Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Molecules ; 25(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138110

RESUMEN

The fungus growing termite species Macrotermes bellicosus (M. bellicosus) is used in nutrition and traditional medicine in the Republic of Benin for the treatment of infectious and inflammatory diseases. Previous findings demonstrated evidence of anti-inflammatory and spasmolytic properties of M. bellicosus. The aim of the present study was to evaluate the antimicrobial potential of different extracts of M. bellicosus samples and determine the chemical profile of an ethanolic M. bellicosus extract. Chemical profiling was conducted using centrifugal partition chromatography and 13C-NMR, followed by MALDI-TOF MS. Major identified compounds include hydroquinone (HQ), methylhydroquinone (MHQ), 3,4-dihydroxyphenethyl glycol (DHPG), N-acetyldopamine (NADA) and niacinamide. The fatty acid mixture of the extract was mainly composed of linoleic and oleic acid and highlights the nutritional purpose of M. bellicosus. Using the Kirby-Bauer disc diffusion and broth microdilution assay, an antibacterial activity of M. bellicosus samples was observed against various clinical strains with a highest growth inhibition of S. aureus. In addition, HQ and MHQ as well as fractions containing DHPG, niacinamide and NADA inhibited S. aureus growth. The reported antimicrobial activity of M. bellicosus and identified active substances provide a rationale for the traditional medicinal use of M. bellicosus.


Asunto(s)
Antibacterianos , Hongos , Isópteros/química , Medicina Tradicional , Staphylococcus aureus/crecimiento & desarrollo , Animales , Antibacterianos/química , Antibacterianos/farmacología , Benin
2.
J Biosci Bioeng ; 126(3): 355-362, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29699943

RESUMEN

3-Methyl-4-nitrophenol (3M4NP) is formed in soil as a hydrolysis product of fenitrothion, one of the major organophosphorus pesticides. A Pseudomonas strain was isolated as a 3M4NP degrader from a crop soil and designated TSN1. This strain utilized 3M4NP as a sole carbon and energy source. To elucidate the biodegradation pathway, we performed transposon mutagenesis with pCro2a (mini-Tn5495) and obtained three mutants accumulating a dark pink compound(s) from 3M4NP. Rescue cloning and sequence analysis revealed that in all mutants, the transposon disrupted an identical aromatic compound meta-cleaving dioxygenase gene, and a monooxygenase gene was located just downstream of the dioxygenase gene. These two genes were designated mnpC and mnpB, respectively. The gene products showed high identity with the methylhydroquinone (MHQ) monooxygenase (58%) and the 3-methylcatechol 2,3-dioxygenase (54%) of a different 3M4NP degrader Burkholderia sp. NF100. The transposon mutants converted 3M4NP or MHQ into two identical metabolites, one of which was identified as 2-hydroxy-5-methyl-1,4-benzoquinone (2H5MBQ) by GC/MS analysis. Furthermore, two additional genes (named mnpA1 and mnpA2), almost identical to the p-nitrophenol monooxygenase and the p-benzoquinone reductase genes of Pseudomonas sp. WBC-3, were isolated from the total DNA of strain TSN1. Disruption of mnpA1 resulted in the complete loss of the 3M4NP degradation activity, demonstrating that mnpA1 encodes the initial monooxygenase for 3M4NP degradation. The purified mnpA2 gene product could efficiently reduce methyl p-benzoquinone (MBQ) into MHQ. These results suggest that strain TSN1 degrades 3M4NP via MBQ, MHQ, and 2H5MBQ in combination with mnpA1A2 and mnpCB, existing at different loci on the genome.


Asunto(s)
Cresoles/metabolismo , Redes y Vías Metabólicas/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Biodegradación Ambiental , Burkholderia/genética , Burkholderia/metabolismo , Catecoles/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Fenitrotión/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hidroquinonas/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda