Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Appl Environ Microbiol ; 90(5): e0026824, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38619268

RESUMEN

A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.


Asunto(s)
Dióxido de Carbono , Methanobacteriaceae , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , ARN Ribosómico 16S/genética , Genoma Arqueal , Filogenia , Fenotipo , Aguas Residuales/microbiología , Metano/metabolismo , Nutrientes/metabolismo
2.
Environ Res ; 245: 118031, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157970

RESUMEN

Bioaugmentation technology for improving the performance of thermophilic anaerobic digestion (TAD) of food waste (FW) treatment is gaining more attention. In this study, four thermophilic strains (Ureibacillus suwonensis E11, Clostridium thermopalmarium HK1, Bacillus thermoamylovorans Y25 and Caldibacillus thermoamylovorans QK5) were inoculated in the TAD of FW system, and the biochemical methane potential (BMP) batch study was conducted to assess the potential of different bioaugmented strains to enhance methane production. The results showed that the cumulative methane production in groups inoculated with E11, HK1, Y25 and QK5 improved by 2.05%, 14.54%, 19.79% and 9.17%, respectively, compared with the control group with no inoculation. Moreover, microbial community composition analysis indicated that the relative abundance of the main hydrolytic bacteria and/or methanogenic archaea was increased after bioaugmentation, and the four strains successfully became representative bacterial biomarkers in each group. The four strains enhanced methane production by strengthening starch, sucrose, galactose, pyruvate and methane metabolism functions. Further, the correlation networks demonstrated that the representative bacterial genera had positive correlations with the differential metabolic functions in each bioaugmentation group. This study provides new insights into the TAD of FW with bioaugmented strains.


Asunto(s)
Bacillus , Alimento Perdido y Desperdiciado , Eliminación de Residuos , Anaerobiosis , Alimentos , Bacterias/metabolismo , Metano , Reactores Biológicos , Aguas del Alcantarillado/microbiología
3.
Antonie Van Leeuwenhoek ; 117(1): 107, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060562

RESUMEN

Wetwood of living trees is a habitat of methanogenic archaea, but the ubiquity of methanogenic archaea in the trunk of various trees has not been revealed. The present study analysed methanogenic archaeal communities inside coniferous and broadleaved trees in a cold temperate mountain forest by culture-dependent or independent techniques. Heartwood and sapwood segments were obtained from the trunk of seven tree species, Cryptomeria japonica, Quercus crispula, Fraxinus mandshurica, Acer pictum, Aesculus turbinata, Magnolia obovata, and Populus tremula. Amplicon sequencing analysis of 16S rRNA genes showed that Methanobacteriaceae predominated the archaeal communities and Methanomassiliicoccaceae also inhabited some trees. Real-time PCR analysis detected methanogenic archaeal mcrA genes from all the tree species, with a maximum of 107 copies g-1 dry wood. Digital PCR analysis also detected mcrA genes derived from Methanobacterium spp. and Methanobrevibacter spp. from several samples, with a maximum of 105 and 104 copies g-1 dry wood. The enumeration by the most probable number method demonstrated the inhabitation of viable methanogenic archaea inside the trees; 106 cells g-1 dry wood was enumerated from a heartwood sample of C. japonica. Methanogenic archaea related to Methanobacterium beijingense were cultivated from a heartwood sample of Q. crispula and F. mandshurica. The present study demonstrated that the inside of various trees is a common habitat for methanogenic archaeal communities and a potential source of methane in forest ecosystems.


Asunto(s)
Bosques , Metano , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Metano/metabolismo , Árboles/microbiología , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Archaea/aislamiento & purificación , Madera/microbiología , ADN de Archaea/genética
4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33688044

RESUMEN

Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.


Asunto(s)
Proteínas Arqueales/metabolismo , Ligasas/metabolismo , Methanocaldococcus/enzimología , Methanosarcina/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Cristalografía por Rayos X , Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Especificidad por Sustrato
5.
BMC Biol ; 21(1): 59, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949471

RESUMEN

BACKGROUND: With an increasing interest in the manipulation of methane produced from livestock cultivation, the microbiome of Australian marsupials provides a unique ecological and evolutionary comparison with 'low-methane' emitters. Previously, marsupial species were shown to be enriched for novel lineages of Methanocorpusculum, as well as Methanobrevibacter, Methanosphaera, and Methanomassiliicoccales. Despite sporadic reports of Methanocorpusculum from stool samples of various animal species, there remains little information on the impacts of these methanogens on their hosts. RESULTS: Here, we characterise novel host-associated species of Methanocorpusculum, to explore unique host-specific genetic factors and their associated metabolic potential. We performed comparative analyses on 176 Methanocorpusculum genomes comprising 130 metagenome-assembled genomes (MAGs) recovered from 20 public animal metagenome datasets and 35 other publicly available Methanocorpusculum MAGs and isolate genomes of host-associated and environmental origin. Nine MAGs were also produced from faecal metagenomes of the common wombat (Vombatus ursinus) and mahogany glider (Petaurus gracilis), along with the cultivation of one axenic isolate from each respective animal; M. vombati (sp. nov.) and M. petauri (sp. nov.). CONCLUSIONS: Through our analyses, we substantially expand the available genetic information for this genus by describing the phenotypic and genetic characteristics of 23 host-associated species of Methanocorpusculum. These lineages display differential enrichment of genes associated with methanogenesis, amino acid biosynthesis, transport system proteins, phosphonate metabolism, and carbohydrate-active enzymes. These results provide insights into the differential genetic and functional adaptations of these novel host-associated species of Methanocorpusculum and suggest that this genus is ancestrally host-associated.


Asunto(s)
Metano , Microbiota , Animales , Australia , Metano/metabolismo , Metagenoma
6.
Appl Environ Microbiol ; 89(4): e0178622, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36920214

RESUMEN

Methane-producing archaea play a crucial role in the global carbon cycle and are used for biotechnological fuel production. Methanogenic model organisms such as Methanococcus maripaludis and Methanosarcina acetivorans have been biochemically characterized and can be genetically engineered by using a variety of existing molecular tools. The anaerobic lifestyle and autofluorescence of methanogens, however, restrict the use of common fluorescent reporter proteins (e.g., GFP and derivatives), which require oxygen for chromophore maturation. Recently, the use of a novel oxygen-independent fluorescent activation and absorption-shifting tag (FAST) was demonstrated with M. maripaludis. Similarly, we now describe the use of the tandem activation and absorption-shifting tag protein 2 (tdFAST2), which fluoresces when the cell-permeable fluorescent ligand (fluorogen) 4-hydroxy-3,5-dimethoxybenzylidene rhodanine (HBR-3,5DOM) is present. Expression of tdFAST2 in M. acetivorans and M. maripaludis is noncytotoxic and tdFAST2:HBR-3,5DOM fluorescence is clearly distinguishable from the autofluorescence. In flow cytometry experiments, mixed methanogen cultures can be distinguished, thereby allowing for the possibility of high-throughput investigations of the characteristic dynamics within single and mixed cultures. IMPORTANCE Methane-producing archaea play an essential role in the global carbon cycle and demonstrate great potential for various biotechnological applications, e.g., biofuel production, carbon dioxide capture, and electrochemical systems. Oxygen sensitivity and high autofluorescence hinder the use of common fluorescent proteins for studying methanogens. By using tdFAST2:HBR-3,5DOM fluorescence, which functions under anaerobic conditions and is distinguishable from the autofluorescence, real-time reporter studies and high-throughput investigation of the mixed culture dynamics of methanogens via flow cytometry were made possible. This will further help accelerate the sustainable exploitation of methanogens.


Asunto(s)
Archaea , Metano , Archaea/metabolismo , Citometría de Flujo , Metano/metabolismo , Methanosarcina/metabolismo
7.
RNA Biol ; 20(1): 760-773, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37731260

RESUMEN

Ribosomal RNA (rRNA) processing and maturation are fundamentally important for ribosome biogenesis, but the mechanisms in archaea, the third form of life, remains largely elusive. This study aimed to investigate the rRNA maturation process in Methanococcus maripaludis, a representative archaeon lacking known 3'-5' exonucleases. Through cleavage site identification and enzymatic assays, the splicing endonuclease EndA was determined to process the bulge-helix-bulge (BHB) motifs in 16S and 23S rRNA precursors. After splicing, the circular processing intermediates were formed and this was confirmed by quantitative RT-PCR and Northern blot. Ribonuclease assay revealed a specific cleavage at a 10-nt A/U-rich motif at the mature 5' end of pre-16S rRNA, which linearized circular pre-16S rRNA intermediate. Further 3'-RACE and ribonuclease assays determined that the endonuclease Nob1 cleaved the 3' extension of pre-16S rRNA, and so generated the mature 3' end. Circularized RT-PCR (cRT-PCR) and 5'-RACE identified two cleavage sites near helix 1 at the 5' end of 23S rRNA, indicating that an RNA structure-based endonucleolytic processing linearized the circular pre-23S rRNA intermediate. In the maturation of pre-5S rRNA, multiple endonucleolytic processing sites were determined at the 10-nt A/U-rich motif in the leader and trailer sequence. This study demonstrates that endonucleolytic processing, particularly at the 10-nt A/U-rich motifs play an essential role in the pre-rRNA maturation of M. maripaludis, indicating diverse pathways of rRNA maturation in archaeal species.


Asunto(s)
Methanococcus , ARN Ribosómico 23S , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Methanococcus/genética , ARN Ribosómico 5S , Archaea , Ribonucleasas
8.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37475660

RESUMEN

AIM: The aim of this study was to investigate the in vitro dose-dependent effects of sigla storax (Styrax liquidus) on rumen microbiota and rumen microbial fermentation in comparison to monensin as a positive control. METHODS AND RESULTS: This study was carried out using a rumen simulation model (Rusitec). Treatments consisted of no additive (control), 10 mg l-1 of monensin sodium salt, 100 mg l-1 (Low-Sigla), and 500 mg l-1 (High-Sigla) of sigla storax (n = 6/treatment). In addition to rumen fermentation characteristics, rumen microbial composition was investigated using 16S rRNA sequencing. The methane variables and the acetate to propionate ratio decreased in the both High-Sigla and monensin groups (P < 0.05). High-Sigla had no effect on ammonia, total SCFA and nutrition degradation, while monensin decreased these parameters (P < 0.05). Unlike monensin, the sigla storax treatments did not affect the alpha or beta diversity indexes of the microbiota. The relative abundance of Methanomethylophilaceae and Ruminococcaceae decreased with High-Sigla and monensin (P < 0.05), and Atopobiaceae and Eggerthellaceae decreased with the both doses of sigla storax as well as monensin treatments (P < 0.05). Syntrophococcus, DNF00809, and Kandleria were among the genera that most decreased with High-Sigla and monensin (Q < 0.07) and were strongly positively correlated with methane production (r = 0.52-0.56). CONCLUSIONS: The high dose of sigla storax (500 mg l-1) decreased methane in the rumen ecosystem without adverse effects on nutrient degradation and SCFA production, and without dramatically impacting the microbial composition. Sigla storax might be a novel feed additive to mitigate methane in cattle.


Asunto(s)
Liquidambar , Microbiota , Animales , Bovinos , Monensina/farmacología , Monensina/metabolismo , Fermentación , Liquidambar/metabolismo , Rumen/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Styrax/metabolismo , Metano/metabolismo , Nutrientes , Dieta/veterinaria , Alimentación Animal
9.
Appl Microbiol Biotechnol ; 107(21): 6717-6730, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37672072

RESUMEN

Ammonia (NH3) inhibition represents a major limitation to methane production during anaerobic digestion of organic material in biogas reactors. This process relies on co-operative metabolic interactions between diverse taxa at the community-scale. Despite this, most investigations have focused singularly on how methanogenic Archaea respond to NH3 stress. With a high-NH3 pre-adapted and un-adapted community, this study investigated responses to NH3 inhibition both at the community-scale and down to individual taxa. The pre-adapted community performed methanogenesis under inhibitory NH3 concentrations better than the un-adapted. While many functionally important phyla were shared between the two communities, only taxa from the pre-adapted community were robust to NH3. Functionally important phyla were mostly comprised of sensitive taxa (≥ 50%), yet all groups, including methanogens, also possessed tolerant individuals (10-50%) suggesting that potential mechanisms for tolerance are non-specific and widespread. Hidden Markov Model-based phylogenetic analysis of methanogens confirmed that NH3 tolerance was not restricted to specific taxonomic groups, even at the genus level. By reconstructing covarying growth patterns via network analyses, methanogenesis by the pre-adapted community was best explained by continued metabolic interactions (edges) between tolerant methanogens and other tolerant taxa (nodes). However, under non-inhibitory conditions, sensitive taxa re-emerged to dominate the pre-adapted community, suggesting that mechanisms of NH3 tolerance can be disadvantageous to fitness without selection pressure. This study demonstrates that methanogenesis under NH3 inhibition depends on broad-scale tolerance throughout the prokaryotic community. Mechanisms for tolerance seem widespread and non-specific, which has practical significance for the development of robust methanogenic biogas communities. KEY POINTS: • Ammonia pre-adaptation allows for better methanogenesis under inhibitory conditions. • All functionally important prokaryote phyla have some ammonia tolerant individuals. • Methanogenesis was likely dependent on interactions between tolerant individuals.

10.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047647

RESUMEN

Hydrogen sink is a beneficial process, which has never been properly examined in chickens. Therefore, the aim of this study was to assess the quantity and quality of microbiota involved in hydrogen uptake with the use of real-time PCR and metagenome sequencing. Analyses were carried out in 50 free-range chickens, 50 commercial broilers, and 54 experimental chickens isolated from external factors. The median values of acetogens, methanogens, sulfate-reducing bacteria (SRB), and [NiFe]-hydrogenase utilizers measured in the cecum were approx. 7.6, 0, 0, and 3.2 log10/gram of wet weight, respectively. For the excreta samples, these values were 5.9, 4.8, 4, and 3 log10/gram of wet weight, respectively. Our results showed that the acetogens were dominant over the other tested groups of hydrogen consumers. The quantities of methanogens, SRB, and the [NiFe]-hydrogenase utilizers were dependent on the overall rearing conditions, being the result of diet, environment, agrotechnical measures, and other factors combined. By sequencing of the 16S rRNA gene, archaea of the genus Methanomassiliicoccus (Candidatus Methanomassiliicoccus) were discovered in chickens for the first time. This study provides some indication that in chickens, acetogenesis may be the main metabolic pathway responsible for hydrogen sink.


Asunto(s)
Euryarchaeota , Hidrogenasas , Animales , Pollos/genética , Hidrogenasas/genética , Hidrógeno/metabolismo , ARN Ribosómico 16S/genética , Tracto Gastrointestinal/metabolismo , Ciego/metabolismo , Euryarchaeota/genética
11.
J Environ Manage ; 323: 116194, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115239

RESUMEN

Winter flooding of harvested rice fields is a typical cropping system in mountainous areas, which emits considerable amounts of CH4. Plastic film mulching cultivation is recognized as an important rice cultivation practice in paddy field for water-saving irrigation. However, the effects of these managements on CH4 emissions in paddy soil and the underlying microbial mechanism are unclear. A field experiment was carried out with the application of winter drainage followed by traditional rice cultivation (WD), winter drainage followed by plastic film mulching cultivation (MC), as well as winter flooding followed by traditional rice cultivation (WF) as control in hilly paddy fields. We investigated the CH4 emissions, functional (CH4 production rate, 13C isotope) and structural (abundance, structure) responses of soil methanogenic archaeal and fermenting bacterial communities during rice season. Shifting the fields from WF into WD and MC substantially mitigated CH4 emissions by 62.3% and 59.2%, respectively, paralleled with the enhancement of soil Eh and the reductions of soil DOC content. Compared with WF, WD and MC both significantly decreased CH4 production rates and the copy numbers of mcrA gene. Moreover, an increasing contribution of hydrogenotrophic methanogenesis (from 30.7% to 50.0%) to total CH4 production was observed during the conversion from WF to MC under an anaerobic incubation, paralleled with the decreased acetate content and increased δ13C values of acetate-methyl and total acetate. The communities of methanogenic archaea and fermenting bacteria strongly responded to the shift from WF to WD, while MC only showed significant effects on the methanogenic archaeal communities. Compared with WF, WD and MC significantly increased the relative abundance of Methanothrix, Methanosarcina and Methanocella, while those of Methanoregula, Massilia and Geobacter were decreased. The co-occurrence networks showed that WD and MC induced the loss of mixed methanogenic fermentation modules, indicating the decrease in functional biodiversity and redundancy of fermenting bacterial and methanogenic archaeal communities.The findings suggest that WD and MC approach mitigate CH4 emission by regulating the function and structure of methanogenic archaeal and fermenting bacterial communities in paddy soil, which represent the effective management strategies considering the water availability and CH4 mitigation in paddy-field agriculture.


Asunto(s)
Euryarchaeota , Oryza , Archaea/genética , Bacterias , Euryarchaeota/genética , Metano , Plásticos , Estaciones del Año , Suelo/química , Microbiología del Suelo , Agua
12.
Indian J Microbiol ; 62(2): 195-203, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462719

RESUMEN

The landfill is an inexpensive way of municipal solid waste (MSW) management and contributes extensively to the total carbon budget and global climate change. Three landfills from two geographically distinct metro- cities of India were taken as model systems to create microcosms and study their physiochemistry, microbiology, and carbon emission. The microcosm experiments revealed that facultative anaerobic bacterial community showing the dominance in the beginning but with the progression of anoxia and anaerobic conditions, methanogenesis prevailed, resulting in a clear shift towards the abundance of methanogens especially the members of Methanosarcina, Methanocorpusculum, and Methanoculleus (70-90% of the total microbial population). Geochemical data showed a wide range of heterogeneity in landfills' composition located even in the same city. In past, greenhouse gas emission from landfills is mainly estimated using different models which lack accuracy. As limited information is available as of now, this study can elicit researcher interest for in-depth characterization of microbial diversity and carbon emission from landfills. The microcosm model presented in the current study is a robust and straightforward method of accurate estimation of amounts of different types of gases release from landfill. It can also be extrapolate for estimation of different gases release from actual landfill sites by setting the on-site experiments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-021-00995-7.

13.
New Phytol ; 231(2): 524-536, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780002

RESUMEN

Methane (CH4 ) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the CH4 exchange of plants, and particularly in boreal trees. We detected CH4 -producing methanogens and novel monooxygenases, potentially involved in CH4 consumption, in coniferous plants. In addition, our field flux measurements from Norway spruce (Picea abies) canopies demonstrate both net CH4 emissions and uptake, giving further evidence that both production and consumption are relevant to the net CH4 exchange. Our findings, together with the emerging diversity of novel CH4 -producing microbial groups, strongly suggest microbial analyses should be integrated in the studies aiming to reveal the processes and drivers behind plant CH4 exchange.


Asunto(s)
Metano , Árboles , Metagenómica , Metano/análisis , Noruega
14.
Mol Ecol ; 30(2): 438-450, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219564

RESUMEN

Most commonly, next generation sequencing-based microbiome studies are performed on the total DNA (totDNA) pool; however, this consists of extracellular- (exDNA) and intracellular (iDNA) DNA fractions. By investigating the microbiomes of different anaerobic digesters over time, we found that totDNA suggested lower species richness considering all and/or only common species and yielded fewer unique reads as compared to iDNA. Additionally, exDNA-derived sequences were more similar to those from totDNA than from iDNA and, finally, iDNA showed the best performance in tracking temporal changes in microbial communities. We postulate that abundant sequences present within the exDNA fraction mask the overall results of totDNA and provide evidence that exDNA has the potential to qualitatively bias microbiome studies at least in the anaerobic digester environment as it contains information about cells that were lysed hours or days ago. iDNA, however, was found to be more appropriate in providing reliable genetic information about potentially alive as well as rare microbes within the target habitat.


Asunto(s)
Microbiota , Anaerobiosis , Archaea/genética , ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , ARN Ribosómico 16S
15.
Environ Sci Technol ; 55(17): 12075-12083, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34409832

RESUMEN

Alternate wet-drying (AWD) and sulfate fertilization have been considered as effective methods for lowering CH4 emissions from paddy soils. However, there is a clear knowledge gap between field studies that focus on the quantification of emissions and laboratory studies that investigate mechanisms. To elucidate mechanisms of CH4 production and oxidation under field conditions, rice was planted in straw-amended mesocosms with or without sulfate fertilization under continuously flooded conditions (FL) or two wet-dry cycles. CO2 and CH4 concentrations in soil air and their natural C isotope compositions were measured at stem elongation, booting, and flowering stages. CH4 concentration reached 51 mg C L-1 at the flowering stage under FL, while it decreased to 0.04 mg C L-1 under AWD. Relative 13C enrichment in CH4 and depletion in CO2 under AWD indicated CH4 oxidation. Ample organic substrate supply may have reduced competition between sulfate-reducing bacteria and methanogenic archaea, and therefore, it explains the absence of a decrease in CH4 concentrations in sulfate treatments. 13C enrichment in CO2 over time (6 and 7‰ with and without sulfate fertilizers, respectively) under FL indicates continuous contribution of hydrogenotrophic methanogenesis to CH4 production with ongoing rice growth. Overall, AWD could more efficiently reduce CH4 production than sulfate fertilization in rice straw-amended paddy soils.


Asunto(s)
Oryza , Suelo , Fertilización , Metano , Sulfatos
16.
Environ Res ; 200: 111417, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34051197

RESUMEN

Biomethane produced by methanogenic archaea is a main greenhouse resource of terrestrial and marine ecosystems, which strongly affects the global environment change. Conductive materials, especially nano-scale, show considerable intervention on biomethane production potential, but the mechanism is still unclear. Herein, we precisely quantified the absolute abundance of Methanosarcina spp. proteins affected by carbon nanotubes (CNTs) using tandem mass tag (TMT) proteomics technology. Among the 927 detectable proteins, more than three hundred, 304, showed differential expression. Gene Set Enrichment Analysis on KEGG pathways and GO biological processes revealed a trend of decreased protein synthesis induced by CNTs, suggesting these conductive nanomaterials may replace part of the cell structure and function. Interestingly, increased acetoclastic methanogenesis actually came at the expense of reduced protein synthesis in related pathways. CNTs stimulated biomethane production from acetate by stimulating intracellular redox activity and the -COOH oxidation process. These findings enhanced the understanding of the biomethane production process affected by conductive materials.


Asunto(s)
Nanotubos de Carbono , Archaea , Ecosistema , Metano , Nanotubos de Carbono/toxicidad , Proteómica
17.
Can J Microbiol ; 67(5): 396-405, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33064956

RESUMEN

Directional stress is an effective measure to change the community structure and improve the bioactivity of pit mud (PM). In this study, the addition of fortified Daqu to artificial PM (APM) was intended to disturb the microbial community and further affect metabolites. To evaluate the effect of fortified Daqu on culturing APM, the microbial communities of APM with or without the addition of fortified Daqu were investigated by fluorescence in situ hybridization and Illumina MiSeq. The results indicated that microbes (Clostridium sp., Clostridium kluyveri, hydrogenotrophic methanogens, and acetotrophic methanogens) related to the production of key aroma compounds increased notably when fortified Daqu was added. In particular, the hydrogenotrophic and acetotrophic methanogens increased by 6.19- and 4.63-fold after 30 days of culture. Subsequently, metabolites (organic acids, volatile compounds) were also analyzed by HPLC (high-performance liquid chromatography) and HS-SPME-GC-MS (headspace solid phase microextraction - gas chromatography - mass spectrometry). The results showed that the content of butyric acid and hexanoic acid was significantly higher when fortified Daqu was added to APM. In addition, the proportion of esters and phenols was also higher than in APM without fortified Daqu. A survey of the microbial compositions of APMs with or without added fortified Daqu indicated that the microbial community evolves into a functional community favoring liquor brewing. We have developed a novel process by disturbing the community diversity.


Asunto(s)
Bebidas Alcohólicas/análisis , Bebidas Alcohólicas/microbiología , Archaea/clasificación , Bacterias/clasificación , Hongos/clasificación , Microbiota , Archaea/genética , Bacterias/genética , Biodiversidad , China , Arcilla/microbiología , ADN Bacteriano/genética , Fermentación , Aromatizantes/análisis , Microbiología de Alimentos , Hongos/genética , Cromatografía de Gases y Espectrometría de Masas , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , ARN Ribosómico 16S/genética , Microextracción en Fase Sólida , Factores de Tiempo
18.
Anaerobe ; 68: 102297, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33212292

RESUMEN

Biogas has the potential to contribute to some of the most urgent issues of the energy transition, including mobility, energy storage, and grid stability. Flexibilization has been discussed as a means to improve the economics of biogas production, ideally restricting the production of electricity to times of strong need. Here the possibility of demand-driven, flexible biogas production is investigated, which saves substrates and storage capacity, while still enabling control over the production of electricity. Effects of different flexible feeding regimes were tested in a continuously operated 200 L reactor. After a period of 300 days under steady conditions (6.4 kg feed m-3d-1), varying flexible feeding patterns were applied over the next 700 days. Biogas production, volatile organic acid concentrations, and microbial dynamics were documented. Reduction of feeding resulted in reducing the gas production by up to 80% within a day. By increasing the feed, gas production could rapidly be reinitiated at similar levels as before even after fasting periods of up to 22 days. CH4-contents of the produced biogas were nearly constant over the investigation period. As a response to the flexible feeding, a reorganization of the microbial community was observed, which came to an end after 800 days and then was no longer affected by further changes in the feeding patterns or the substrate composition. Dominating archaea were of the order Methanosarcinales. During the experiment, representatives from the class Methanosaetaceae replaced representatives from the class Methanosarcinaceae.


Asunto(s)
Archaea/metabolismo , Gases/metabolismo , Microbiota , Anaerobiosis , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Reactores Biológicos/microbiología , Digestión , Metano/análisis , Metano/metabolismo , Aguas del Alcantarillado
19.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445335

RESUMEN

Protein inhibition is a natural regulatory process to control cellular metabolic fluxes. PII-family signal-transducing effectors are in this matter key regulators of the nitrogen metabolism. Their interaction with their various targets is governed by the cellular nitrogen level and the energy charge. Structural studies on GlnK, a PII-family inhibitor of the ammonium transporters (Amt), showed that the T-loops responsible for channel obstruction are displaced upon the binding of 2-oxoglutarate, magnesium and ATP in a conserved cleft. However, GlnK from Methanocaldococcus jannaschii was shown to bind 2-oxoglutarate on the tip of its T-loop, causing a moderate disruption to GlnK-Amt interaction, raising the question if methanogenic archaea use a singular adaptive strategy. Here we show that membrane fractions of Methanothermococcus thermolithotrophicus released GlnKs only in the presence of Mg-ATP and 2-oxoglutarate. This observation led us to structurally characterize the two GlnK isoforms apo or in complex with ligands. Together, our results show that the 2-oxoglutarate binding interface is conserved in GlnKs from Methanococcales, including Methanocaldococcus jannaschii, emphasizing the importance of a free carboxy-terminal group to facilitate ligand binding and to provoke the shift of the T-loop positions.


Asunto(s)
Compuestos de Amonio/metabolismo , Ácidos Cetoglutáricos/metabolismo , Methanococcales/metabolismo , Proteínas PII Reguladoras del Nitrógeno , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Transporte Iónico , Redes y Vías Metabólicas , Modelos Moleculares , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Análisis de Secuencia de Proteína
20.
World J Microbiol Biotechnol ; 37(11): 188, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34611812

RESUMEN

In this study, the taxonomic and functional diversity of methanogenic archaea in two parallel 120 l fermenters operated at different temperatures and fed with maize silage was estimated by mcrA metabarcoding analysis using two typical primer pairs (ML and MLA) amplifying part of the functional methyl coenzyme M reductase (mcrA) gene. The alpha diversity indices showed that the ML primer pair detected a higher Operational Taxonomic Unit (OTU) abundance compared to the MLA primer pair and methanogen diversity was significantly lower in the 60 °C fermenters. The beta diversity analysis showed the methanogenic community clustered together at 50 °C and 40° and was statistically different from the 60 °C community. Similar, to alpha diversity, beta diversity was also significantly different between primer pairs. At all temperatures analysed, the primer pairs showed a different abundance of the different methanogenic OTUs, e.g. more OTUs relative to Methanoculleus sp. with the ML primer pair, and more OTUs corresponding to Methanobacterium sp. with the MLA primer pair. Moreover, OTUs corresponding to Methanosphaera sp. and Methanobrevibacter sp. were found only by using ML primer pair, while the MLA primer pair detected sequences corresponding to Methanothrix sp.


Asunto(s)
Archaea/genética , Archaea/metabolismo , Biocombustibles , Fermentación , Oxidorreductasas/genética , Temperatura , Biodiversidad , Reactores Biológicos , ADN de Archaea/genética , Euryarchaeota , Metano , Filogenia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda