Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38152023

RESUMEN

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Asunto(s)
Hipertensión , MicroARNs , Animales , Ratas , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Presión Sanguínea/fisiología , Luciferasas/metabolismo , Bulbo Raquídeo/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY
2.
J Biol Chem ; 299(12): 105476, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981207

RESUMEN

Circadian rhythm disruption leads to dysregulation of lipid metabolism, which further drive the occurrence of insulin resistance (IR). Exosomes are natural carrier systems that advantageous for cell communication. In the present study, we aimed to explore whether and how the exosomal microRNAs (miRNAs) in circulation participate in modulating skeletal muscle IR induced by circadian rhythm disruption. In the present study, 24-h constant light (12-h light/12-h light, LL) was used to establish the mouse model of circadian rhythm disruption. Bmal1 interference was used to establish the cell model of circadian rhythm disruption. And in clinical experiments, we chose a relatively large group of rhythm disturbance-shift nurses. We showed that LL-induced circadian rhythm disruption led to increased body weight and visceral fat volume, as well as occurrence of IR in vivo. Furthermore, exosomal miR-22-3p derived from adipocytes in the context of circadian rhythm disruption induced by Bmal1 interference could be uptaken by skeletal muscle cells to promote IR occurrence in vitro. Moreover, miR-22-3p in circulation was positively correlated with the clinical IR-associated factors. Collectively, these data showed that exosomal miR-22-3p in circulation may act as potential biomarker and therapeutic target for skeletal muscle IR, contributing to the prevention of diabetes in the context of rhythm disturbance.


Asunto(s)
Ritmo Circadiano , Exosomas , Resistencia a la Insulina , MicroARNs , Animales , Ratones , Adipocitos/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo
3.
J Transl Med ; 22(1): 466, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755651

RESUMEN

BACKGROUND: Neuroinflammation is a characteristic pathological change of Alzheimer's Diseases (AD). Microglia have been reported to participate in inflammatory responses within the central nervous system. However, the mechanism of microglia released exosome (EXO) contribute to communication within AD microenvironment remains obscure. METHODS: The interaction between microglia and AD was investigated in vitro and in vivo. RNA-binding protein immunoprecipitation (RIP) was used to investigate the mechanisms of miR-223 and YB-1. The association between microglia derived exosomal YB-1/miR-223 axis and nerve cell damage were assessed using Western blot, immunofluorescence, RT-PCR, ELISA and wound healing assay. RESULTS: Here, we reported AD model was responsible for the M1-like (pro-inflammatory) polarization of microglia which in turn induced nerve cell damage. While M2-like (anti-inflammatory) microglia could release miR-223-enriched EXO which reduced neuroinflammation and ameliorated nerve damage in AD model in vivo and in vitro. Moreover, YB-1 directly interacted with miR-223 both in cell and EXO, and participated in microglia exosomal miR-223 loading. CONCLUSION: These results indicate that anti-inflammatory microglia-mediated neuroprotection form inflammatory damage involves exporting miR-223 via EXO sorted by YB-1. Consequently, YB-1-mediated microglia exosomal sorting of miR-223 improved the nerve cell damage repair, representing a promising therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Exosomas , MicroARNs , Microglía , Proteína 1 de Unión a la Caja Y , Exosomas/metabolismo , Microglía/metabolismo , Microglía/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Animales , MicroARNs/metabolismo , MicroARNs/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neuronas/metabolismo , Neuronas/patología , Ratones , Secuencia de Bases , Factores de Transcripción
4.
J Transl Med ; 22(1): 647, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987822

RESUMEN

BACKGROUND: The growing understanding of cancer biology and the establishment of new treatment modalities has not yielded the expected results in terms of survival for Laryngeal Squamous Cell Cancer (LSCC). Early diagnosis, as well as prompt identification of patients with high risk of relapse would ensure greater chance of therapeutic success. However, this goal remains a challenge due to the absence of specific biomarkers for this neoplasm. METHODS: Serum samples from 45 LSCC patients and 23 healthy donors were collected for miRNA expression profiling by TaqMan Array analysis. Additional 20 patients and 42 healthy volunteers were included for the validation set, reaching an equal number of clinical samples for each group. The potential diagnostic ability of the such identified three-miRNA signature was confirmed by ROC analysis. Moreover, each miRNA was analyzed for the possible correlation with HNSCC patients' survival and TNM status by online databases Kaplan-Meier (KM) plotter and OncomiR. In silico analysis of common candidate targets and their network relevance to predict shared biological functions was finally performed by PANTHER and GeneMANIA software. RESULTS: We characterized serum miRNA profile of LSCC patients identifying a novel molecular signature, including miR-223, miR-93 and miR-532, as circulating marker endowed with high selectivity and specificity. The oncogenic effect and the prognostic significance of each miRNA was investigated by bioinformatic analysis, denoting significant correlation with OS. To analyse the molecular basis underlying the pro-tumorigenic role of the signature, we focused on the simultaneously regulated gene targets-IL6ST, GTDC1, MAP1B, CPEB3, PRKACB, NFIB, PURB, ATP2B1, ZNF148, PSD3, TBC1D15, PURA, KLF12-found by prediction tools and deepened for their functional role by pathway enrichment analysis. The results showed the involvement of 7 different biological processes, among which inflammation, proliferation, migration, apoptosis and angiogenesis. CONCLUSIONS: In conclusion, we have identified a possible miRNA signature for early LSCC diagnosis and we assumed that miR-93, miR-223 and miR-532 could orchestrate the regulation of multiple cancer-related processes. These findings encourage the possibility to deepen the molecular mechanisms underlying their oncogenic role, for the desirable development of novel therapeutic opportunities based on the use of short single-stranded oligonucleotides acting as non-coding RNA antagonists in cancer.


Asunto(s)
Carcinoma de Células Escamosas , Biología Computacional , Detección Precoz del Cáncer , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas , MicroARNs , Humanos , Neoplasias Laríngeas/sangre , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/diagnóstico , MicroARNs/sangre , MicroARNs/genética , Masculino , Femenino , Carcinoma de Células Escamosas/sangre , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/diagnóstico , Persona de Mediana Edad , Perfilación de la Expresión Génica , Curva ROC , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Estimación de Kaplan-Meier , Estudios de Casos y Controles , Redes Reguladoras de Genes , Anciano
5.
Int J Exp Pathol ; 105(2): 52-63, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38152045

RESUMEN

Bone fractures are the most common form of musculoskeletal trauma worldwide. Numerous microRNAs (miRNAs) have been suggested to be participants in regulating bone-related diseases. Recent studies revealed the regulatory role of miR-22-3p in osteogenic differentiation, but its role in fracture healing has not been investigated previously. Here, a rat femoral fracture model was established, Bone marrow mesenchymal stem cells (BMSCs) were isolated to detect the specific function and underlying mechanisms of miR-22-3p. MiR-22-3p and sclerostin domain-containing 1 (SOSTDC1) expression was determined by RT-qPCR and immunohistochemistry staining. The levels of proteins associated with osteogenic differentiation were assessed by western blotting. Flow cytometry was conducted to identify the isolated rat BMSCs. Alizarin red staining, alkaline phosphatase staining and Oil Red O staining were used to evaluate the osteogenic and adipogenic differentiation of rat BMSCs. The interaction between miR-22-3p and SOSTDC1 was verified using a luciferase reporter assay. Haematoxylin and Eosin (H&E) staining of the bone tissues was performed to analyse the effect of miR-22-3p on histopathological changes in vivo. MiR-22-3p was downregulated in the callus tissues of rat femoral fracture, while the expression of SOSTDC1 was upregulated. The isolated rat BMSCs had the capacity for both osteogenic and adipogenic differentiation. The differentiation capacity of BMSCs into osteoblasts was increased by miR-22-3p overexpression. MiR-22-3p activated the PI3K/AKT pathway by targeting SOSTDC1. SOSTDC1 overexpression and PI3K/AKT signalling inhibitor LY294002 abolished the enhancing effect of miR-22-3p overexpression on the osteogenesis of BMSCs. Thus MiR-22-3p facilitated the femoral fracture healing in rats. MiR-22-3p overexpression promoted fracture healing via the activation of PI3K/AKT pathway by targeting SOSTDC1.


Asunto(s)
Fracturas del Fémur , Células Madre Mesenquimatosas , MicroARNs , Animales , Humanos , Ratas , Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular , Células Cultivadas , Fracturas del Fémur/genética , Fracturas del Fémur/metabolismo , Fracturas del Fémur/patología , Curación de Fractura , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Int Arch Allergy Immunol ; 185(3): 201-211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38071964

RESUMEN

INTRODUCTION: Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of allergic rhinitis (AR). The current investigation is focused on elucidating the functional impact of a specific lncRNA, FGD5 antisense RNA 1 (FGD5-AS1), on the development and progression of AR through its interaction with miR-223-3p. METHODS: An experimental framework for AR was constructed in both cellular and animal models. Quantitative assessment of FGD5-AS1, miR-223-3p, and COX11 mRNA expression was conducted using real-time quantitative reverse transcription PCR. The expression of inflammatory factors, immunoglobulin E, LTC4, and ECP, was examined using ELISA. Apoptosis in human nasal epithelial cells was assessed by the flow cytometry method. The protein expression of COX11 was examined using Western blotting. Nasal mucosal function was further evaluated by hematoxylin and eosin staining. Furthermore, bioinformatics evaluations, dual-luciferase reporter assays, and a series of experimental procedures unveiled a putative competitive endogenous RNA regulatory mechanism. RESULTS: We found the expression of lncRNA FGD5-AS1 was decreased in AR. In vitro lncRNA FGD5-AS1 attenuated the production of inflammatory cytokines in nasal epithelial cells. Furthermore, elevated FGD5-AS1 expression significantly alleviated AR symptoms by reducing nasal epithelial apoptosis and inflammation. MiR-223-3p was identified as a direct target of FGD5-AS1. Moreover, miRNA-223-3p directly downregulated the expression of COX11 mRNA. Subsequent experiments confirmed that FGD5-AS1 regulated AR through the miR-223-3p/COX11 axis, thereby inhibiting inflammation. CONCLUSION: The FGD5-AS1/miR-223-3p/COX11 axis plays a pivotal role in the pathogenesis of AR, suggesting that FGD5-AS1 could serve as a potential diagnostic biomarker and therapeutic target for AR.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Rinitis Alérgica , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inflamación/genética , Rinitis Alérgica/genética , ARN Mensajero , Proliferación Celular , Proteínas Transportadoras de Cobre/genética , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
7.
Reprod Biomed Online ; 48(1): 103246, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37903673

RESUMEN

RESEARCH QUESTION: Does human chorionic gonadotrophin (HCG) influence endometrial receptivity and epithelial-mesenchymal transition (EMT) via the FoxO1/miR223-5p/Wnt5α pathway? DESIGN: This study aimed to establish the co-culture system of human embryonic trophoblast cell line (HTR-8-Svneo) cells and human endometrial epithelial cell line (HEEC) cells. The expression of Wnt5α protein and EMT-related proteins in HTR-8-Svneo and HEEC cells treated in a gradient-dependent manner using HCG and exosome inhibitor GW4869 were detected in the co-culture system. RESULTS: In the HTR-8-Svneo/HEEC co-culture system, miR223-5p in HEEC cells increased significantly with induction of HTR-8-Svneo cells by 100 IU/ml HCG for 48 h (P = 0.046), and Wnt5α protein decreased significantly in HEEC cells (P = 0.021). Pretreatment of HTR-8-Svneo cells with GW4869, and knockdown of FoxO1 in HTR-8-Svneo cells, significantly inhibited the above effects of HCG on miR223-5p and Wnt5α expression in HEEC cells in the HTR-8-Svneo/HEEC co-culture system. HTR-8-Svneo cells induced with 100 IU/ml HCG for 48 h significantly enhanced the logarithmic phase proliferation activity of HEEC cells in the co-culture system (P < 0.001), while knockdown of FoxO1 in HTR-8-Svneo cells and inhibition of miR223-5p in HEEC cells suppressed proliferation of HEEC cells in the HTR-8-Svneo/HEEC co-culture system (P < 0.001). CONCLUSIONS: HCG exposure induces HTR-8-Svneo cells to up-regulate miR223-5p expression, which enters HEEC cells in the co-culture system through the exosomal pathway, and inhibits Wnt5α expression and the progress of EMT.


Asunto(s)
Compuestos de Anilina , Compuestos de Bencilideno , MicroARNs , Trofoblastos , Humanos , Movimiento Celular , Línea Celular , Transición Epitelial-Mesenquimal , Proliferación Celular , MicroARNs/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 43(2): 218-230, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36353991

RESUMEN

BACKGROUND: Myocardial cell death is the hallmark of myocardial infarction. In the process of myocardial injury, platelets contribute to the pathogenesis by triggering intense inflammatory responses. Yet, it is still unclear if platelets regulate cardiomyocyte death directly, thereby exacerbating myocardial injury in myocardial infarction. METHODS: We describe a mechanism underlying the correlative association between platelets accumulation and myocardial cell death by using myocardial infarction mouse model and patient specimens. RESULTS: Myocardial infarction induces platelets internalization, resulting in the release of miR-223-3p, a platelet-enriched miRNA. By targeting the ACSL3, miR-223-3p delivered by internalized platelets cause the reduction of stearic acid-phosphatidylcholine in cardiomyocytes. The presence of stearic acid-phosphatidylcholine protects cardiomyocytes against ferroptosis. CONCLUSIONS: Our work reveals a novel mechanism of platelet-mediated myocardial injury, highlighting antiplatelet therapies could potentially represent a multimechanism treatment of myocardial infarction, and implying ferroptosis being considered as novel target for therapeutics.


Asunto(s)
Ferroptosis , MicroARNs , Infarto del Miocardio , Ratones , Animales , Plaquetas/metabolismo , Infarto del Miocardio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Muerte Celular , Miocitos Cardíacos/metabolismo
9.
Immunol Invest ; : 1-15, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814140

RESUMEN

AIM: This study aimed to evaluate the miR-223-5p expression in patients with spinal cord injury (SCI) and to determine its role in the pathogenesis of SCI. METHODS: The serum miR-223-5p levels were analyzed using quantitative real-time polymerase chain reaction. The diagnostic accuracy of miR-223-5p was evaluated using the receiving operating characteristic curves. LPS-induced PC12 cells were established as an in vitro inflammatory cell model. Cell apoptosis, inflammation and oxidative stress were examined. The SCI rat model was constructed to evaluate the effects of miR-223-5p on inflammatory response and motor function in rats. RESULTS: MiR-223-5p expression was upregulated in SCI patients. MiR-223-5p expression in the complete SCI group was significantly higher than that in incomplete SCI group. ROC analysis showed that miR-223-5p can distinguish SCI patients from healthy volunteers. In vitro experiments demonstrated that LPS upregulated apoptosis and inflammation in PC12 cells. Treatment with miR-223-5p inhibitor alleviated the changes in LPS-induced PC12 cells . Inhibition of miR-223-5p can alleviate the activation of inflammatory response and the effects of SCI on the motor function in rats. CONCLUSIONS: MiR-223-5p is a potential diagnostic marker for SCI, and it can promote the SCI progression by regulating nerve cell survival, inflammation, and oxidative stress.

10.
RNA Biol ; 21(1): 31-44, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38828710

RESUMEN

Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs , Gases em Plasma , Piel , MicroARNs/genética , Animales , Ratones , Piel/metabolismo , Gases em Plasma/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Cicatrización de Heridas/efectos de los fármacos , Transducción de Señal , Sistema Inmunológico/metabolismo
11.
J Biochem Mol Toxicol ; 38(1): e23568, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37899695

RESUMEN

Numerous studies have shown that the M2 polarization of alveolar macrophages (AM) plays a protective role in acute lung injury (ALI). Mesenchymal stem cells (MSCs) secreted exosomes have been reported to be involved in inflammatory diseases by the effects of polarized M1/M2 macrophage populations. However, whether bone marrow mesenchymal stem cells (BMMSCs) derived exosomes could protect from ALI and its mechanisms are still unclear. Here, we explored the role of exosomes from BMMSC in rat AM polarization and the lipopolysaccharide- (LPS-) induced ALI rat model. Furthermore, the levels of exosomal miR-223 in BMMSCs were measured by RT-qPCR. Additionally, miR-223 mimics and its inhibitors were used to verify the vital role of miR-223 of BMMSCs-derived exosomes in the polarization of M2 macrophages. The results showed that BMMSCs-derived exosomes were taken up by the AM. Exosomes derived from BMMSCs promoted M2 polarization of AM in vitro. BMMSCs exosomes effectively mitigated pathological injuries, lung edema, and the inflammation of rats from LPS-induced ALI, accompanied by an increase of M2 polarization of AM in lung tissue. Interestingly, we also found that miR-223 was enriched in BMMSCs-derived exosomes, and overexpression of miR-223 in BMMSCs-derived exosomes promoted M2 polarization of AM while depressing miR-223 showed opposite effects in AM. The present study demonstrated that BMMSCs-derived exosomes triggered alveolar M2 polarization to improve inflammation by transferring miR-223, which may provide new therapeutic strategies in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Ratas , Animales , Macrófagos Alveolares , Lipopolisacáridos/toxicidad , MicroARNs/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/terapia , Inflamación
12.
BMC Womens Health ; 24(1): 150, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431592

RESUMEN

OBJECTIVES: To evaluate the diagnostic value of plasma exosomal miR-223 and its combination with CA125 for the diagnosis of early-stage epithelial ovarian cancer (EOC). PATIENTS AND METHODS: Exosomes derived from the plasma of 78 EOC patients, 40 patients with epithelial benign ovarian tumors, and 52 healthy participants were isolated using the ultracentrifugation method and identified by transmission electron microscopy (TEM) and western blot. RESULTS: The expression of exosomal miR-223 was significantly upregulated in the plasma of EOC patients compared to that in healthy subjects and patients with benign diseases. The combination of exosomal miR-223 and CA125 from plasma had an equivalent area under the ROC curve (AUC) to CA125 alone for discriminating between EOC and non-EOC cases, including healthy subjects and benign ovarian tumors. However, the AUC value of the combination was 0.944 (95% CI: 0.899-0.990) for differentially diagnosing early-stage EOC from healthy subjects, slightly higher than that of CA125 alone (0.928, 95% CI: 0.875-0.981), with a sensitivity and specificity of 0.9784 and 0.885, respectively. CONCLUSION: Our data suggest that plasma exosomal miR-223 can be used as a complement to CA125 to increase the diagnostic power for differentiating early-stage EOC from healthy subjects.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/diagnóstico , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Sensibilidad y Especificidad , Exosomas/metabolismo , Exosomas/patología , Biomarcadores de Tumor/metabolismo , Antígeno Ca-125
13.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909243

RESUMEN

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Asunto(s)
Autofagia , Catepsina B , Enfermedades Desmielinizantes , Gotas Lipídicas , Lisofosfatidilcolinas , Ratones Endogámicos C57BL , MicroARNs , Microglía , Animales , MicroARNs/genética , MicroARNs/metabolismo , Microglía/metabolismo , Microglía/patología , Ratones , Gotas Lipídicas/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Catepsina B/metabolismo , Catepsina B/genética , Lisofosfatidilcolinas/metabolismo , Modelos Animales de Enfermedad , Masculino , Regulación de la Expresión Génica , Línea Celular
14.
BMC Urol ; 24(1): 104, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730434

RESUMEN

BACKGROUND: Emerging evidence has indicated that a number of circular RNAs (circRNAs) participate in renal cell carcinoma (RCC) carcinogenesis. Nevertheless, the activity and molecular process of circPRELID2 (hsa_circ_0006528) in RCC progression remain unknown. METHODS: CircPRELID2, miR-22-3p and ETS variant 1 (ETV1) levels were gauged by qRT-PCR. Effect of the circPRELID2/miR-22-3p/ETV1 axis was evaluated by detecting cell growth, motility, and invasion. Immunoblotting assessed related protein levels. The relationships of circPRELID2/miR-22-3p and miR-22-3p/ETV1 were confirmed by RNA immunoprecipitation (RIP), luciferase reporter or RNA pull-down assay. RESULTS: CircPRELID2 was up-regulated in RCC. CircPRELID2 silencing suppressed RCC cell growth, motility and invasion. Moreover, circPRELID2 silencing weakened M2-type macrophage polarization in THP1-induced macrophage cells. CircPRELID2 sequestered miR-22-3p, and circPRELID2 increased ETV1 expression through miR-22-3p. Moreover, the inhibitory impact of circPRELID2 silencing on RCC cell malignant behaviors was mediated by the miR-22-3p/ETV1 axis. Furthermore, circPRELID2 knockdown in vivo hampered growth of xenograft tumors. CONCLUSION: Our study demonstrates that circPRELID2 silencing can mitigate RCC malignant development through the circPRELID2/miR-22-3p/ETV1 axis, highlighting new therapeutic targets for RCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , ARN Circular , MicroARNs/genética , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , ARN Circular/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Ratones , Animales , Línea Celular Tumoral
15.
BMC Nephrol ; 25(1): 79, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443846

RESUMEN

BACKGROUND: Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS: In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS: The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION: In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Nefritis , Sepsis , Canales Catiónicos TRPM , Humanos , Lesión Renal Aguda/genética , Citocinas , Riñón , Lipopolisacáridos/toxicidad , Luciferasas , MicroARNs/genética , Proteínas Serina-Treonina Quinasas , Especies Reactivas de Oxígeno , ARN Circular/genética , Sepsis/genética
16.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473893

RESUMEN

Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.


Asunto(s)
MicroARNs , Enfermedades del Sistema Nervioso , Humanos , Femenino , Masculino , MicroARNs/genética , Hormonas Esteroides Gonadales
17.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892210

RESUMEN

The tumor suppressor gene F-box and WD repeat domain-containing (FBXW) 7 reduces cancer stemness properties by promoting the protein degradation of pluripotent stem cell markers. We recently demonstrated the transcriptional repression of FBXW7 by the three-dimensional (3D) spheroid formation of several cancer cells. In the present study, we found that the transcriptional activity of FBXW7 was promoted by the inhibition of the Ca2+-activated K+ channel, KCa1.1, in a 3D spheroid model of human prostate cancer LNCaP cells through the Akt-Nrf2 signaling pathway. The transcriptional activity of FBXW7 was reduced by the siRNA-mediated inhibition of the CCAAT-enhancer-binding protein C/EBP δ (CEBPD) after the transfection of miR223 mimics in the LNCaP spheroid model, suggesting the transcriptional regulation of FBXW7 through the Akt-Nrf2-CEBPD-miR223 transcriptional axis in the LNCaP spheroid model. Furthermore, the KCa1.1 inhibition-induced activation of FBXW7 reduced (1) KCa1.1 activity and protein levels in the plasma membrane and (2) the protein level of the cancer stem cell (CSC) markers, c-Myc, which is a molecule degraded by FBXW7, in the LNCaP spheroid model, indicating that KCa1.1 inhibition-induced FBXW7 activation suppressed CSC conversion in KCa1.1-positive cancer cells.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Regulación Neoplásica de la Expresión Génica , Factor 2 Relacionado con NF-E2 , Neoplasias de la Próstata , Transducción de Señal , Esferoides Celulares , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Esferoides Celulares/metabolismo , Línea Celular Tumoral , Regulación hacia Arriba , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892269

RESUMEN

We aimed to determine whether monitoring tumor-derived exosomal microRNAs (miRNAs) could be used to assess radiotherapeutic sensitivity in patients with locally advanced esophageal squamous cell carcinoma (ESCC). RNA sequencing was employed to conduct a comparative analysis of miRNA expression levels during radiotherapy, focusing on identifying miRNAs associated with progression. Electron microscopy confirmed the existence of exosomes, and co-cultivation assays and immunofluorescence validated their capacity to infiltrate macrophages. To determine the mechanism by which exosomal miR-143-3p regulates the interplay between ESCC cells and M2 macrophages, ESCC cell-derived exosomes were co-cultured with macrophages. Serum miR-143-3p and miR-223-3p were elevated during radiotherapy, suggesting resistance to radiation and an unfavorable prognosis for ESCC. Increased levels of both miRNAs independently predicted shorter progression-free survival (p = 0.015). We developed a diagnostic model for ESCC using serum microRNAs, resulting in an area under the curve of 0.751. Radiotherapy enhanced the release of miR-143-3p from ESCC cell-derived exosomes. Immune cell infiltration analysis at the Cancer Genome Atlas (TCGA) database revealed that ESCC cell-derived miR-143-3p triggered M2 macrophage polarization. Mechanistically, miR-143-3p upregulation affected chemokine activity and cytokine signaling pathways. Furthermore, ESCC cell exosomal miR-143-3p could be transferred to macrophages, thereby promoting their polarization. Serum miR-143-3p and miR-223-3p could represent diagnostic and prognostic markers for patients with ESCC undergoing radiotherapy. Unfavorable prognosis could be linked to the increased levels of ESCC cell-derived exosomal miR-143-3p, which might promote tumor progression by interacting with macrophages.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Exosomas , Regulación Neoplásica de la Expresión Génica , Macrófagos , MicroARNs , Tolerancia a Radiación , MicroARNs/genética , Humanos , Exosomas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/radioterapia , Carcinoma de Células Escamosas de Esófago/metabolismo , Macrófagos/metabolismo , Tolerancia a Radiación/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Línea Celular Tumoral , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Anciano , Activación de Macrófagos/genética
19.
J Obstet Gynaecol ; 44(1): 2368773, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38934480

RESUMEN

BACKGROUND: This study aimed to analyse the expression of microRNA-223 (miR-223) in embryo culture medium and its correlation with pregnancy outcomes. METHODS: Two hundred and two patients undergoing in vitro fertilisation/intracytoplasmic sperm injection (IVF/ICSI) were divided into clinical pregnancy group (n = 101) and non-pregnant group (n = 101). The baseline data, clinical indicators, and the expression level of miR-223 in the embryo medium were compared between the two groups. Logistic regression analysis was used to analyse the relationship between each index and the pregnancy outcome. Receiver operator characteristic curve was carried out to evaluate the differential ability of miR-223 in pregnancy status. Bioinformatics methods were used to identify the target genes of miR-223 and elucidate their functions. RESULTS: Compared with pregnancy group, the non-pregnancy group exhibited a reduction in miR-223 expression (p < 0.001). Multivariate analysis revealed that miR-223 reduction was an independent factor for pregnancy failure (p < 0.05). The ROC curve demonstrated the discriminative capability of miR-223 in distinguishing pregnancy and non-pregnancy. In addition, bioinformatics analysis indicated that the target genes of miR-223 were predominantly located in the endocytic vesicle membrane and were primarily enriched in adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathways. CONCLUSION: In this study, levels of miR-223 in the embryo culture medium predicted pregnancy outcomes in subjects undergoing IVF/ICSI. Low expression of miR-223 was a risk factor for adverse pregnancy outcomes in subjects.


In this study, 202 patients who underwent IVF/ICSI were retrospectively analysed and categorised into pregnant and non-pregnant groups based on their pregnancy status. The examination of embryo culture medium samples from both groups revealed that the non-pregnant group exhibited lower miR-223 expression compared to the pregnant group. Subsequent ROC analysis demonstrated the clinical relevance of miR-223 in effectively distinguishing between pregnant and non-pregnant states. Multi-factor analysis further established that the diminished expression of miR-223 independently influenced the likelihood of successful pregnancy.


Asunto(s)
Fertilización In Vitro , MicroARNs , Resultado del Embarazo , Inyecciones de Esperma Intracitoplasmáticas , Humanos , Femenino , Embarazo , MicroARNs/genética , MicroARNs/metabolismo , Adulto , Fertilización In Vitro/métodos , Pronóstico , Curva ROC , Técnicas de Cultivo de Embriones
20.
Rev Invest Clin ; 76(2): 103-115, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38753591

RESUMEN

Background: Ovarian cancer is a fatal gynecologic malignancy. Long non-coding RNA (lncRNA) has been verified to serve as key regulator in ovarian cancer tumorigenesis. Objective: The aim of the study was to study the functions and mechanism of lncRNA PITPNA-AS1 in ovarian cancer cellular process. Methods: Clinical ovarian cancer samples were collected and stored at an academic medical center. Cellular fractionation assays and fluorescence in situ hybridization were conducted to locate PITPNA-AS1 in OC cells. TUNEL staining, colony-forming assays, and Transwell assays were performed for evaluating cell apoptosis as well as proliferative and migratory abilities. Western blot was conducted for quantifying protein levels of epithelialmesenchymal transition markers. The binding relation between genes was verified by RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays. Gene expression levels in ovarian cancer tissues and cells were subjected to RT-qPCR. Results: PITPNA-AS1 level was downregulated in ovarian cancer samples and cells. PITPNA-AS1 overexpression contributed to the accelerated ovarian cancer cell apoptosis and inhibited cell migration, proliferation, and epithelial-mesenchymal transition process. In addition, PITPNA-AS1 interacted with miR-223-3p to regulate RHOB. RHOB knockdown partially counteracted the repressive impact of PITPNA-AS1 on ovarian cancer cell activities. Conclusion: PITPNA-AS1 inhibited ovarian cancer cellular behaviors by targeting miR-223-3p and regulating RHOB.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Regulación hacia Abajo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda