Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34151363

RESUMEN

Three-dimensional (3D) molecular similarity, one major ligand-based virtual screening (VS) method, has been widely used in the drug discovery process. A variety of 3D molecular similarity tools have been developed in recent decades. In this study, we assessed a panel of 15 3D molecular similarity programs against the DUD-E and LIT-PCBA datasets, including commercial ROCS and Phase, in terms of screening power and scaffold-hopping power. The results revealed that (1) SHAFTS, LS-align, Phase Shape_Pharm and LIGSIFT showed the best VS capability in terms of screening power. Some 3D similarity tools available to academia can yield relatively better VS performance than commercial ROCS and Phase software. (2) Current 3D similarity VS tools exhibit a considerable ability to capture actives with new chemotypes in terms of scaffold hopping. (3) Multiple conformers relative to single conformations will generally improve VS performance for most 3D similarity tools, with marginal improvement observed in area under the receiving operator characteristic curve values, enrichment factor in the top 1% and hit rate in the top 1% values showed larger improvement. Moreover, redundancy and complementarity analyses of hit lists from different query seeds and different 3D similarity VS tools showed that the combination of different query seeds and/or different 3D similarity tools in VS campaigns retrieved more (and more diverse) active molecules. These findings provide useful information for guiding choices of the optimal 3D molecular similarity tools for VS practices and designing possible combination strategies to discover more diverse active compounds.


Asunto(s)
Descubrimiento de Drogas/métodos , Modelos Moleculares , Conformación Molecular , Programas Informáticos , Área Bajo la Curva , Benchmarking , Bases de Datos Farmacéuticas , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Ligandos , Estructura Molecular , Curva ROC , Navegador Web
2.
Bioorg Med Chem Lett ; 83: 129189, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36805047

RESUMEN

The synthesis of 2-[(2-amino-6-methylpyrimidin-4-yl)sulfanyl]-N-arylacetamides 6a-j was encouraged by their antibacterial activity and drug-likeness predictions. Of the compounds, two bearing 4­isopropylphenyl 6c and 2,5­dichlorophenyl 6i moieties were found to be threefold more potent than the first-line tuberculosis drug ethambutol. A molecular docking study revealed that compound 6c may selectively bind to cyclopropane mycolic acid synthase 1, an enzyme essential for the construction of the tuberculosis bacteria cell wall. Keeping this in mind, a recently developed ligand-based virtual screening strategy combining the molecular similarity search and docking approaches was adopted to identify more potent analogs of the parent compound. As a result, a series of new ligands 18p-w with phenyl-substituted azinyl amide groups were in silico discovered. Due to their high binding affinities to the enzyme and improved toxicity profiles, the ligands are undoubtedly worth future synthetic efforts.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Antituberculosos/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Acetamidas/química , Acetamidas/farmacología , Pirimidinas/química , Pirimidinas/farmacología
3.
Mol Divers ; 26(3): 1715-1730, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34636023

RESUMEN

Epidermal growth factor receptor (EGFR) has received widespread attention because it is an important target for anticancer drug design. Mutations in the EGFR, especially the T790M/L858R double mutation, have made cancer treatment more difficult. We herein built the structure-activity relationship models of small-molecule inhibitors on wild-type and T790M/L858R double-mutant EGFR with a whole dataset of 379 compounds. For 2D classification models, we used ECFP4 fingerprints to build support vector machine and random forest models and used SMILES to build self-attention recurrent neural network models. Each of all six models resulted in an accuracy of above 0.87 and the Matthews correlation coefficient value of above 0.76 on the test set, respectively. We concluded that inhibitors containing anilinoquinoline and methoxy or fluoro phenyl are highly active against wild EGFR. Substructures such as anilinopyrimidine, acrylamide, amino phenyl, methoxy phenyl, and thienopyrimidinyl amide appeared more in highly active inhibitors against double-mutant EGFR. We also used self-organizing map to cluster the inhibitors into six subsets based on ECFP4 fingerprints and analyzed the activity characteristics of different scaffolds in each subset. Among them, three datasets, which are based on pteridin, anilinopyrimidine, and anilinoquinoline scaffold, were selected to build 3D comparative molecular similarity analysis models individually. Models with the leave-one-out coefficient of determination (q2) above 0.65 were selected, and five descriptor types (steric, electrostatic, hydrophobic, donor, and acceptor) were used to study the effects of side chains of inhibitors on the activity against wild-type and mutant-type EGFR.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Línea Celular Tumoral , Diseño de Fármacos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad
4.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682792

RESUMEN

Molecular similarity is an impressively broad topic with many implications in several areas of chemistry. Its roots lie in the paradigm that 'similar molecules have similar properties'. For this reason, methods for determining molecular similarity find wide application in pharmaceutical companies, e.g., in the context of structure-activity relationships. The similarity evaluation is also used in the field of chemical legislation, specifically in the procedure to judge if a new molecule can obtain the status of orphan drug with the consequent financial benefits. For this procedure, the European Medicines Agency uses experts' judgments. It is clear that the perception of the similarity depends on the observer, so the development of models to reproduce the human perception is useful. In this paper, we built models using both 2D fingerprints and 3D descriptors, i.e., molecular shape and pharmacophore descriptors. The proposed models were also evaluated by constructing a dataset of pairs of molecules which was submitted to a group of experts for the similarity judgment. The proposed machine-learning models can be useful to reduce or assist human efforts in future evaluations. For this reason, the new molecules dataset and an online tool for molecular similarity estimation have been made freely available.


Asunto(s)
Aprendizaje Automático , Receptores de Droga , Humanos , Percepción , Relación Estructura-Actividad
5.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163824

RESUMEN

RORγT is a protein product of the RORC gene belonging to the nuclear receptor subfamily of retinoic-acid-receptor-related orphan receptors (RORs). RORγT is preferentially expressed in Th17 lymphocytes and drives their differentiation from naive CD4+ cells and is involved in the regulation of the expression of numerous Th17-specific cytokines, such as IL-17. Because Th17 cells are implicated in the pathology of autoimmune diseases (e.g., psoriasis, inflammatory bowel disease, multiple sclerosis), RORγT, whose activity is regulated by ligands, has been recognized as a drug target in potential therapies against these diseases. The identification of such ligands is time-consuming and usually requires the screening of chemical libraries. Herein, using a Tanimoto similarity search, we found corosolic acid and other pentacyclic tritepenes in the library we previously screened as compounds highly similar to the RORγT inverse agonist ursolic acid. Furthermore, using gene reporter assays and Th17 lymphocytes, we distinguished compounds that exert stronger biological effects (ursolic, corosolic, and oleanolic acid) from those that are ineffective (asiatic and maslinic acids), providing evidence that such combinatorial methodology (in silico and experimental) might help wet screenings to achieve more accurate results, eliminating false negatives.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/química , Ácido Oleanólico/farmacología , Células Th17/citología , Triterpenos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Simulación por Computador , Evaluación Preclínica de Medicamentos , Agonismo Inverso de Drogas , Humanos , Interleucina-17/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Ácido Oleanólico/química , Mapeo Peptídico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Triterpenos/química
6.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408682

RESUMEN

A new dicoumarin, jusan coumarin, (1), has been isolated from Artemisia glauca aerial parts. The chemical structure of jusan coumarin was estimated, by 1D, 2D NMR as well as HR-Ms spectroscopic methods, to be 7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-6-yl)oxy]-2H-chromen-2-one. As the first time to be introduced in nature, its potential against SARS-CoV-2 has been estimated using various in silico methods. Molecular similarity and fingerprints experiments have been utilized for 1 against nine co-crystallized ligands of COVID-19 vital proteins. The results declared a great similarity between Jusan Coumarin and X77, the ligand of COVID-19 main protease (PDB ID: 6W63), Mpro. To authenticate the obtained outputs, a DFT experiment was achieved to confirm the similarity of X77 and 1. Consequently, 1 was docked against Mpro. The results clarified that 1 bonded in a correct way inside Mpro active site, with a binding energy of -18.45 kcal/mol. Furthermore, the ADMET and toxicity profiles of 1 were evaluated and showed the safety of 1 and its likeness to be a drug. Finally, to confirm the binding and understand the thermodynamic characters between 1 and Mpro, several molecular dynamics (MD) simulations studies have been administered. Additionally, the known coumarin derivative, 7-isopentenyloxycoumarin (2), has been isolated as well as ß-sitosterol (3).


Asunto(s)
Artemisia , Proteasas 3C de Coronavirus , Cumarinas , Inhibidores de Proteasas , SARS-CoV-2 , Artemisia/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Cumarinas/química , Cumarinas/farmacología , Dicumarol/química , Dicumarol/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
7.
Molecules ; 27(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35268738

RESUMEN

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Asunto(s)
Artemisia , Proteasas 3C de Coronavirus , Flavonoides , SARS-CoV-2 , Animales , Humanos , Masculino , Ratas , Artemisia/química , Artemisia/metabolismo , Sitios de Unión , Dominio Catalítico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , COVID-19/patología , COVID-19/virología , Teoría Funcional de la Densidad , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/metabolismo , Flavonoides/farmacología , Dosificación Letal Mediana , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/enzimología , SARS-CoV-2/aislamiento & purificación , Piel/efectos de los fármacos , Piel/patología
8.
Chimia (Aarau) ; 76(12): 1045-1051, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38069801

RESUMEN

Similar drug molecules often have similar properties and activities. Therefore, quantifying molecular similarity is central to drug discovery and optimization. Here I review computational methods using molecular similarity measures developed in my group within the interdisciplinary network NCCR TransCure investigating the physiology, structural biology and pharmacology of ion channels and membrane transporters. We designed a 3D molecular shape and pharmacophore comparison algorithm to optimize weak and unselective inhibitors by scaffold hopping and discovered potent and selective inhibitors of the ion channels TRPV6 and TRPM4, of endocannabinoid membrane transport, and of the divalent metal transporters DMT1 and ZIP8. We predicted off-target effects by combining molecular similarity searches from different molecular fingerprints against target annotated compounds from the ChEMBL database. Finally, we created interactive chemical space maps reflecting molecular similarities to facilitate the selection of screening compounds and the analysis of screening results. These different tools are available online at https://gdb.unibe.ch/tools/.

9.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34830201

RESUMEN

The molecular similarity principle has achieved great successes in the field of drug design/discovery. Existing studies have focused on similar ligands, while the behaviors of dissimilar ligands remain unknown. In this study, we developed an intercomparison strategy in order to compare the binding modes of ligands with different molecular structures. A systematic analysis of a newly constructed protein-ligand complex structure dataset showed that ligands with similar structures tended to share a similar binding mode, which is consistent with the Molecular Similarity Principle. More importantly, the results revealed that dissimilar ligands can also bind in a similar fashion. This finding may open another avenue for drug discovery. Furthermore, a template-guiding method was introduced for predicting protein-ligand complex structures. With the use of dissimilar ligands as templates, our method significantly outperformed the traditional molecular docking methods. The newly developed template-guiding method was further applied to recent CELPP studies.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Sitios de Unión , Cristalización , Bases de Datos de Proteínas , Diseño de Fármacos/métodos , Descubrimiento de Drogas/métodos , Ligandos , Unión Proteica , Conformación Proteica
10.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884555

RESUMEN

Chemical compounds can be represented as attributed graphs. An attributed graph is a mathematical model of an object composed of two types of representations: nodes and edges. Nodes are individual components, and edges are relations between these components. In this case, pharmacophore-type node descriptions are represented by nodes and chemical bounds by edges. If we want to obtain the bioactivity dissimilarity between two chemical compounds, a distance between attributed graphs can be used. The Graph Edit Distance allows computing this distance, and it is defined as the cost of transforming one graph into another. Nevertheless, to define this dissimilarity, the transformation cost must be properly tuned. The aim of this paper is to analyse the structural-based screening methods to verify the quality of the Harper transformation costs proposal and to present an algorithm to learn these transformation costs such that the bioactivity dissimilarity is properly defined in a ligand-based virtual screening application. The goodness of the dissimilarity is represented by the classification accuracy. Six publicly available datasets-CAPST, DUD-E, GLL&GDD, NRLiSt-BDB, MUV and ULS-UDS-have been used to validate our methodology and show that with our learned costs, we obtain the highest ratios in identifying the bioactivity similarity in a structurally diverse group of molecules.


Asunto(s)
Algoritmos , Inteligencia Artificial , Gráficos por Computador , Modelos Teóricos , Interfaz Usuario-Computador , Ligandos
11.
Molecules ; 26(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946697

RESUMEN

Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done to obtain consensus sequences, and molecular homology models of fungi and human chitinases were built to determine their structural differences. We explored the octahydroisoindolone scaffold as a potential new antifungal series by means of its structural and electronic features. Therefore, we evaluated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (1-5) were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore, we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the selection of the best candidates. Based on these descriptors, we constructed a mathematical model for the IC50 prediction of our candidates (60-200 µM), using experimental known inhibitors of AfChiB1. As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best designed hit, which possesses the best pharmacodynamic and pharmacokinetic character.


Asunto(s)
Antifúngicos/química , Aspergillus fumigatus/enzimología , Quitinasas , Inhibidores Enzimáticos/química , Proteínas Fúngicas , Simulación del Acoplamiento Molecular , Quitinasas/antagonistas & inhibidores , Quitinasas/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Hexosaminidasas/antagonistas & inhibidores , Hexosaminidasas/química
12.
Molecules ; 26(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34500568

RESUMEN

In silico target fishing, whose aim is to identify possible protein targets for a query molecule, is an emerging approach used in drug discovery due its wide variety of applications. This strategy allows the clarification of mechanism of action and biological activities of compounds whose target is still unknown. Moreover, target fishing can be employed for the identification of off targets of drug candidates, thus recognizing and preventing their possible adverse effects. For these reasons, target fishing has increasingly become a key approach for polypharmacology, drug repurposing, and the identification of new drug targets. While experimental target fishing can be lengthy and difficult to implement, due to the plethora of interactions that may occur for a single small-molecule with different protein targets, an in silico approach can be quicker, less expensive, more efficient for specific protein structures, and thus easier to employ. Moreover, the possibility to use it in combination with docking and virtual screening studies, as well as the increasing number of web-based tools that have been recently developed, make target fishing a more appealing method for drug discovery. It is especially worth underlining the increasing implementation of machine learning in this field, both as a main target fishing approach and as a further development of already applied strategies. This review reports on the main in silico target fishing strategies, belonging to both ligand-based and receptor-based approaches, developed and applied in the last years, with a particular attention to the different web tools freely accessible by the scientific community for performing target fishing studies.


Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Animales , Simulación por Computador , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Polifarmacología , Proteínas/metabolismo
13.
J Comput Aided Mol Des ; 34(9): 929-942, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32367387

RESUMEN

The activity cliff (AC) concept is of comparable relevance for medicinal chemistry and chemoinformatics. An AC is defined as a pair of structurally similar compounds with a large potency difference against a given target. In medicinal chemistry, ACs are of interest because they reveal small chemical changes with large potency effects, a concept referred to as structure-activity relationship (SAR) discontinuity. Computationally, ACs can be systematically identified, going far beyond individual compound series considered during lead optimization. Large-scale analysis of ACs has revealed characteristic features across many different compound activity classes. The way in which the molecular similarity and potency difference criteria have been addressed for defining ACs distinguishes between different generations of ACs and mirrors the evolution of the AC concept. We discuss different stages of this evolutionary path and highlight recent advances in AC research.


Asunto(s)
Química Farmacéutica , Diseño de Fármacos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Modelo Transteórico , Humanos , Estructura Molecular , Relación Estructura-Actividad
14.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375298

RESUMEN

Noroviruses are non-enveloped viruses with a positive-sense single-stranded RNA (ssRNA) genome belonging to the genus Norovirus, from the family Caliciviridae, which are accountable for acute gastroenteritis in humans. The Norovirus genus is subdivided into seven genogroups, i.e., (GI-GVII); among these, the genogroup II and genotype 4 (GII.4) strains caused global outbreaks of human norovirus (HuNov) disease. The viral genome comprises three open reading frames (ORFs). ORF1 encodes the nonstructural polyprotein that is cleaved into six nonstructural proteins, which include 3C-like cysteine protease (3CLpro) and a viral RNA-dependent RNA polymerase. ORF2 and ORF3 encode the proteins VP1 and VP2. The RNA-dependent RNA polymerase (RdRp) from noroviruses is one of the multipurpose enzymes of RNA viruses vital for replicating and transcribing the viral genome, making the virally encoded enzyme one of the critical targets for the development of novel anti-norovirus agents. In the quest for a new antiviral agent that could combat HuNov, high throughput virtual screening (HTVS), combined with e-pharmacophore screening, was applied to screen compounds from the PubChem database. CMX521 molecule was selected as a prototype for a similarity search in the PubChem online database. Molecular dynamics simulations were employed to identify different compounds that may inhibit HuNov. The results predicted that compound CID-57930781 and CID-44396095 formed stable complexes with MNV-RdRp within 50 ns; hence, they may signify as promising human norovirus inhibitors.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Norovirus/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Simulación por Computador , Humanos , Relación Estructura-Actividad
15.
Int J Mol Sci ; 21(10)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438666

RESUMEN

Computational methods for predicting the macromolecular targets of drugs and drug-like compounds have evolved as a key technology in drug discovery. However, the established validation protocols leave several key questions regarding the performance and scope of methods unaddressed. For example, prediction success rates are commonly reported as averages over all compounds of a test set and do not consider the structural relationship between the individual test compounds and the training instances. In order to obtain a better understanding of the value of ligand-based methods for target prediction, we benchmarked a similarity-based method and a random forest based machine learning approach (both employing 2D molecular fingerprints) under three testing scenarios: a standard testing scenario with external data, a standard time-split scenario, and a scenario that is designed to most closely resemble real-world conditions. In addition, we deconvoluted the results based on the distances of the individual test molecules from the training data. We found that, surprisingly, the similarity-based approach generally outperformed the machine learning approach in all testing scenarios, even in cases where queries were structurally clearly distinct from the instances in the training (or reference) data, and despite a much higher coverage of the known target space.


Asunto(s)
Descubrimiento de Drogas , Aprendizaje Automático , Terapia Molecular Dirigida , Bases del Conocimiento , Reproducibilidad de los Resultados
16.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266278

RESUMEN

Cationic antimicrobial peptides have attracted interest, both as antimicrobial agents and for their ability to increase cell permeability to potentiate other antibiotics. However, toxicity to mammalian cells and complexity have hindered development for clinical use. We present the design and synthesis of very short cationic peptides (3-9 residues) with potential dual bacterial membrane permeation and efflux pump inhibition functionality. Peptides were designed based upon in silico similarity to known active peptides and efflux pump inhibitors. A number of these peptides potentiate the activity of the antibiotic novobiocin against susceptible Escherichia coli and restore antibiotic activity against a multi-drug resistant E. coli strain, despite having minimal or no intrinsic antimicrobial activity. Molecular modelling studies, via docking studies and short molecular dynamics simulations, indicate two potential mechanisms of potentiating activity; increasing antibiotic cell permeation via complexation with novobiocin to enable self-promoted uptake, and binding the E. coli RND efflux pump. These peptides demonstrate potential for restoring the activity of hydrophobic drugs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Técnicas de Química Sintética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Modelos Moleculares , Novobiocina/química , Novobiocina/farmacología , Péptidos Catiónicos Antimicrobianos/síntesis química , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Novobiocina/síntesis química , Relación Estructura-Actividad
17.
Molecules ; 25(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751155

RESUMEN

Molecular similarity is an elusive but core "unsupervised" cheminformatics concept, yet different "fingerprint" encodings of molecular structures return very different similarity values, even when using the same similarity metric. Each encoding may be of value when applied to other problems with objective or target functions, implying that a priori none are "better" than the others, nor than encoding-free metrics such as maximum common substructure (MCSS). We here introduce a novel approach to molecular similarity, in the form of a variational autoencoder (VAE). This learns the joint distribution p(z|x) where z is a latent vector and x are the (same) input/output data. It takes the form of a "bowtie"-shaped artificial neural network. In the middle is a "bottleneck layer" or latent vector in which inputs are transformed into, and represented as, a vector of numbers (encoding), with a reverse process (decoding) seeking to return the SMILES string that was the input. We train a VAE on over six million druglike molecules and natural products (including over one million in the final holdout set). The VAE vector distances provide a rapid and novel metric for molecular similarity that is both easily and rapidly calculated. We describe the method and its application to a typical similarity problem in cheminformatics.


Asunto(s)
Quimioinformática/métodos , Modelos Moleculares , Estructura Molecular , Algoritmos , Descubrimiento de Drogas
18.
Molecules ; 25(20)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086580

RESUMEN

Systematic scrutiny is carried out of the ability of multicentre bond indices and the NOEL-based similarity index dAB to serve as excited-state aromaticity criteria. These indices were calculated using state-optimized complete active-space self-consistent field wavefunctions for several low-lying singlet and triplet states of the paradigmatic molecules of benzene and square cyclobutadiene and the inorganic ring S2N2. The comparison of the excited-state indices with aromaticity trends for individual excited states suggested by the values of magnetic aromaticity criteria show that whereas the indices work well for aromaticity reversals between the ground singlet and first triplet electronic states, addressed by Baird's rule, there are no straightforward parallels between the two sets of data for singlet excited states. The problems experienced while applying multicentre bond indices and dAB to singlet excited states are explained by the loss of the information inherently present in wavefunctions and/or pair densities when calculating the first-order density matrix.


Asunto(s)
Benceno/química , Butadienos/química , Estructura Molecular , Electrones , Modelos Moleculares , Teoría Cuántica
19.
J Comput Chem ; 40(6): 826-838, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30623477

RESUMEN

With the development of computer technology, computer-aided drug design (CADD) has become an important means for drug research and development, and its representative method is virtual screening. Various virtual screening platforms have emerged in an endless stream and play great roles in the field of drug discovery. With the increasing number of compound molecules, virtual screening platforms face two challenges: low fluency and low visibility of software operations. In this article, we present an integrated and graphical drug design software eSHAFTS based on three-dimensional (3D) molecular similarity to overcome these shortcomings. Compared with other software, eSHAFTS has four main advantages, which are integrated molecular editing and drawing, interactive loading and analysis of proteins, multithread and multimode 3D molecular similarity calculation, and multidimensional information visualization. Experiments have verified its convenience, usability, and reliability. By using eSHAFTS, various tasks can be submitted and visualized in one desktop software without locally installing any dependent plug-ins or software. The software installation package can be downloaded for free at http://lilab.ecust.edu.cn/home/resource.html. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Imagenología Tridimensional , Programas Informáticos , Proteínas/química
20.
Amino Acids ; 51(8): 1209-1220, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31321559

RESUMEN

Up to now, numerous peptides/hydrolysates derived from casein and whey protein have shown angiotensin-I-converting enzyme (ACE) inhibitory. In this research, quantum topological molecular similarity (QTMS) indices of amino acids were utilized in quantitative sequence-activity modeling (QSAM) to predict the activity of a set of milk-driven peptides with ACE inhibition. Since the derived peptides have not the same number of residues, we overcame this issue by auto cross covariance (ACC) methodology. Then, some QSAMs were built to predict the pIC50 value of ACE peptides derived from Bovine Casein and Whey. The model established an acceptable relationship between the selected variables and the pIC50 of the peptides. To estimate the performance of the developed models, casein and whey proteins from human, goat, bovine and sheep were virtually broken by trypsin and chymotrypsin enzymes and the ACE activity of the resultant virtual peptides were predicted and some new ACE peptides were proposed.


Asunto(s)
Aminoácidos/análisis , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Caseínas/farmacología , Leche/química , Fragmentos de Péptidos/farmacología , Peptidil-Dipeptidasa A/química , Proteína de Suero de Leche/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Animales , Caseínas/química , Bovinos , Cabras , Humanos , Hidrólisis , Modelos Moleculares , Fragmentos de Péptidos/química , Ovinos , Proteína de Suero de Leche/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda