Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Ecol Lett ; 27(7): e14474, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994849

RESUMEN

Spatial synchrony may be tail-dependent, meaning it is stronger for peaks rather than troughs, or vice versa. High interannual variation in seed production in perennial plants, called masting, can be synchronized at subcontinental scales, triggering extensive resource pulses or famines. We used data from 99 populations of European beech (Fagus sylvatica) to examine whether masting synchrony differs between mast peaks and years of seed scarcity. Our results revealed that seed scarcity occurs simultaneously across the majority of the species range, extending to populations separated by distances up to 1800 km. Mast peaks were spatially synchronized at distances up to 1000 km and synchrony was geographically concentrated in northeastern Europe. Extensive synchrony in the masting lower tail means that famines caused by beech seed scarcity are amplified by their extensive spatial synchrony, with diverse consequences for food web functioning and climate change biology.


Asunto(s)
Fagus , Semillas , Fagus/fisiología , Semillas/fisiología , Europa (Continente) , Cambio Climático
2.
Ecol Lett ; 26(5): 754-764, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36888560

RESUMEN

Seed production in many plants is characterized by large interannual variation, which is synchronized at subcontinental scales in some species but local in others. The reproductive synchrony affects animal migrations, trophic responses to resource pulses and the planning of management and conservation. Spatial synchrony of reproduction is typically attributed to the Moran effect, but this alone is unable to explain interspecific differences in synchrony. We show that interspecific differences in the conservation of seed production-weather relationships combine with the Moran effect to explain variation in reproductive synchrony. Conservative timing of weather cues that trigger masting allows populations to be synchronized at distances >1000 km. Conversely, if populations respond to variable weather signals, synchrony cannot be achieved. Our study shows that species vary in the extent to which their weather cueing is spatiotemporally conserved, with important consequences, including an interspecific variation of masting vulnerability to climate change.


Asunto(s)
Reproducción , Árboles , Animales , Tiempo (Meteorología) , Semillas , Señales (Psicología)
3.
Am Nat ; 202(4): 399-412, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792915

RESUMEN

AbstractPopulation spatial synchrony-the tendency for temporal population fluctuations to be correlated across locations-is common and important to metapopulation stability and persistence. One common cause of spatial synchrony, termed the Moran effect, occurs when populations respond to environmental fluctuations, such as weather, that are correlated over space. Although the degree of spatial synchrony in environmental fluctuations can differ between seasons and different population processes occur in different seasons, the impact on population spatial synchrony is uncertain because prior work has largely assumed that the spatial synchrony of environmental fluctuations and their effect on populations are consistent over annual sampling intervals. We used theoretical models to examine how seasonality in population processes and the spatial synchrony of environmental drivers affect population spatial synchrony. We found that population spatial synchrony can depend not only on the spatial synchrony of environmental drivers but also on the degree to which environmental fluctuations are correlated across seasons, locally, and across space. Moreover, measurements of synchrony from "snapshot" population censuses may not accurately reflect synchrony during other parts of the year. Together, these results show that neglecting seasonality in environmental conditions and population processes is consequential for understanding population spatial synchrony and its driving mechanisms.


Asunto(s)
Modelos Teóricos , Tiempo (Meteorología) , Dinámica Poblacional , Estaciones del Año , Ecosistema
4.
J Anim Ecol ; 92(9): 1904-1918, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37448134

RESUMEN

Spatial population synchrony is common among populations of the same species and is an important predictor of extinction risk. Despite the potential consequences for metapopulation persistence, we still largely lack understanding of what makes one species more likely to be synchronized than another given the same environmental conditions. Generally, environmental conditions in a shared environment or a species' sensitivity to the environment can explain the extent of synchrony. Populations that are closer together experience more similar fluctuations in their environments than those populations that are further apart and are therefore more synchronized. The relative importance of environmental and demographic stochasticity for population dynamics is strongly linked to species' life-history traits, such as pace of life, which may impact population synchrony. For populations that migrate, there may be multiple environmental conditions at different locations driving synchrony. However, the importance of life history and migration tactics in determining patterns of spatial population synchrony have rarely been explored empirically. We therefore hypothesize that increasing generation time, a proxy for pace of life, would decrease spatial population synchrony and that migrants would be less synchronized than resident species. We used population abundance data on breeding birds from four countries to investigate patterns of spatial population synchrony in growth rate and abundance. We calculated the mean spatial population synchrony between log-transformed population growth rates or log-transformed abundances for each species and country separately. We investigated differences in synchrony across generation times in resident (n = 67), short-distance migrant (n = 86) and long-distance migrant (n = 39) bird species. Species with shorter generation times were more synchronized than species with longer generation times. Short-distance migrants were more synchronized than long-distance migrants and resident birds. Our results provide novel empirical links between spatial population synchrony and species traits known to be of key importance for population dynamics, generation time and migration tactics. We show how these different mechanisms can be combined to understand species-specific causes of spatial population synchrony. Understanding these specific drivers of spatial population synchrony is important in the face of increasingly severe threats to biodiversity and could be key for successful future conservation outcomes.


Asunto(s)
Ecosistema , Crecimiento Demográfico , Animales , Estaciones del Año , Dinámica Poblacional , Aves
5.
Ecol Lett ; 25(8): 1854-1868, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771209

RESUMEN

Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)-underpinned by climatic variability-act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.


Asunto(s)
Kelp , Macrocystis , Ecosistema , Bosques , Nutrientes
6.
Proc Biol Sci ; 289(1972): 20220543, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35414238

RESUMEN

Human activities put ecosystems under increasing pressure, often resulting in local extinctions. However, it is unclear how local extinctions affect regional processes, such as the distribution of diversity in space, especially if extinctions show spatial patterns, such as being clustered. Therefore, it is crucial to investigate extinctions and their consequences in a spatially explicit framework. Using highly controlled microcosm experiments and theoretical models, we ask here how the number and spatial autocorrelation of extinctions interactively affect metacommunity dynamics. We found that local patch extinctions increased local diversity (α-diversity) and inter-patch diversity (ß-diversity) by delaying the exclusion of inferior competitors. Importantly, recolonization dynamics depended more strongly on the spatial distribution than on the number of patch extinctions: clustered local patch extinctions resulted in slower recovery, lower α-diversity and higher ß-diversity. Our results highlight that the spatial distribution of perturbations should be taken into account when studying and managing spatially structured communities.


Asunto(s)
Ecosistema , Humanos , Dinámica Poblacional , Análisis Espacial
7.
Ecol Lett ; 24(2): 337-347, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33314559

RESUMEN

Population cycles are fundamentally linked with spatial synchrony, the prevailing paradigm being that populations with cyclic dynamics are easily synchronised. That is, population cycles help give rise to spatial synchrony. Here we demonstrate this process can work in reverse, with synchrony causing population cycles. We show that timescale-specific environmental effects, by synchronising local population dynamics on certain timescales only, cause major population cycles over large areas in white-tailed deer. An important aspect of the new mechanism is specificity of synchronising effects to certain timescales, which causes local dynamics to sum across space to a substantial cycle on those timescales. We also demonstrate, to our knowledge for the first time, that synchrony can be transmitted not only from environmental drivers to populations (deer), but also from there to human systems (deer-vehicle collisions). Because synchrony of drivers may be altered by climate change, changes to population cycles may arise via our mechanism.


Asunto(s)
Ciervos , Mariposas Nocturnas , Animales , Cambio Climático , Humanos , Dinámica Poblacional
8.
Glob Chang Biol ; 27(17): 4024-4039, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34032337

RESUMEN

Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations-but not if large-scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state-space (MARSS) models on spatially replicated, long-term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network-scale (hydrological connectivity) drivers on invertebrate long-term trajectories, and to simulate near-future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi-extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi-extinction of species with lower resistance and resilience abilities. Better recognition of drought-driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide.


Asunto(s)
Sequías , Ríos , Animales , Ecosistema , Hidrología , Invertebrados
9.
Glob Chang Biol ; 27(7): 1470-1484, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33502819

RESUMEN

Fisheries harvest has pervasive impacts on wild fish populations, including the truncation of size and age structures, altered population dynamics and density, and modified habitat and assemblage composition. Understanding the degree to which harvest-induced impacts increase the sensitivity of individuals, populations and ultimately species to environmental change is essential to ensuring sustainable fisheries management in a rapidly changing world. Here we generated multiple long-term (44-62 years), annually resolved, somatic growth chronologies of four commercially important fishes from New Zealand's coastal and shelf waters. We used these novel data to investigate how regional- and basin-scale environmental variability, in concert with fishing activity, affected individual somatic growth rates and the magnitude of spatial synchrony among stocks. Changes in somatic growth can affect individual fitness and a range of population and fishery metrics such as recruitment success, maturation schedules and stock biomass. Across all species, individual growth benefited from a fishing-induced release of density controls. For nearshore snapper and tarakihi, regional-scale wind and temperature also additively affected growth, indicating that future climate change-induced warming and potentially strengthened winds will initially promote the productivity of more poleward populations. Fishing increased the sensitivity of deep-water hoki and ling growth to the Interdecadal Pacific Oscillation (IPO). A forecast shift to a positive IPO phase, in concert with current harvest strategies, will likely promote individual hoki and ling growth. At the species level, historical fishing practices and IPO synergized to strengthen spatial synchrony in average growth between stocks separated by 400-600 nm of ocean. Increased spatial synchrony can, however, increase the vulnerability of stocks to deleterious stochastic events. Together, our individual- and species-level results show how fishing and environmental factors can conflate to initially promote individual growth but then possibly heighten the sensitivity of stocks to environmental change.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Animales , Ecosistema , Peces , Humanos , Nueva Zelanda , Dinámica Poblacional
10.
Am Nat ; 195(2): 216-230, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32017629

RESUMEN

Many species show synchronous fluctuations in population size over large geographical areas, which are likely to increase their regional extinction risk. Here we examine how the degree of spatial synchrony in population dynamics is affected by trophic interactions using a two-species predator-prey model with spatially correlated environmental noise. We show that the predator has a larger spatial scale of population synchrony than the prey if the population fluctuations of both species are mainly determined by the direct effect of stochastic environmental variations in the prey. This result implies that in ecosystems regulated from the bottom up, the spatial scale of synchrony of the predator population increases beyond the scale of the spatial autocorrelation in the environmental noise and in the prey fluctuations. Harvesting the prey increases the spatial scale of population synchrony of the predator, while harvesting the predator reduces the spatial scale of the population fluctuations of its prey. Hence, the development of sustainable harvesting strategies should also consider the impact on unharvested species at other trophic levels as well as human perturbations of ecosystems, whether the result of exploitation or an effect on dispersal processes, as they can affect food web structures and trophic interactions over large geographical areas.


Asunto(s)
Cadena Alimentaria , Dinámica Poblacional , Conducta Predatoria , Distribución Animal , Animales , Ecosistema , Modelos Teóricos
11.
Proc Biol Sci ; 287(1927): 20200684, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32453988

RESUMEN

Spatially distinct pairs of sites may have similarly fluctuating population dynamics across large geographical distances, a phenomenon called spatial synchrony. However, species rarely exist in isolation, but rather as members of interactive communities, linked with other communities through dispersal (i.e. a metacommunity). Using data on Finnish moth communities sampled across 65 sites for 20 years, we examine the complex synchronous/anti-synchronous relationships among sites using the geography of synchrony framework. We relate site-level synchrony to mean and temporal variation in climatic data, finding that colder and drier sites-and those with the most drastic temperature increases-are important for spatial synchrony. This suggests that faster-warming sites contribute most strongly to site-level estimates of synchrony, highlighting the role of a changing climate to spatial synchrony. Considering the spatial variability in climate change rates is therefore important to understand metacommunity dynamics and identify habitats which contribute most strongly to spatial synchrony.


Asunto(s)
Mariposas Nocturnas/fisiología , Animales , Cambio Climático , Ecosistema , Finlandia , Geografía , Dinámica Poblacional , Estaciones del Año
12.
Proc Natl Acad Sci U S A ; 114(26): 6788-6793, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28559312

RESUMEN

Taylor's law (TL) is a widely observed empirical pattern that relates the variances to the means of groups of nonnegative measurements via an approximate power law: variance g ≈ a [Formula: see text] mean gb , where g indexes the group of measurements. When each group of measurements is distributed in space, the exponent b of this power law is conjectured to reflect aggregation in the spatial distribution. TL has had practical application in many areas since its initial demonstrations for the population density of spatially distributed species in population ecology. Another widely observed aspect of populations is spatial synchrony, which is the tendency for time series of population densities measured in different locations to be correlated through time. Recent studies showed that patterns of population synchrony are changing, possibly as a consequence of climate change. We use mathematical, numerical, and empirical approaches to show that synchrony affects the validity and parameters of TL. Greater synchrony typically decreases the exponent b of TL. Synchrony influenced TL in essentially all of our analytic, numerical, randomization-based, and empirical examples. Given the near ubiquity of synchrony in nature, it seems likely that synchrony influences the exponent of TL widely in ecologically and economically important systems.

13.
Proc Biol Sci ; 286(1903): 20182828, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31138079

RESUMEN

Explaining why fluctuations in abundances of spatially disjunct populations often are correlated through time is a major goal of population ecologists. We address two hypotheses receiving little to no testing in wild populations: (i) that population cycling facilitates synchronization given weak coupling among populations, and (ii) that the ability of periodic external forces to synchronize oscillating populations is a function of the mismatch in timescales (detuning) between the force and the population. Here, we apply new analytical methods to field survey data on gypsy moth outbreaks. We report that at timescales associated with gypsy moth outbreaks, spatial synchrony increased with population periodicity via phase locking. The extent to which synchrony in temperature and precipitation influenced population synchrony was associated with the degree of mismatch in dominant timescales of oscillation. Our study provides new empirical methods and rare empirical evidence that population cycling and low detuning can promote population spatial synchrony.


Asunto(s)
Mariposas Nocturnas/fisiología , Lluvia , Temperatura , Animales , Larva/crecimiento & desarrollo , Larva/fisiología , Modelos Biológicos , Mariposas Nocturnas/crecimiento & desarrollo , Dinámica Poblacional , Factores de Tiempo , Estados Unidos
14.
Ecol Lett ; 21(12): 1800-1811, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30230159

RESUMEN

Population densities of a species measured in different locations are often correlated over time, a phenomenon referred to as synchrony. Synchrony results from dispersal of individuals among locations and spatially correlated environmental variation, among other causes. Synchrony is often measured by a correlation coefficient. However, synchrony can vary with timescale. We demonstrate theoretically and experimentally that the timescale-specificity of environmental correlation affects the overall magnitude and timescale-specificity of synchrony, and that these effects are modified by population dispersal. Our laboratory experiments linked populations of flour beetles by changes in habitat size and dispersal. Linear filter theory, applied to a metapopulation model for the experimental system, predicted the observed timescale-specific effects. The timescales at which environmental covariation occurs can affect the population dynamics of species in fragmented habitats.


Asunto(s)
Escarabajos , Ecología , Animales , Ecosistema , Densidad de Población , Dinámica Poblacional
15.
New Phytol ; 219(1): 98-108, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29577320

RESUMEN

Variable, synchronized seed production, called masting, is a widespread reproductive strategy in plants. Resource dynamics, pollination success, and, as described here, environmental veto are possible proximate mechanisms driving masting. We explored the environmental veto hypothesis, which assumes that reproductive synchrony is driven by external factors preventing reproduction in some years, by extending the resource budget model of masting with correlated reproductive failure. We ran this model across its parameter space to explore how key parameters interact to drive seeding dynamics. Next, we parameterized the model based on 16 yr of seed production data for populations of red (Quercus rubra) and white (Quercus alba) oaks. We used these empirical models to simulate seeding dynamics, and compared simulated time series with patterns observed in the field. Simulations showed that resource dynamics and reproduction failure can produce masting even in the absence of pollen coupling. In concordance with this, in both oaks, among-year variation in resource gain and correlated reproductive failure were necessary and sufficient to reproduce masting, whereas pollen coupling, although present, was not necessary. Reproductive failure caused by environmental veto may drive large-scale synchronization without density-dependent pollen limitation. Reproduction-inhibiting weather events are prevalent in ecosystems, making described mechanisms likely to operate in many systems.


Asunto(s)
Quercus/fisiología , Ecosistema , Modelos Biológicos , Polen/fisiología , Polinización/fisiología , Reproducción , Semillas/fisiología , Tiempo (Meteorología)
16.
Glob Chang Biol ; 24(6): 2305-2314, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575413

RESUMEN

Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries-long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on midlatitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.


Asunto(s)
Cambio Climático , Ecosistema , El Niño Oscilación del Sur , Monitoreo del Ambiente , Ríos , Estaciones del Año , Estados Unidos
17.
J Anim Ecol ; 87(4): 1058-1068, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29536534

RESUMEN

Studies of transient population dynamics have largely focused on temporal changes in dynamical behaviour, such as the transition between periods of stability and instability. This study explores a related dynamic pattern, namely transient synchrony during a 49-year period among populations of five sympatric species of forest insects that share host tree resources. The long time series allows a more comprehensive exploration of transient synchrony patterns than most previous studies. Considerable variation existed in the dynamics of individual species, ranging from periodic to aperiodic. We used time-averaged methods to investigate long-term patterns of synchrony and time-localized methods to detect transient synchrony. We investigated transient patterns of synchrony between species and related these to the species' varying density dependence structures; even species with very different density dependence exhibited at least temporary periods of synchrony. Observed periods of interspecific synchrony may arise from interactions with host trees (e.g., induced host defences), interactions with shared natural enemies or shared impacts of environmental stochasticity. The transient nature of synchrony observed here raises questions both about the identity of synchronizing mechanisms and how these mechanisms interact with the endogenous dynamics of each species. We conclude that these patterns are the result of interspecific interactions that act only temporarily to synchronize populations, after which differences in the endogenous population dynamics among the species acts to desynchronize their dynamics.


Asunto(s)
Bosques , Mariposas Nocturnas/fisiología , Animales , Hungría , Dinámica Poblacional , Estaciones del Año
18.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093224

RESUMEN

Masting is the highly variable production of synchronized seed crops, and is a common reproductive strategy in plants. Weather has long been recognized as centrally involved in driving seed production in masting plants. However, the theory behind mechanisms connecting weather and seeding variation has only recently been developed, and still lacks empirical evaluation. We used 12-year long seed production data for 255 holm oaks (Quercus ilex), as well as airborne pollen and meteorological data, and tested whether masting is driven by environmental constraints: phenological synchrony and associated pollination efficiency, and drought-related acorn abscission. We found that warm springs resulted in short pollen seasons, and length of the pollen seasons was negatively related to acorn production, supporting the phenological synchrony hypothesis. Furthermore, the relationship between phenological synchrony and acorn production was modulated by spring drought, and effects of environmental vetoes on seed production were dependent on last year's environmental constraint, implying passive resource storage. Both vetoes affected among-tree synchrony in seed production. Finally, precipitation preceding acorn maturation was positively related to seed production, mitigating apparent resource depletion following high crop production in the previous year. These results provide new insights into mechanisms beyond widely reported weather and seed production correlations.


Asunto(s)
Sequías , Polinización , Quercus/fisiología , Modelos Biológicos , Polen , Quercus/crecimiento & desarrollo , Reproducción , Semillas/crecimiento & desarrollo , España
19.
New Phytol ; 215(2): 595-608, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28631320

RESUMEN

Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data.


Asunto(s)
Fagus/fisiología , Semillas/fisiología , Clima , Sequías , Europa (Continente) , Modelos Logísticos , Estaciones del Año , Análisis Espacio-Temporal , Temperatura , Tiempo (Meteorología)
20.
Ecology ; 98(12): 3056-3062, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28881003

RESUMEN

We investigated spatial synchrony of acorn production by valley oaks (Quercus lobata) among individual trees at the within-population, local level and at the among-population, statewide level spanning the geographic range of the species. At the local level, the main drivers of spatial synchrony were water availability and flowering phenology of individual trees, while proximity, temperature differences between trees, and genetic similarity failed to explain a significant proportion of variance in spatial synchrony. At the statewide level, annual rainfall was the primary driver, while proximity was significant by itself but not when controlling for rainfall; genetic similarity was again not significant. These results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in acorn production at both small and large geographic scales. The specific environmental factors differed depending on the geographic scale, but were in both cases related to water availability. In addition, flowering phenology, potentially affecting either density-independent pollination failure (the pollination Moran effect) or density-dependent pollination efficiency (pollen coupling), plays a key role in driving spatial synchrony at the local geographic scale.


Asunto(s)
Quercus/fisiología , Semillas , Polen , Polinización , Árboles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda