Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 186(11): 2475-2491.e22, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37178688

RESUMEN

Holistic understanding of physio-pathological processes requires noninvasive 3D imaging in deep tissue across multiple spatial and temporal scales to link diverse transient subcellular behaviors with long-term physiogenesis. Despite broad applications of two-photon microscopy (TPM), there remains an inevitable tradeoff among spatiotemporal resolution, imaging volumes, and durations due to the point-scanning scheme, accumulated phototoxicity, and optical aberrations. Here, we harnessed the concept of synthetic aperture radar in TPM to achieve aberration-corrected 3D imaging of subcellular dynamics at a millisecond scale for over 100,000 large volumes in deep tissue, with three orders of magnitude reduction in photobleaching. With its advantages, we identified direct intercellular communications through migrasome generation following traumatic brain injury, visualized the formation process of germinal center in the mouse lymph node, and characterized heterogeneous cellular states in the mouse visual cortex, opening up a horizon for intravital imaging to understand the organizations and functions of biological systems at a holistic level.


Asunto(s)
Imagenología Tridimensional , Animales , Ratones , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos
2.
Cell ; 184(11): 2896-2910.e13, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34048705

RESUMEN

Damaged mitochondria need to be cleared to maintain the quality of the mitochondrial pool. Here, we report mitocytosis, a migrasome-mediated mitochondrial quality-control process. We found that, upon exposure to mild mitochondrial stresses, damaged mitochondria are transported into migrasomes and subsequently disposed of from migrating cells. Mechanistically, mitocytosis requires positioning of damaged mitochondria at the cell periphery, which occurs because damaged mitochondria avoid binding to inward motor proteins. Functionally, mitocytosis plays an important role in maintaining mitochondrial quality. Enhanced mitocytosis protects cells from mitochondrial stressor-induced loss of mitochondrial membrane potential (MMP) and mitochondrial respiration; conversely, blocking mitocytosis causes loss of MMP and mitochondrial respiration under normal conditions. Physiologically, we demonstrate that mitocytosis is required for maintaining MMP and viability in neutrophils in vivo. We propose that mitocytosis is an important mitochondrial quality-control process in migrating cells, which couples mitochondrial homeostasis with cell migration.


Asunto(s)
Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Animales , Transporte Biológico , Línea Celular , Movimiento Celular/fisiología , Citoplasma/metabolismo , Exocitosis/fisiología , Femenino , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión/métodos , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Orgánulos/metabolismo
3.
Cell ; 184(12): 3318-3332.e17, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34038702

RESUMEN

Long-term subcellular intravital imaging in mammals is vital to study diverse intercellular behaviors and organelle functions during native physiological processes. However, optical heterogeneity, tissue opacity, and phototoxicity pose great challenges. Here, we propose a computational imaging framework, termed digital adaptive optics scanning light-field mutual iterative tomography (DAOSLIMIT), featuring high-speed, high-resolution 3D imaging, tiled wavefront correction, and low phototoxicity with a compact system. By tomographic imaging of the entire volume simultaneously, we obtained volumetric imaging across 225 × 225 × 16 µm3, with a resolution of up to 220 nm laterally and 400 nm axially, at the millisecond scale, over hundreds of thousands of time points. To establish the capabilities, we investigated large-scale cell migration and neural activities in different species and observed various subcellular dynamics in mammals during neutrophil migration and tumor cell circulation.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Óptica y Fotónica , Tomografía , Animales , Calcio/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Drosophila , Células HeLa , Humanos , Larva/fisiología , Hígado/diagnóstico por imagen , Masculino , Ratones Endogámicos C57BL , Neoplasias/patología , Ratas Sprague-Dawley , Relación Señal-Ruido , Fracciones Subcelulares/fisiología , Factores de Tiempo , Pez Cebra
4.
Proc Natl Acad Sci U S A ; 121(30): e2319267121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008679

RESUMEN

Migrasomes, vesicular organelles generated on the retraction fibers of migrating cells, play a crucial role in migracytosis, mediating intercellular communication. The cargoes determine the functional specificity of migrasomes. Migrasomes harbor numerous intraluminal vesicles, a pivotal component of their cargoes. The mechanism underlying the transportation of these intraluminal vesicles to the migrasomes remains enigmatic. In this study, we identified that Rab10 and Caveolin-1 (CAV1) mark the intraluminal vesicles in migrasomes. Transport of Rab10-CAV1 vesicles to migrasomes required the motor protein Myosin Va and adaptor proteins RILPL2. Notably, the phosphorylation of Rab10 by the kinase LRRK2 regulated this process. Moreover, CSF-1 can be transported to migrasomes through this mechanism, subsequently fostering monocyte-macrophage differentiation in skin wound healing, which served as a proof of the physiological importance of this transporting mechanism.


Asunto(s)
Caveolina 1 , Movimiento Celular , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Humanos , Caveolina 1/metabolismo , Caveolina 1/genética , Macrófagos/metabolismo , Fosforilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Transporte Biológico , Cicatrización de Heridas/fisiología , Orgánulos/metabolismo
5.
Immunol Rev ; 312(1): 52-60, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35665941

RESUMEN

Neutrophils are immune cells involved in several inflammatory and homeostatic processes. Their capacity to release cargo can be classified based on whether the cargo is released on its own, or in conjunction with plasma membrane structures. Examples of plasma membrane-free secretion modes are degranulation, neutrophil extracellular trap (NET) release, and cytokine release through inflammasome formation. The most studied membrane-covered neutrophil-derived structures are exosomes and ectosomes that are collectively called extracellular vesicles (EV). Apoptotic vesicles are another recognized EV subtype. Over the last decade, additional membrane-covered neutrophil-derived structures were characterized: migratory cytoplasts, migrasomes, and elongated neutrophil-derived structures (ENDS). All these structures are smaller than the neutrophils, cannot reproduce themselves, and thus meet the latest consensus definition of EVs. In this review, we focus on the less well-studied neutrophil EVs: apoptotic vesicles, cytoplasts, migrasomes, and ENDS.


Asunto(s)
Micropartículas Derivadas de Células , Vesículas Extracelulares , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamasomas/metabolismo , Neutrófilos
6.
FASEB J ; 38(14): e23811, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39031505

RESUMEN

Since the migrasome concept was first proposed in 2015, extensive research has been conducted on these novel organelles, which grow on retracted fibers at the posterior end of migrating cells. Recently, molecular markers, biological functions, and clinical values based on the initial formation mechanism of migrasomes have emerged. Additionally, researchers are recognizing the significant role that migrasomes play in the pathological and diagnostic processes of clinical diseases. In this review, we summarize recent advances in the biology and clinical application of migrasomes and provide a comprehensive view of the prospective challenges surrounding their clinical application.


Asunto(s)
Movimiento Celular , Orgánulos , Humanos , Orgánulos/metabolismo , Animales
7.
BMC Biol ; 22(1): 23, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287397

RESUMEN

BACKGROUND: Glioblastoma (GBM) is more difficult to treat than other intractable adult tumors. The main reason that GBM is so difficult to treat is that it is highly infiltrative. Migrasomes are newly discovered membrane structures observed in migrating cells. Thus, they can be generated from GBM cells that have the ability to migrate along the brain parenchyma. However, the function of migrasomes has not yet been elucidated in GBM cells. RESULTS: Here, we describe the composition and function of migrasomes generated along with GBM cell migration. Proteomic analysis revealed that LC3B-positive autophagosomes were abundant in the migrasomes of GBM cells. An increased number of migrasomes was observed following treatment with chloroquine (CQ) or inhibition of the expression of STX17 and SNAP29, which are involved in autophagosome/lysosome fusion. Furthermore, depletion of ITGA5 or TSPAN4 did not relieve endoplasmic reticulum (ER) stress in cells, resulting in cell death. CONCLUSIONS: Taken together, our study suggests that increasing the number of autophagosomes, through inhibition of autophagosome/lysosome fusion, generates migrasomes that have the capacity to alleviate cellular stress.


Asunto(s)
Autofagosomas , Glioblastoma , Humanos , Autofagosomas/metabolismo , Glioblastoma/metabolismo , Autofagia , Proteómica , Lisosomas/metabolismo , Estrés del Retículo Endoplásmico
8.
Curr Issues Mol Biol ; 46(8): 8658-8664, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39194727

RESUMEN

Migrasomes, the newly discovered cellular organelles that form large vesicle-like structures on the retraction fibers of migrating cells, are thought to be involved in communication between neighboring cells, cellular content transfer, unwanted material shedding, and information integration. Although their formation has been described previously, the molecular mechanisms of migrasome biogenesis are largely unknown. Here, we developed a cell line that overexpresses GFP-tetraspanin4, enabling observation of migrasomes. To identify compounds that regulate migrasome activity in retinal pigment epithelial (RPE) cells, we screened a fecal chemical library and identified cadaverine, a biogenic amine, as a potent migrasome formation inducer. Compared with normal migrating cells, those treated with cadaverine had significantly more migrasomes. Putrescine, another biogenic amine, also increased migrasome formation. Trace amine-associated receptor 8 (TAAR8) depletion inhibited migrasome increase in cadaverine-treated RPE cells, and cadaverine also inhibited protein kinase A phosphorylation. In RPE cells, cadaverine triggers migrasome formation via a TAAR8-mediated protein kinase A signaling pathway.

9.
Cell Biol Int ; 48(9): 1254-1265, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39010645

RESUMEN

Migrasome is a newly discovered organelle composed of small vesicular structures enclosed in membrane structures. Since its discovery in 2014, migrasome has attracted increasing attention in cell biology due to its critical role in multiple disease processes. Its pivotal role in various disease processes, including cell migration, intercellular communication, removal of damaged mitochondria, embryogenesis localization, immune cell chemotaxis, and virus transmission, underscores its significance in biological systems. With research on migrasome steadily increasing, it becomes a unique resource for undergraduate cell biology education. For deeper understanding of migrasome, we applied a bibliometric approach. Here we conducted a comprehensive analysis of migrasome research by retrieving relevant literature from databases such as Web of Science, Scopus, and PubMed using the keywords "migrasome" or "migrasomes." Employing CiteSpace software and Prism, we analyzed annual publication trends, identified core authors and institutions, assessed national contributions, examined keywords, and scrutinized highly cited literature related to migrasome research. This study presents a comprehensive overview of migrasome research, elucidating its literature characteristics, key contributors, research hotspots, and emerging trends. By shedding light on the current status and future trajectories of migrasome research, we aim to provide valuable insights for teachers in cell biology education. We propose for the integration of migrasome research into undergraduate curricula to enhance the understanding of cell biology among premedical, medical, and biomedical students, thereby fostering a deeper appreciation for the intricate mechanisms governing cellular behavior and disease processes.


Asunto(s)
Biología Celular , Humanos , Orgánulos/metabolismo , Aprendizaje/fisiología , Animales , Movimiento Celular
10.
Cell Commun Signal ; 21(1): 36, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788616

RESUMEN

BACKGROUND: Multipotent mesenchymal stromal cells (MSCs) are precursors of various cell types. Through soluble factors, direct cell-cell interactions and other intercellular communication mechanisms such as extracellular vesicles and tunneling nanotubes, MSCs support tissue homeostasis. In the bone marrow microenvironment, they promote hematopoiesis. The interaction between MSCs and cancer cells enhances the cancer and metastatic potential. Here, we have demonstrated that plastic-adherent MSCs isolated from human bone marrow generate migrasomes, a newly discovered organelle playing a role in intercellular communication. RESULTS: Migrasomes are forming a network with retraction fibers behind the migrating MSCs or surrounding them after membrane retraction. The MSC markers, CD44, CD73, CD90, CD105 and CD166 are present on the migrasome network, the latter being specific to migrasomes. Some migrasomes harbor the late endosomal GTPase Rab7 and exosomal marker CD63 indicating the presence of multivesicular bodies. Stromal cell-derived factor 1 (SDF-1) was detected in migrasomes, suggesting that they play a chemoattractant role. Co-cultures with KG-1a leukemic cells or primary CD34+ hematopoietic progenitors revealed that MSC-associated migrasomes attracted them, a process intercepted by the addition of AMD3100, a specific CXCR4 receptor inhibitor, or recombinant SDF-1. An antibody directed against CD166 reduced the association of hematopoietic cells and MSC-associated migrasomes. In contrast to primary CD34+ progenitors, leukemic cells can take up migrasomes. CONCLUSION: Overall, we described a novel mechanism used by MSCs to communicate with cells of hematopoietic origin and further studies are needed to decipher all biological aspects of migrasomes in the healthy and transformed bone marrow microenvironment. Video Abstract.


Asunto(s)
Factores Quimiotácticos , Células Madre Mesenquimatosas , Humanos , Factores Quimiotácticos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Hematopoyéticas , Células Cultivadas , Antígenos CD34/metabolismo , Células de la Médula Ósea , Diferenciación Celular , Células del Estroma/metabolismo
11.
Nano Lett ; 22(10): 4020-4027, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35499493

RESUMEN

Dendritic cells (DCs) can infiltrate tight junctions of the epithelium to collect remote antigens during immune surveillance. While elongated membrane structures represent a plausible structure to perform this task, their functional mechanisms remain elusive owing to the lack of high-resolution characterizations in live DCs. Here, we developed fluorescent artificial antigens (FAAs) based on quantum dots coated with polyacrylic acid. Single-particle tracking of FAAs enables us to superresolve the membrane fiber network responsible for the antigen uptake. Using the DC2.4 cell line as a model system, we discovered the extensive membrane network approaching 200 µm in length with tunnel-like cavities about 150 nm in width. The membrane fiber network also contained heterogeneous circular migrasomes. Disconnecting the membrane network from the cell body decreased the intracellular FAA density. Our study enables mechanistic investigations of DC membrane networks and nanocarriers that target this mechanism.


Asunto(s)
Células Dendríticas , Puntos Cuánticos , Antígenos , Línea Celular , Vacunas Sintéticas
12.
J Nanobiotechnology ; 20(1): 519, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494806

RESUMEN

BACKGROUND: Proliferative vitreoretinopathy (PVR) is a blind-causing disease initiated by the activation of retinal pigmented epithelium (RPE) primarily induced by TGF-ß families. Migrasome is a recently discovered type of extracellular vesicle related to cell migration. RESULTS: Here, we used ex vivo, in vitro, and in vivo models, to investigate the characteristics and functions of migrasomes in RPE activation and PVR development. Results indicated that the migrasome marker tetraspanin-4 (TSPAN4) was abundantly expressed in human PVR-associated clinical samples. The ex vivo model PVR microenvironment is simulated by incubating brown Norway rat RPE eyecups with TGF-ß1. Electron microscope images showed the formation of migrasome-like vesicles during the activation of RPE. Further studies indicated TGF-ß1 increased the expression of TSPAN4 which results in migrasome production. Migrasomes can be internalized by RPE and increase the migration and proliferation ability of RPE. Moreover, TSPAN4-inhibited RPE cells are with reduced ability of initiating experimental PVR. Mechanically, TSPAN4 expression and migrasome production are induced through TGF-ß1/Smad2/3 signaling pathway. CONCLUSION: In conclusion, migrasomes can be produced by RPE under PVR microenvironment. Migrasomes play a pivotal role in RPE activation and PVR progression. Thus, targeting TSPAN4 or blocking migrasome formation might be a new therapeutic method against PVR.


Asunto(s)
Factor de Crecimiento Transformador beta1 , Vitreorretinopatía Proliferativa , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Vitreorretinopatía Proliferativa/tratamiento farmacológico , Vitreorretinopatía Proliferativa/metabolismo , Epitelio Pigmentado de la Retina , Movimiento Celular , Epitelio , Células Cultivadas
13.
Cell Insight ; 3(1): 100142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38075506

RESUMEN

Migrasomes are newly identified vesicular structures that mainly come from the ends and crosspoints of retracting fibers in moving cells. Their creation is closely linked with cell movement and goes through three key steps: Nucleation, Maturation, and Expansion. They eventually get released in an event called migracytosis. Migrasomes have become an interesting focus in cell communication, especially during processes like development. They transport a mix of chemokines, growth factors, and morphogens. Their study can offer fresh perspectives on developmental gradients and improve our understanding of how development works. In the mini-review, we summarize our recent progress on the role of migrasomes in development, with a special focus on how migrasomes contribute to the spatial distribution of signalling molecules.

14.
Trends Cell Biol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866683

RESUMEN

Migrasomes, newly identified extracellular organelles produced by migrating cells, are observed widely across both in vivo and in vitro studies. These organelles, rich in signaling and bioactive molecules, are pivotal in a range of physiological functions. This opinion summarizes current understanding of migrasomes, highlighting their importance as a versatile mechanism for cell-cell communication. Furthermore, it examines their roles in health and disease and potential diagnostic and therapeutic applications, and addresses the emerging challenges and open questions in this developing field.

15.
Biophys Rep ; 10(2): 67-81, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38774353

RESUMEN

Migrasomes are a novel type of cell organelle that form on the retraction fibers at the rear of migrating cells. In recent years, numerous studies have unveiled the mechanisms of migrasome formation and have highlighted significant roles of migrasomes in both physiological and pathological processes. Building upon the strategies outlined in published works and our own research experiences, we have compiled a comprehensive set of protocols for observing migrasomes. These step-by-step instructions encompass various aspects such as cell culture, labeling, imaging, in vitro reconstitution, and statistical analysis. We believe that these protocols serve as a valuable resource for researchers exploring migrasome biology.

16.
Discov Oncol ; 15(1): 166, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748047

RESUMEN

Cell migration, a hallmark of cancer malignancy, plays a critical role in cancers. Improperly initiated or misdirected cell migration can lead to invasive metastatic cancer. Migrasomes are newly discovered vesicular cellular organelles produced by migrating cells and depending on cell migration. Four marker proteins [NDST1 (bifunctionalheparan sulfate N-deacetylase/N-sulfotransferase 1), EOGT (Epidermal growth factor domains pecific O-linked N-acetylglucosaminetransferase), CPQ (carboxypeptidase Q), and PIGK (phosphatidylinositol glycan anchor biosynthesis, class K)] of migrasomes were successfully identified. There are three marker proteins (NDST1, PIGK, and EOGT) of migrasome expressed in cancer. In this review, we will discuss the process of migrasome discovery, the formation of migrasome, the possible functions of migrasome, and the differences between migrasomes and exosomes, especially, the biological functions of migrasome marker proteins in cancer, and discuss some possible roles of migrasomes in cancer. We speculate that migrasomes and migracytosis can play key roles in regulating the development of cancer.

17.
FEBS Lett ; 598(4): 437-445, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38339800

RESUMEN

Migrasomes are extracellular vesicles that form on the retraction fibers of migrating cells. In this study, we report the formation of migrasome-like vesicles enriched in tetraspanin 4 and containing cytoplasmic components in response to hypoosmotic stress. When migrating cells were subjected to hypoosmotic stress, vesicles with a size distribution of 0.5 to 2 µm formed on the retraction fibers, and vanished in a few minutes. The vesicles are rich in cholesterol, and their number was reduced when cells were pretreated with lipoprotein-deficient serum. The formation of migrasome-like vesicles upon hypoosmotic stress may provide biophysical cues regarding the cellular response to this external stimulus in cells and tissues.


Asunto(s)
Orgánulos , Presión Osmótica , Citoplasma , Citosol
18.
Eur J Cell Biol ; 103(4): 151454, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39232451

RESUMEN

CTCF is a key factor in three-dimensional chromatin folding and transcriptional control that was found to affect cancer cell migration by a mechanism that is still poorly understood. To identify this mechanism, we used mouse melanoma cells with a partial loss of function (pLoF) of CTCF. We found that CTCF pLoF inhibits cell migration rate while leading to an increase in the expression of multiple enzymes in the cholesterol biosynthesis pathway along with an elevation in the cellular cholesterol level. In agreement with the cholesterol change we detected altered membrane dynamics in CTCF pLoF cells as measured by reduced formation of migrasomes, extracellular vesicles formed at the rear side of migrating cells. Inhibition of cholesterol synthesis in CTCF pLoF cells restored the cellular migration rate and migrasome formation, suggesting that CTCF supports cell migration by suppressing cholesterol synthesis. Detailed analysis of the promoter of Hmgcs1, an early enzyme in the cholesterol synthesis pathway, revealed that CTCF prevents formation of a loop between that promoter and another promoter 200 kb away. CTCF also supports PRC2 recruitment to the promoter and deposition of H3K27me3. H3K27me3 at the promoter of Hmgcs1 prevents SREBP2 binding and activation of transcription. By this mechanism, CTCF fine-tunes cholesterol levels to support cell migration. Notably, genome wide association studies suggest a link between CTCF and cholesterol-associated diseases, thus CTCF emerges as a new regulator of cholesterol biosynthesis.

19.
J Exp Clin Cancer Res ; 43(1): 160, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840183

RESUMEN

BACKGROUND: The tetraspanin family plays a pivotal role in the genesis of migrasomes, and Tetraspanin CD151 is also implicated in neovascularization within tumorous contexts. Nevertheless, research pertaining to the involvement of CD151 in hepatocellular carcinoma (HCC) neovascularization and its association with migrasomes remains inadequate. METHODS: To investigate the correlation between CD151 and migrasome marker TSPAN4 in liver cancer, we conducted database analysis using clinical data from HCC patients. Expression levels of CD151 were assessed in HCC tissues and correlated with patient survival outcomes. In vitro experiments were performed using HCC cell lines to evaluate the impact of CD151 expression on migrasome formation and cellular invasiveness. Cell lines with altered CD151 expression levels were utilized to study migrasome generation and in vitro invasion capabilities. Additionally, migrasome function was explored through cellular aggregation assays and phagocytosis studies. Subsequent VEGF level analysis and tissue chip experiments further confirmed the role of CD151 in mediating migrasome involvement in angiogenesis and cellular signal transduction. RESULTS: Our study revealed a significant correlation between CD151 expression and migrasome marker TSPAN4 in liver cancer, based on database analysis of clinical samples. High expression levels of CD151 were closely associated with poor survival outcomes in HCC patients. Experimentally, decreased CD151 expression led to reduced migrasome generation and diminished in vitro invasion capabilities, resulting in attenuated in vivo metastatic potential. Migrasomes were demonstrated to facilitate cellular aggregation and phagocytosis, thereby promoting cellular invasiveness. Furthermore, VEGF-enriched migrasomes were implicated in signaling and angiogenesis, accelerating HCC progression. CONCLUSIONS: In summary, our findings support the notion that elevated CD151 expression promotes migrasome formation, and migrasomes play a pivotal role in the invasiveness and angiogenesis of liver cancer cells, thereby facilitating HCC progression. This finding implies that migrasomes generated by elevated CD151 expression may constitute a promising high-priority target for anti-angiogenic therapy in HCC, offering crucial insights for the in-depth exploration of migrasome function and a renewed comprehension of the mechanism underlying liver cancer metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Invasividad Neoplásica , Neovascularización Patológica , Tetraspanina 24 , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Ratones , Animales , Línea Celular Tumoral , Masculino , Femenino , Movimiento Celular , Angiogénesis
20.
Biomedicines ; 12(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062199

RESUMEN

BACKGROUND: Recent studies have demonstrated that the migrasome, a newly functional extracellular vesicle, is potentially significant in the occurrence, progression, and diagnosis of cardiovascular diseases. Nonetheless, its diagnostic significance and biological mechanism in acute myocardial infarction (AMI) have yet to be fully explored. METHODS: To remedy this gap, we employed an integrative machine learning (ML) framework composed of 113 ML combinations within five independent AMI cohorts to establish a predictive migrasome-related signature (MS). To further elucidate the biological mechanism underlying MS, we implemented single-cell RNA sequencing (scRNA-seq) of cardiac Cd45+ cells from AMI-induced mice. Ultimately, we conducted mendelian randomization (MR) and molecular docking to unveil the therapeutic effectiveness of MS. RESULTS: MS demonstrated robust predictive performance and superior generalization, driven by the optimal combination of Stepglm and Lasso, on the expression of nine migrasome genes (BMP1, ITGB1, NDST1, TSPAN1, TSPAN18, TSPAN2, TSPAN4, TSPAN7, TSPAN9, and WNT8A). Notably, ITGB1 was found to be predominantly expressed in cardiac macrophages in AMI-induced mice, mechanically regulating macrophage transformation between anti-inflammatory and pro-inflammatory. Furthermore, we showed a positive causality between genetic predisposition towards ITGB1 expression and AMI risk, positioning it as a causative gene. Finally, we showed that ginsenoside Rh1, which interacts closely with ITGB1, could represent a novel therapeutic approach for repressing ITGB1. CONCLUSIONS: Our MS has implications in forecasting and curving AMI to inform future diagnostic and therapeutic strategies for AMI.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda