Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Mol Cell ; 83(16): 2976-2990.e9, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595558

RESUMEN

Ubiquitin-dependent control of mitochondrial dynamics is important for protein quality and neuronal integrity. Mitofusins, mitochondrial fusion factors, can integrate cellular stress through their ubiquitylation, which is carried out by multiple E3 enzymes in response to many different stimuli. However, the molecular mechanisms that enable coordinated responses are largely unknown. Here we show that yeast Ufd2, a conserved ubiquitin chain-elongating E4 enzyme, is required for mitochondrial shape adjustments. Under various stresses, Ufd2 translocates to mitochondria and triggers mitofusin ubiquitylation. This elongates ubiquitin chains on mitofusin and promotes its proteasomal degradation, leading to mitochondrial fragmentation. Ufd2 and its human homologue UBE4B also target mitofusin mutants associated with Charcot-Marie-Tooth disease, a hereditary sensory and motor neuropathy characterized by progressive loss of the peripheral nerves. This underscores the pathophysiological importance of E4-mediated ubiquitylation in neurodegeneration. In summary, we identify E4-dependent mitochondrial stress adaptation by linking various metabolic processes to mitochondrial fusion and fission dynamics.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Ubiquitina-Proteína Ligasas , Humanos , Aclimatación , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Mitocondriales/metabolismo
2.
Mol Cell ; 82(5): 1066-1077.e7, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245450

RESUMEN

The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.


Asunto(s)
Núcleo Celular , Complejo Piruvato Deshidrogenasa , Acetilcoenzima A/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Laminas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membrana Nuclear/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo
3.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120083

RESUMEN

In multicellular tissues, the size and shape of cells are intricately linked with their physiological functions. In the vertebrate auditory organ, the neurosensory epithelium develops as a mosaic of sensory hair cells (HCs), and their glial-like supporting cells, which have distinct morphologies and functional properties at different frequency positions along its tonotopic long axis. In the chick cochlea, the basilar papilla (BP), proximal (high-frequency) HCs, are larger than their distal (low-frequency) counterparts, a morphological feature essential for sound perception. Mitochondrial dynamics, which constitute the equilibrium between fusion and fission, regulate differentiation and functional refinement across a variety of cell types. We investigate this as a potential mechanism for regulating the shape of developing HCs. Using live imaging in intact BP explants, we identify distinct remodelling of mitochondrial networks in proximal compared with distal HCs. Manipulating mitochondrial dynamics in developing HCs alters their normal morphology along the proximal-distal (tonotopic) axis. Inhibition of the mitochondrial fusion machinery decreased proximal HC surface area, whereas promotion of fusion increased the distal HC surface area. We identify mitochondrial dynamics as a key regulator of HC morphology in developing inner ear epithelia.


Asunto(s)
Cóclea , Células Ciliadas Auditivas , Mitocondrias , Dinámicas Mitocondriales , Animales , Cóclea/embriología , Cóclea/citología , Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Mitocondrias/metabolismo , Embrión de Pollo , Forma de la Célula , Pollos , Diferenciación Celular
4.
Proc Natl Acad Sci U S A ; 121(25): e2318535121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865270

RESUMEN

The heart beats approximately 100,000 times per day in humans, imposing substantial energetic demands on cardiac muscle. Adenosine triphosphate (ATP) is an essential energy source for normal function of cardiac muscle during each beat, as it powers ion transport, intracellular Ca2+ handling, and actin-myosin cross-bridge cycling. Despite this, the impact of excitation-contraction coupling on the intracellular ATP concentration ([ATP]i) in myocytes is poorly understood. Here, we conducted real-time measurements of [ATP]i in ventricular myocytes using a genetically encoded ATP fluorescent reporter. Our data reveal rapid beat-to-beat variations in [ATP]i. Notably, diastolic [ATP]i was <1 mM, which is eightfold to 10-fold lower than previously estimated. Accordingly, ATP-sensitive K+ (KATP) channels were active at physiological [ATP]i. Cells exhibited two distinct types of ATP fluctuations during an action potential: net increases (Mode 1) or decreases (Mode 2) in [ATP]i. Mode 1 [ATP]i increases necessitated Ca2+ entry and release from the sarcoplasmic reticulum (SR) and were associated with increases in mitochondrial Ca2+. By contrast, decreases in mitochondrial Ca2+ accompanied Mode 2 [ATP]i decreases. Down-regulation of the protein mitofusin 2 reduced the magnitude of [ATP]i fluctuations, indicating that SR-mitochondrial coupling plays a crucial role in the dynamic control of ATP levels. Activation of ß-adrenergic receptors decreased [ATP]i, underscoring the energetic impact of this signaling pathway. Finally, our work suggests that cross-bridge cycling is the largest consumer of ATP in a ventricular myocyte during an action potential. These findings provide insights into the energetic demands of EC coupling and highlight the dynamic nature of ATP concentrations in cardiac muscle.


Asunto(s)
Adenosina Trifosfato , Calcio , Acoplamiento Excitación-Contracción , Ventrículos Cardíacos , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Adenosina Trifosfato/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Animales , Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Potenciales de Acción/fisiología , Retículo Sarcoplasmático/metabolismo , Frecuencia Cardíaca/fisiología , Humanos , Canales KATP/metabolismo , Contracción Miocárdica/fisiología , Ratones
5.
Proc Natl Acad Sci U S A ; 121(30): e2313609121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012824

RESUMEN

Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.


Asunto(s)
GTP Fosfohidrolasas , Fusión de Membrana , Animales , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Ratones , Fusión de Membrana/fisiología , Liposomas Unilamelares/metabolismo , Liposomas Unilamelares/química , Guanosina Trifosfato/metabolismo , Fosfatidiletanolaminas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo
6.
J Neurosci ; 43(19): 3421-3438, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36997314

RESUMEN

Mitochondria exert powerful control over cellular physiology, contributing to ion homeostasis, energy production, and metabolite biosynthesis. The trafficking and function of these organelles are particularly important in neurons, with impaired mitochondrial function or altered morphology observed in every neurodegenerative disorder studied. While mitochondrial biosynthetic products play a crucial role in maintaining cellular function, their resulting byproducts can have negative consequences. Thus, organelle quality control (QC) mechanisms that maintain mitochondrial function are imperative to restrict destructive signaling cascades in the cell. Axons are particularly sensitive to damage, and there is little consensus regarding the mechanisms that mediate mitochondrial QC in this compartment. Here, we first investigated the unstressed behavior of mitochondria in rat hippocampal neurons of mixed sex, focusing on mitochondrial trafficking and fusion to better understand potential QC mechanisms. We observed size and redox asymmetry of mitochondrial traffic in axons, suggesting an active QC mechanism in this compartment. We also document biochemical complementation upon the fusion and fission of axonal mitochondria. Eliminating fusion by knocking down the neuronal mitochondrial fusion protein mitofusin 2 (MFN2) reduced the rates of axonal mitochondrial trafficking and fusion, decreased the levels of synaptic vesicle (SV) proteins, inhibited exocytosis, and impaired SV recruitment from the reserve pool during extended stimulation. MFN2 knockdown also resulted in presynaptic Ca2+ dyshomeostasis. Remarkably, upon MFN2 knockdown, presynaptic mitochondria sequestered Ca2+ more efficiently, effectively limiting presynaptic Ca2+ transients during stimulation. These results support an active mitochondrial trafficking and fusion-related QC process that supports presynaptic Ca2+ handling and the SV cycle.SIGNIFICANCE STATEMENT Decreased or altered mitochondrial function is observed in many disease states. All neurodegenerative diseases co-present with some sort of mitochondrial abnormality. Therefore, identifying quality control mechanisms that sustain the mitochondrial network in neurons, and particularly in axons, is of significant interest. The response of axonal mitochondria to acutely applied toxins or injury has been studied in detail. Although informative, the response of neurons to these insults might not be physiologically relevant, so it is crucial to also study the basal behavior of axonal mitochondria. Here, we use fluorescent biosensors to investigate the mitochondrial network in neurons and examine the role of mitofusin 2 in maintaining the axonal mitochondrial network and in supporting the synaptic vesicle cycle.


Asunto(s)
Axones , Vesículas Sinápticas , Animales , Ratas , Transporte Axonal/fisiología , Axones/metabolismo , Hipocampo/metabolismo , Homeostasis , Mitocondrias/metabolismo , Vesículas Sinápticas/metabolismo
7.
J Cell Mol Med ; 28(9): e18293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722298

RESUMEN

Charcot-Marie-Tooth type 2A (CMT2A) is an inherited sensorimotor neuropathy associated with mutations within the Mitofusin 2 (MFN2) gene. These mutations impair normal mitochondrial functioning via different mechanisms, disturbing the equilibrium between mitochondrial fusion and fission, of mitophagy and mitochondrial axonal transport. Although CMT2A disease causes a significant disability, no resolutive treatment for CMT2A patients to date. In this context, reliable experimental models are essential to precisely dissect the molecular mechanisms of disease and to devise effective therapeutic strategies. The most commonly used models are either in vitro or in vivo, and among the latter murine models are by far the most versatile and popular. Here, we critically revised the most relevant literature focused on the experimental models, providing an update on the mammalian models of CMT2A developed to date. We highlighted the different phenotypic, histopathological and molecular characteristics, and their use in translational studies for bringing potential therapies from the bench to the bedside. In addition, we discussed limitations of these models and perspectives for future improvement.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Animales , Humanos , Mutación , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dinámicas Mitocondriales/genética
8.
Neurobiol Dis ; 193: 106467, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452947

RESUMEN

Mutations in the gene encoding MFN2 have been identified as associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a broad clinical phenotype involving the entire nervous system. MFN2, a dynamin-like GTPase protein located on the outer mitochondrial membrane, is well-known for its involvement in mitochondrial fusion. Numerous studies have demonstrated its participation in a network crucial for various other mitochondrial functions, including mitophagy, axonal transport, and its controversial role in endoplasmic reticulum (ER)-mitochondria contacts. Considerable progress has been made in the last three decades in elucidating the disease pathogenesis, aided by the generation of animal and cellular models that have been instrumental in studying disease physiology. A review of the literature reveals that, up to now, no definitive pharmacological treatment for any CMT2A variant has been established; nonetheless, recent years have witnessed substantial progress. Many treatment approaches, especially concerning molecular therapy, such as histone deacetylase inhibitors, peptide therapy to increase mitochondrial fusion, the new therapeutic strategies based on MF1/MF2 balance, and SARM1 inhibitors, are currently in preclinical testing. The literature on gene silencing and gene replacement therapies is still limited, except for a recent study by Rizzo et al.(Rizzo et al., 2023), which recently first achieved encouraging results in in vitro and in vivo models of the disease. The near-future goal for these promising therapies is to progress to the stage of clinical translation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Fenotipo , Proteínas Mitocondriales/metabolismo , Mutación
9.
EMBO J ; 39(24): e105074, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33200421

RESUMEN

The connectivity of mitochondria is regulated by a balance between fusion and division. Many human diseases are associated with excessive mitochondrial connectivity due to impaired Drp1, a dynamin-related GTPase that mediates division. Here, we report a mitochondrial stress response, named mitochondrial safeguard, that adjusts the balance of fusion and division in response to increased mitochondrial connectivity. In cells lacking Drp1, mitochondria undergo hyperfusion. However, hyperfusion does not completely connect mitochondria because Opa1 and mitofusin 1, two other dynamin-related GTPases that mediate fusion, become proteolytically inactivated. Pharmacological and genetic experiments show that the activity of Oma1, a metalloprotease that cleaves Opa1, is regulated by short pulses of the membrane depolarization without affecting the overall membrane potential in Drp1-knockout cells. Re-activation of Opa1 and Mitofusin 1 in Drp1-knockout cells further connects mitochondria beyond hyperfusion, termed extreme fusion, leading to bioenergetic deficits. These findings reveal an unforeseen safeguard mechanism that prevents extreme fusion of mitochondria, thereby maintaining mitochondrial function when the balance is shifted to excessive connectivity.


Asunto(s)
Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Estrés Fisiológico/fisiología , Animales , Dinaminas/genética , Dinaminas/metabolismo , Metabolismo Energético , GTP Fosfohidrolasas/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Metaloproteasas/metabolismo , Ratones , Mitocondrias/genética , Dinámicas Mitocondriales/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Fisiológico/genética , Transcriptoma
10.
J Neuroinflammation ; 21(1): 81, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566081

RESUMEN

BACKGROUND: Senescent astrocytes play crucial roles in age-associated neurodegenerative diseases, including Parkinson's disease (PD). Metformin, a drug widely used for treating diabetes, exerts longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. METHODS: Long culture-induced replicative senescence model and 1-methyl-4-phenylpyridinium/α-synuclein aggregate-induced premature senescence model, and a mouse model of PD were used to investigate the effect of metformin on astrocyte senescence in vivo and in vitro. Immunofluorescence staining and flow cytometric analyses were performed to evaluate the mitochondrial function. We stereotactically injected AAV carrying GFAP-promoter-cGAS-shRNA to mouse substantia nigra pars compacta regions to specifically reduce astrocytic cGAS expression to clarify the potential molecular mechanism by which metformin inhibited the astrocyte senescence in PD. RESULTS: We showed that metformin inhibited the astrocyte senescence in vitro and in PD mice. Mechanistically, metformin normalized mitochondrial function to reduce mitochondrial DNA release through mitofusin 2 (Mfn2), leading to inactivation of cGAS-STING, which delayed astrocyte senescence and prevented neurodegeneration. Mfn2 overexpression in astrocytes reversed the inhibitory role of metformin in cGAS-STING activation and astrocyte senescence. More importantly, metformin ameliorated dopamine neuron injury and behavioral deficits in mice by reducing the accumulation of senescent astrocytes via inhibition of astrocytic cGAS activation. Deletion of astrocytic cGAS abolished the suppressive effects of metformin on astrocyte senescence and neurodegeneration. CONCLUSIONS: This work reveals that metformin delays astrocyte senescence via inhibiting astrocytic Mfn2-cGAS activation and suggest that metformin is a promising therapeutic agent for age-associated neurodegenerative diseases.


Asunto(s)
Metformina , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Astrocitos/metabolismo , Neuronas Dopaminérgicas , Nucleotidiltransferasas/metabolismo , Mitocondrias/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/farmacología
11.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612863

RESUMEN

Our study aimed to explore the potential positive effects of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The study involved 32 male and 32 female rats aged 15 months, randomly assigned to control sedentary animals, animals training in cold water at 5 ± 2 °C, or animals training in water at thermal comfort temperature (36 ± 2 °C). The rats underwent swimming training for nine weeks, gradually increasing the duration of the sessions from 2 min to 4 min per day, five days a week. The results demonstrated that swimming in thermally comfortable water improved the energy metabolism of aging rat muscles (increased metabolic rates expressed as increased ATP, ADP concentration, TAN (total adenine nucleotide) and AEC (adenylate energy charge value)) and increased mRNA and protein expression of fusion regulatory proteins. Similarly, cold-water swimming improved muscle energy metabolism in aging rats, as shown by an increase in muscle energy metabolites and enhanced mitochondrial biogenesis and dynamics. It can be concluded that the additive effect of daily activity in cold water influenced both an increase in the rate of energy metabolism in the muscles of the studied animals and an intensification of mitochondrial biogenesis and dynamics (related to fusion and fragmentation processes). Daily activity in warm water also resulted in an increase in the rate of energy metabolism in muscles, but at the same time did not cause significant changes in mitochondrial dynamics.


Asunto(s)
Biogénesis de Organelos , Natación , Femenino , Masculino , Animales , Ratas , Músculos , Metabolismo Energético , Envejecimiento , Agua
12.
Biochem Biophys Res Commun ; 645: 137-146, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36689810

RESUMEN

Mitochondria play a substantial role in cytosolic Ca2+ buffering and energy metabolism. We recently demonstrated that mitofusin 2 (Mfn2) regulated Ca2+ signaling by tethering mitochondria and sarcoplasmic reticulum (SR), and thus, facilitated mitochondrial function and the proliferation of vascular smooth muscle cells (VSMCs). However, the physiological role of mitofusin 1 (Mfn1) on Ca2+ signaling and mitochondrial function remains unclear. Herein, the roles of Mfn1 and Mfn2 in mitochondrial function underlying Ca2+ signaling, ATP production, and cell proliferation were examined in rat aortic smooth muscle A10 cells. Following an arginine vasopressin-induced increase in cytosolic Ca2+ concentration ([Ca2+]cyt), Mfn2 siRNA (siMfn2) reduced cytosolic Ca2+ removal and mitochondrial Ca2+ uptake. However, Mfn1 siRNA (siMfn1) attenuated mitochondrial Ca2+ uptake, facilitated Ca2+ removal from mitochondria, and resulted in increased [Ca2+]cyt, which was mediated by the downregulation of mitochondrial Ca2+ uniporter (MCU) expression and the upregulation of mitochondrial Na+/Ca2+ exchanger (NCLX) expression. Furthermore, siMfn1 increased the mitochondrial membrane potential, ATP production by adenine nucleotide translocase (ANT), and cell proliferation, whereas siMfn2 exhibited the opposite responses. In conclusion, Mfn1 modulates the expressions of MCU, NCLX, and ANT, and Mfn2 tethers mitochondria to SR, which demonstrates their different mitochondrial functions for Ca2+ signaling, ATP production, and the proliferation of VSMCs.


Asunto(s)
GTP Fosfohidrolasas , Mitocondrias , Transducción de Señal , Animales , Ratas , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Miocitos del Músculo Liso/metabolismo , ARN Interferente Pequeño/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , GTP Fosfohidrolasas/metabolismo
13.
J Neuroinflammation ; 20(1): 296, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082266

RESUMEN

BACKGROUND: Neuroinflammation and mitochondrial dysfunction play crucial roles in retinal ischemia and reperfusion (IR) injury. Recent studies have identified mitochondrial function as a promising target for immunomodulation. Empagliflozin (EMPA), an anti-diabetic drug, has exhibited great potential as both an anti-inflammatory agent and a protector of mitochondrial health. This study aimed to assess the therapeutic efficacy of EMPA in retinal IR injury. METHODS: To evaluate the protective effects of EMPA, the drug was injected into the vitreous body of mice post-retinal IR. Single-cell RNA sequencing (scRNA-seq) analysis was conducted to uncover the underlying mechanisms, and the results were further validated through in vivo and in vitro experiments. RESULTS: EMPA effectively protected retinal ganglion cells (RGCs) from IR injury by attenuating local retinal inflammation. The scRNA-seq analysis revealed that EMPA downregulated the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) signaling pathway and restored mitochondrial dynamics by upregulating the expression of mitochondrial fusion-related genes, Mitofusin 1 (Mfn1) and optic atrophy 1 (Opa1). These findings were further corroborated by Western blotting. In vitro experiments provided additional insights, demonstrating that EMPA suppressed lipopolysaccharide (LPS)-induced cell inflammation and NLRP3 inflammasome activation. Moreover, EMPA enhanced mitochondrial fusion, neutralized mitochondrial reactive oxygen species (mtROS), and restored mitochondrial membrane potential (MMP) in BV2 microglia. Notably, genetic ablation of Mfn1 or Opa1 abolished the anti-inflammatory effects of EMPA. CONCLUSIONS: Our findings highlight the positive contribution of Mfn1 and Opa1 to the anti-inflammatory therapeutic effect of EMPA. By restoring mitochondrial dynamics, EMPA effectively mitigates microglia-mediated neuroinflammation and prevents RGC loss in retinal IR injury.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Daño por Reperfusión , Ratones , Animales , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , GTP Fosfohidrolasas
14.
Basic Res Cardiol ; 118(1): 29, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495895

RESUMEN

During myocardial ischemia and reperfusion (IR) injury matrix metalloproteinase-2 (MMP-2) is rapidly activated in response to oxidative stress. MMP-2 is a multifunctional protease that cleaves both extracellular and intracellular proteins. Oxidative stress also impairs mitochondrial function which is regulated by different proteins, including mitofusin-2 (Mfn-2), which is lost in IR injury. Oxidative stress and mitochondrial dysfunction trigger the NLRP3 inflammasome and the innate immune response which invokes the de novo expression of an N-terminal truncated isoform of MMP-2 (NTT-MMP-2) at or near mitochondria. We hypothesized that MMP-2 proteolyzes Mfn-2 during myocardial IR injury, impairing mitochondrial function and enhancing the inflammasome response. Isolated hearts from mice subjected to IR injury (30 min ischemia/40 min reperfusion) showed a significant reduction in left ventricular developed pressure (LVDP) compared to aerobically perfused hearts. IR injury increased MMP-2 activity as observed by gelatin zymography and increased degradation of troponin I, an intracellular MMP-2 target. MMP-2 preferring inhibitors, ARP-100 or ONO-4817, improved post-ischemic recovery of LVDP compared to vehicle perfused IR hearts. In muscle fibers isolated from IR hearts the rates of mitochondrial oxygen consumption and ATP production were impaired compared to those from aerobic hearts, whereas ARP-100 or ONO-4817 attenuated these reductions. IR hearts showed higher levels of NLRP3, cleaved caspase-1 and interleukin-1ß in the cytosolic fraction, while the mitochondria-enriched fraction showed reduced levels of Mfn-2, compared to aerobic hearts. ARP-100 or ONO-4817 attenuated these changes. Co-immunoprecipitation showed that MMP-2 is associated with Mfn-2 in aerobic and IR hearts. ARP-100 or ONO-4817 also reduced infarct size and cell death in hearts subjected to 45 min ischemia/120 min reperfusion. Following myocardial IR injury, impaired contractile function and mitochondrial respiration and elevated inflammasome response could be attributed, at least in part, to MMP-2 activation, which targets and cleaves mitochondrial Mfn-2. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in IR injury in part by preserving Mfn-2 and suppressing inflammation.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Ratones , Inflamasomas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
15.
Arch Biochem Biophys ; 747: 109743, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37696382

RESUMEN

BACKGROUND: Maladaptive right ventricular (RV) remodeling is the most important pathological feature of pulmonary hypertension (PH), involving processes such as myocardial hypertrophy and fibrosis. A growing number of studies have shown that mitochondria-associated endoplasmic reticulum membranes (MAMs) are involved in various physiological and pathological processes, such as calcium homeostasis, lipid metabolism, inflammatory response, mitochondrial dynamics, and autophagy/mitophagy. The abnormal expression of MAMs-related factors is closely related to the occurrence and development of heart-related diseases. However, the role of MAM-related factors in the maladaptive RV remodeling of PH rats remains unclear. METHODS AND RESULTS: We first obtained the transcriptome data of RV tissues from PH rats induced by Su5416 combined with hypoxia treatment (SuHx) from the Gene Expression Omnibus (GEO) database. The results showed that two MAMs-related genes (Opa1 and Mfn2) were significantly down-regulated in RV tissues of SuHx rats, accompanied by significant up-regulation of cardiac hypertrophy-related genes (such as Nppb and Myh7). Subsequently, using the SuHx-induced PH rat model, we found that the downregulation of mitochondrial fusion proteins Opa1 and Mfn2 may be involved in maladaptive RV remodeling by accelerating mitochondrial dysfunction. Finally, at the cellular level, we found that overexpression of Opa1 and Mfn2 could inhibit hypoxia-induced mitochondrial fission and reduce ROS production in H9c2 cardiomyocytes, thereby retarded the progression of cardiomyocyte hypertrophy. CONCLUSIONS: The down-regulation of mitochondrial fusion protein Opa1/Mfn2 can accelerate cardiomyocyte hypertrophy and then participate in maladaptive RV remodeling in SuHx-induced PH rats, which may be potential targets for preventing maladaptive RV remodeling.


Asunto(s)
Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Miocitos Cardíacos/metabolismo , Dinámicas Mitocondriales , Regulación hacia Abajo , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Hidrolasas/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipertrofia/complicaciones , Hipertrofia/metabolismo , Hipertrofia/patología , Remodelación Ventricular , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
16.
Cell Mol Neurobiol ; 43(7): 3479-3495, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37193907

RESUMEN

Repeated mild traumatic brain injuries (rMTBI) affect mitochondrial homeostasis in the brain. However, mechanisms of long-lasting neurobehavioral effects of rMTBI are largely unknown. Mitofusin 2 (Mfn2) is a critical component of tethering complexes in mitochondria-associated membranes (MAMs) and thereby plays a pivotal role in mitochondrial functions. Herein, we investigated the implications of DNA methylation in the Mfn2 gene regulation, and its consequences on mitochondrial dysfunction in the hippocampus after rMTBI. rMTBI dramatically reduced the mitochondrial mass, which was concomitant with decrease in Mfn2 mRNA and protein levels. DNA hypermethylation at the Mfn2 gene promoter was observed post 30 days of rMTBI. The treatment of 5-Azacytidine, a pan DNA methyltransferase inhibitor, normalized DNA methylation levels at Mfn2 promoter, which further resulted into restoration of Mfn2 function. The normalization of Mfn2 function was well correlated with recovery in memory deficits in rMTBI-exposed rats. Since, glutamate excitotoxicity serves as a primary insult after TBI, we employed in vitro model of glutamate excitotoxicity in human neuronal cell line SH-SY5Y to investigate the causal epigenetic mechanisms of Mfn2 gene regulation. The glutamate excitotoxicity reduced Mfn2 levels via DNA hypermethylation at Mfn2 promoter. Loss of Mfn2 caused significant surge in cellular and mitochondrial ROS levels with lowered mitochondrial membrane potential in cultured SH-SY5Y cells. Like rMTBI, these consequences of glutamate excitotoxicity were also prevented by 5-AzaC pre-treatment. Therefore, DNA methylation serves as a vital epigenetic mechanism involved in Mfn2 expression in the brain; and this Mfn2 gene regulation may play a pivotal role in rMTBI-induced persistent cognitive deficits. Closed head weight drop injury method was employed to induce repeated mild traumatic brain (rMTBI) in jury in adult, male Wistar rats. rMTBI causes hyper DNA methylation at the Mfn2 promoter and lowers the Mfn2 expression triggering mitochondrial dysfunction. However, the treatment of 5-azacytidine normalizes DNA methylation at the Mfn2 promoter and restores mitochondrial function.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neuroblastoma , Animales , Masculino , Ratas , Azacitidina/farmacología , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , ADN/metabolismo , Metilación de ADN , Glutamatos/metabolismo , Trastornos de la Memoria/etiología , Mitocondrias/metabolismo , Ratas Wistar
17.
J Peripher Nerv Syst ; 28(3): 329-340, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37220142

RESUMEN

BACKGROUND AND AIMS: Mitofusin 1 (MFN1) and MFN2 are outer mitochondrial membrane fusogenic proteins regulating mitochondrial network morphology. MFN2 mutations cause Charcot-Marie-Tooth type 2A (CMT2A), an axonal neuropathy characterized by mitochondrial fusion defects, which in the case of a GTPase domain mutant, were rescued following wild-type MFN1/2 (MFN1/2WT ) overexpression. In this study, we compared the therapeutic efficiency between MFN1WT and MFN2WT overexpression in correcting mitochondrial defects induced by the novel MFN2K357T mutation located in the highly conserved R3 region. METHODS: Constructs expressing either MFN2K357T , MFN2WT , or MFN1WT under the ubiquitous chicken ß-actin hybrid (CBh) promoter were generated. Flag or myc tag was used for their detection. Differentiated SH-SY5Y cells were single transfected with MFN1WT , MFN2WT , or MFN2K357T , as well as double transfected with MFN2K357T /MFN2WT or MFN2K357T /MFN1WT . RESULTS: SH-SY5Y cells transfected with MFN2K357T exhibited severe perinuclear mitochondrial clustering with axon-like processes devoid of mitochondria. Single transfection with MFN1WT resulted in a more interconnected mitochondrial network than transfection with MFN2WT , accompanied by mitochondrial clusters. Double transfection of MFN2K357T with either MFN1WT or MFN2WT resolved the mutant-induced mitochondrial clusters and led to detectable mitochondria throughout the axon-like processes. MFN1WT showed higher efficacy than MFN2WT in rescuing these defects. INTERPRETATION: These results further demonstrate the higher potential of MFN1WT over MFN2WT overexpression to rescue CMT2A-induced mitochondrial network abnormalities due to mutations outside the GTPase domain. This higher phenotypic rescue conferred by MFN1WT , possibly due to its higher mitochondrial fusogenic ability, may be applied to different CMT2A cases regardless of the MFN2 mutation type.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Neuroblastoma , Humanos , Dinámicas Mitocondriales , Neuroblastoma/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Enfermedad de Charcot-Marie-Tooth/genética
18.
Cell Mol Life Sci ; 79(7): 370, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725948

RESUMEN

Germ cell formation and embryonic development require ATP synthesized by mitochondria. The dynamic system of the mitochondria, and in particular, the fusion of mitochondria, are essential for the generation of energy. Mitofusin1 and mitofusin2, the homologues of Fuzzy onions in yeast and Drosophila, are critical regulators of mitochondrial fusion in mammalian cells. Since their discovery mitofusins (Mfns) have been the source of significant interest as key influencers of mitochondrial dynamics, including membrane fusion, mitochondrial distribution, and the interaction with other organelles. Emerging evidence has revealed significant insight into the role of Mfns in germ cell formation and embryonic development, as well as the high incidence of reproductive diseases such as asthenospermia, polycystic ovary syndrome, and gestational diabetes mellitus. Here, we describe the key mechanisms of Mfns in mitochondrial dynamics, focusing particularly on the role of Mfns in the regulation of mammalian fertility, including spermatogenesis, oocyte maturation, and embryonic development. We also highlight the role of Mfns in certain diseases associated with the reproductive system and their potential as therapeutic targets.


Asunto(s)
Fertilidad , GTP Fosfohidrolasas , Mitocondrias , Proteínas Mitocondriales , Animales , Drosophila/metabolismo , Femenino , GTP Fosfohidrolasas/metabolismo , Masculino , Mamíferos/metabolismo , Fusión de Membrana , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo
19.
BMC Biol ; 20(1): 40, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139855

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA) is present at high copy numbers in animal cells, and though characterized by a single haplotype in each individual due to maternal germline inheritance, deleterious mutations and intact mtDNA molecules frequently co-exist (heteroplasmy). A number of factors, such as replicative segregation, mitochondrial bottlenecks, and selection, may modulate the exitance of heteroplasmic mutations. Since such mutations may have pathological consequences, they likely survive and are inherited due to functional complementation via the intracellular mitochondrial network. Here, we hypothesized that compromised mitochondrial fusion would hamper such complementation, thereby affecting heteroplasmy inheritance. RESULTS: We assessed heteroplasmy levels in three Caenorhabditis elegans strains carrying different heteroplasmic mtDNA deletions (ΔmtDNA) in the background of mutant mitofusin (fzo-1). Animals displayed severe embryonic lethality and developmental delay. Strikingly, observed phenotypes were relieved during subsequent generations in association with complete loss of ΔmtDNA molecules. Moreover, deletion loss rates were negatively correlated with the size of mtDNA deletions, suggesting that mitochondrial fusion is essential and sensitive to the nature of the heteroplasmic mtDNA mutations. Introducing the ΔmtDNA into a fzo-1;pdr-1;+/ΔmtDNA (PARKIN ortholog) double mutant resulted in a skewed Mendelian progeny distribution, in contrast to the normal distribution in the fzo-1;+/ΔmtDNA mutant, and severely reduced brood size. Notably, the ΔmtDNA was lost across generations in association with improved phenotypes. CONCLUSIONS: Taken together, our findings show that when mitochondrial fusion is compromised, deleterious heteroplasmic mutations cannot evade natural selection while inherited through generations. Moreover, our findings underline the importance of cross-talk between mitochondrial fusion and mitophagy in modulating the inheritance of mtDNA heteroplasmy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ADN Mitocondrial/genética , GTP Fosfohidrolasas/genética , Patrón de Herencia , Mitocondrias/genética , Dinámicas Mitocondriales/genética
20.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139362

RESUMEN

The disruption of mitochondrial dynamics has been identified in cardiovascular diseases, including pulmonary hypertension (PH), ischemia-reperfusion injury, heart failure, and cardiomyopathy. Mitofusin 2 (Mfn2) is abundantly expressed in heart and pulmonary vasculature cells at the outer mitochondrial membrane to modulate fusion. Previously, we have reported reduced levels of Mfn2 and fragmented mitochondria in pulmonary arterial endothelial cells (PAECs) isolated from a sheep model of PH induced by pulmonary over-circulation and restoring Mfn2 normalized mitochondrial function. In this study, we assessed the effect of increased expression of Mfn2 on mitochondrial metabolism, bioenergetics, reactive oxygen species production, and mitochondrial membrane potential in control PAECs. Using an adenoviral expression system to overexpress Mfn2 in PAECs and utilizing 13C labeled substrates, we assessed the levels of TCA cycle metabolites. We identified increased pyruvate and lactate production in cells, revealing a glycolytic phenotype (Warburg phenotype). Mfn2 overexpression decreased the mitochondrial ATP production rate, increased the rate of glycolytic ATP production, and disrupted mitochondrial bioenergetics. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels, elevated mitochondrial reactive oxygen species (mt-ROS), and decreased mitochondrial membrane potential. Our data suggest that disrupting the mitochondrial fusion/fission balance to favor hyperfusion leads to a metabolic shift that promotes aerobic glycolysis. Thus, therapies designed to increase mitochondrial fusion should be approached with caution.


Asunto(s)
Hipertensión Pulmonar , Mitocondrias , Animales , Adenosina Trifosfato/metabolismo , Células Endoteliales/metabolismo , Glucólisis , Hidrolasas/metabolismo , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ovinos , GTP Fosfohidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda