial temporal lobe epilepsy (mTLE) and other focal epilepsies using resting-state functional magnetic resonance imaging (fMRI). However, little has been done to characterize the basic fMRI signal alterations caused by focal epilepsy. Here, we characterize how mTLE affects the fMRI signal in epileptic foci and networks. Resting-state fMRI and diffusion MRI were collected from 47 unilateral mTLE patients and 96 healthy controls. FMRI activity, quantified by amplitude of low-frequency fluctuations, was increased in the epileptic focus and connected regions in mTLE. Evidence for spread of this epileptic fMRI activity was found through linear relationships of regional activity across subjects, the association of these relationships with functional connectivity, and increased activity along white matter tracts. These fMRI activity increases were found to be dependent on the epileptic focus, where the activity was related to disease severity, suggesting the focus to be the origin of these pathological alterations. Furthermore, we found fMRI activity decreases in the default mode network of right mTLE patients with different properties than the activity increases found in the epileptic focus. This work provides insights into basic fMRI signal alterations and their potential spread across networks in focal epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Epilepsia del Lóbulo Temporal/patología , Descanso , Mapeo Encefálico , Encéfalo
20.
Acta Neurochir (Wien) ; 165(5): 1215-1226, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36867249

RESUMEN

INTRODUCTION: At present, selective amygdalohippocampectomy (SAH) has become popular in the treatment of drug-resistant mesial temporal lobe epilepsy (TLE). However, there is still an ongoing discussion about the advantages and disadvantages of this approach. METHODS: The study included a consecutive series of 43 adult patients with drug-resistant TLE, involving 24 women and 19 men (1.8/1). Surgeries were performed at the Burdenko Neurosurgery Center from 2016 to 2019. To perform subtemporal SAH through the burr hole with the diameter of 14 mm, we used two types of approaches: preauricular, 25 cases, and supra-auricular, 18 cases. The follow-up ranged from 36 to 78 months (median 59 months). One patient died 16 months after surgery (accident). RESULTS: By the third year after surgery, Engel I outcome was achieved in 80.9% (34 cases) of cases and Engel II in 4 (9.5%) and Engel III and Engel IV in 4 (9.6%) cases. Among the patients with Engel I outcomes, anticonvulsant therapy was completed in 15 (44.1%), and doses were reduced in 17 (50%) cases. Verbal and delayed verbal memory decreased after surgery in 38.5% and 46.1%, respectively. Verbal memory was mainly affected by preauricular approach in comparison with supra-auricular (p = 0.041). In 15 (51.7%) cases, minimal visual field defects were detected in the upper quadrant. At the same time, visual field defects did not extend into the lower quadrant and inside the 20° of the upper affected quadrant in any case. CONCLUSIONS: Burr hole microsurgical subtemporal SAH is an effective surgical procedure for drug-resistant TLE. It involves minimal risks of loss of visual field within the 20° of the upper quadrant. Supra-auricular approach, compared to preauricular, results in a reduction in the incidence of upper quadrant hemianopia and is associated with a lower risk of verbal memory impairment.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Adulto , Masculino , Humanos , Femenino , Epilepsia del Lóbulo Temporal/cirugía , Amígdala del Cerebelo/cirugía , Hipocampo/cirugía , Resultado del Tratamiento , Lóbulo Temporal/cirugía , Epilepsia Refractaria/cirugía
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda