Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.053
Filtrar
Más filtros

Publication year range
1.
J Neurosci ; 43(30): 5559-5573, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37419689

RESUMEN

Widespread release of norepinephrine (NE) throughout the forebrain fosters learning and memory via adrenergic receptor (AR) signaling, but the molecular mechanisms are largely unknown. The ß2 AR and its downstream effectors, the trimeric stimulatory Gs-protein, adenylyl cyclase (AC), and the cAMP-dependent protein kinase A (PKA), form a unique signaling complex with the L-type Ca2+ channel (LTCC) CaV1.2. Phosphorylation of CaV1.2 by PKA on Ser1928 is required for the upregulation of Ca2+ influx on ß2 AR stimulation and long-term potentiation induced by prolonged theta-tetanus (PTT-LTP) but not LTP induced by two 1-s-long 100-Hz tetani. However, the function of Ser1928 phosphorylation in vivo is unknown. Here, we show that S1928A knock-in (KI) mice of both sexes, which lack PTT-LTP, express deficiencies during initial consolidation of spatial memory. Especially striking is the effect of this mutation on cognitive flexibility as tested by reversal learning. Mechanistically, long-term depression (LTD) has been implicated in reversal learning. It is abrogated in male and female S1928A knock-in mice and by ß2 AR antagonists and peptides that displace ß2 AR from CaV1.2. This work identifies CaV1.2 as a critical molecular locus that regulates synaptic plasticity, spatial memory and its reversal, and LTD.SIGNIFICANCE STATEMENT We show that phosphorylation of the Ca2+ channel CaV1.2 on Ser1928 is important for consolidation of spatial memory and especially its reversal, and long-term depression (LTD). Identification of Ser1928 as critical for LTD and reversal learning supports the model that LTD underlies flexibility of reference memory.


Asunto(s)
Plasticidad Neuronal , Memoria Espacial , Ratones , Masculino , Femenino , Animales , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Transducción de Señal , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Hipocampo/fisiología
2.
Stroke ; 55(3): 735-746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38323450

RESUMEN

BACKGROUND: Nicotine-containing electronic cigarette (EC) vaping has become popular worldwide, and our understanding of the effects of vaping on stroke outcomes is elusive. Using a rat model of transient middle cerebral artery occlusion, the current exploratory study aims to evaluate the sex-dependent effects of EC exposure on brain energy metabolism and stroke outcomes. METHODS: Adult Sprague-Dawley rats of both sexes were randomly assigned to air/EC vapor (5% nicotine Juul pods) exposure for 16 nights, followed by randomization into 3 cohorts. The first cohort underwent exposure to air/EC preceding randomization to transient middle cerebral artery occlusion (90 minutes) or sham surgery, followed by survival for 21 days. During the survival period, rats underwent sensorimotor and Morris water maze testing. Subsequently, brains were collected for histopathology. A second cohort was exposed to air/EC after which brains were collected for unbiased metabolomics analysis. The third cohort of animals was exposed to air/EC and received transient middle cerebral artery occlusion/sham surgery, and brain tissue was collected 24 hours later for biochemical analysis. RESULTS: In females, EC significantly increased (P<0.05) infarct volumes by 94% as compared with air-exposed rats, 165±50 mm3 in EC-exposed rats, and 85±29 mm3 in air-exposed rats, respectively, while in males such a difference was not apparent. Morris water maze data showed significant deficits in spatial learning and working memory in the EC sham or transient middle cerebral artery occlusion groups compared with the respective air groups in rats of both sexes (P<0.05). Thirty-two metabolites of carbohydrate, glycolysis, tricarboxylic acid cycle, and lipid metabolism were significantly altered (P≤0.05) due to EC, 23 of which were specific for females. Steady-state protein levels of hexokinase significantly decreased (P<0.05) in EC-exposed females; however, these changes were not seen in males. CONCLUSIONS: Even brief EC exposure over 2 weeks impacts brain energy metabolism, exacerbates infarction, and worsens poststroke cognitive deficits in working memory more in female than male rats.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Adulto , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Nicotina/efectos adversos , Infarto de la Arteria Cerebral Media/metabolismo
3.
Neuroimage ; 286: 120513, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191101

RESUMEN

Among functional imaging methods, metabolic connectivity (MC) is increasingly used for investigation of regional network changes to examine the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) or movement disorders. Hitherto, MC was mostly used in clinical studies, but only a few studies demonstrated the usefulness of MC in the rodent brain. The goal of the current work was to analyze and validate metabolic regional network alterations in three different mouse models of neurodegenerative diseases (ß-amyloid and tau) by use of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) imaging. We compared the results of FDG-µPET MC with conventional VOI-based analysis and behavioral assessment in the Morris water maze (MWM). The impact of awake versus anesthesia conditions on MC read-outs was studied and the robustness of MC data deriving from different scanners was tested. MC proved to be an accurate and robust indicator of functional connectivity loss when sample sizes ≥12 were considered. MC readouts were robust across scanners and in awake/ anesthesia conditions. MC loss was observed throughout all brain regions in tauopathy mice, whereas ß-amyloid indicated MC loss mainly in spatial learning areas and subcortical networks. This study established a methodological basis for the utilization of MC in different ß-amyloid and tau mouse models. MC has the potential to serve as a read-out of pathological changes within neuronal networks in these models.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Ratones , Animales , Fluorodesoxiglucosa F18/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Tauopatías/patología , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
4.
J Neurophysiol ; 131(4): 689-708, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416718

RESUMEN

Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.


Asunto(s)
Hipertensión , Síndrome Metabólico , Animales , Ratas , Masculino , Síndrome Metabólico/complicaciones , Leptina/metabolismo , Ratas Zucker , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Leptina/metabolismo , Obesidad , Insulina , Prosencéfalo , Modelos Animales de Enfermedad , Hipocampo/metabolismo
5.
Hippocampus ; 34(2): 88-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38073523

RESUMEN

The hippocampal formation is vulnerable to the process of normal aging. In humans, the extent of this age-related deterioration varies among individuals. Long-Evans rats replicate these individual differences as they age, and therefore they serve as a valuable model system to study aging in the absence of neurodegenerative diseases. In the Morris water maze, aged memory-unimpaired (AU) rats navigate to remembered goal locations as effectively as young rats and demonstrate minimal alterations in physiological markers of synaptic plasticity, whereas aged memory-impaired (AI) rats show impairments in both spatial navigation skills and cellular and molecular markers of plasticity. The present study investigates whether another cognitive domain is affected similarly to navigation in aged Long-Evans rats. We tested the ability of young, AU, and AI animals to recognize novel object-place-context (OPC) configurations and found that performance on the novel OPC recognition paradigm was significantly correlated with performance on the Morris water maze. In the first OPC test, young and AU rats, but not AI rats, successfully recognized and preferentially explored objects in novel OPC configurations. In a second test with new OPC configurations, all age groups showed similar OPC associative recognition memory. The results demonstrated similarities in the behavioral expression of associative, episodic-like memory between young and AU rats and revealed age-related, individual differences in functional decline in both navigation and episodic-like memory abilities.


Asunto(s)
Hipocampo , Aprendizaje Espacial , Humanos , Ratas , Animales , Anciano , Ratas Long-Evans , Aprendizaje por Laberinto/fisiología , Hipocampo/fisiología , Recuerdo Mental , Envejecimiento/fisiología
6.
Eur J Neurosci ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180282

RESUMEN

The detrimental effects of high-intensity noise on the auditory system and emotional status, including the induction of anxiety, are well documented. Preclinical as well as epidemiological and clinical studies have solidly established differential responses between males and females to various stressful stimuli, including high-intensity white noise (HIWN). However, whether chronic exposure to noise affects cognitive functions and whether this effect is sex dependent has not been adequately addressed. In this study, we used two cognitive test paradigms, such as the Morris water maze (MWM) and the multi-branch maze (MBM), to test the effect of chronic HIWN on indices of spatial learning and memory in both male and female Wistar rats. Our findings indicate that daily (1 h) exposure to 100 dB of noise for 30 consecutive days induces different task-dependent responses in male versus female rats. For example, in the acquisition phase of MWM, female rats exposed to noise outperformed their male counterparts at twice the speed. Similarly, in the MBM test, noise-exposed female rats outperformed the male rats in reaching the nest box. It is clear from these studies that noise impairs cognitive functions twice as negatively in male rats as in female rats. Thus, sex-related differences in spatial learning and memory in response to HIWN must be taken into consideration when investigating the neurobiological components and/or treatment modalities.

7.
J Neuroinflammation ; 21(1): 149, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840141

RESUMEN

Uncontrolled neuroinflammation mediates traumatic brain injury (TBI) pathology and impairs recovery. Interleukin-6 (IL-6), a pleiotropic inflammatory regulator, is associated with poor clinical TBI outcomes. IL-6 operates via classical-signaling through membrane-bound IL-6 receptor (IL-6R) and trans-signaling through soluble IL-6 receptor (s)IL-6R. IL-6 trans-signaling specifically contributes to neuropathology, making it a potential precision therapeutic TBI target. Soluble glycoprotein 130 (sgp130) prevents IL-6 trans-signaling, sparing classical signaling, thus is a possible treatment. Mice received either controlled cortical impact (CCI) (6.0 ± 0.2 m/s; 2 mm; 50-60ms) or sham procedures. Vehicle (VEH) or sgp130-Fc was subcutaneously administered to sham (VEH or 1 µg) and CCI (VEH, 0.25 µg or 1 µg) mice on days 1, 4, 7, 10 and 13 post-surgery to assess effects on cognition [Morris Water Maze (MWM)] and ipsilateral hemisphere IL-6 related biomarkers (day 21 post-surgery). CCI + sgp130-Fc groups (0.25 µg and 1 µg) were combined for analysis given similar behavior/biomarker outcomes. CCI + VEH mice had longer latencies and path lengths to the platform and increased peripheral zone time versus Sham + VEH and Sham + sgp130-Fc mice, suggesting injury-induced impairments in learning and anxiety. CCI + sgp130-Fc mice had shorter platform latencies and path lengths and had decreased peripheral zone time, indicating a therapeutic benefit of sgp130-Fc after injury on learning and anxiety. Interestingly, Sham + sgp130-Fc mice had shorter platform latencies, path lengths and peripheral zone times than Sham + VEH mice, suggesting a beneficial effect of sgp130-Fc, independent of injury. CCI + VEH mice had increased brain IL-6 and decreased sgp130 levels versus Sham + VEH and Sham + sgp130-Fc mice. There was no treatment effect on IL-6, sIL6-R or sgp130 in Sham + VEH versus Sham + sgp130-Fc mice. There was also no treatment effect on IL-6 in CCI + VEH versus CCI + sgp130-Fc mice. However, CCI + sgp130-Fc mice had increased sIL-6R and sgp130 versus CCI + VEH mice, demonstrating sgp130-Fc treatment effects on brain biomarkers. Inflammatory chemokines (MIP-1ß, IP-10, MIG) were increased in CCI + VEH mice versus Sham + VEH and Sham + sgp130-Fc mice. However, CCI + sgp130-Fc mice had decreased chemokine levels versus CCI + VEH mice. IL-6 positively correlated, while sgp130 negatively correlated, with chemokine levels. Overall, we found that systemic sgp130-Fc treatment after CCI improved learning, decreased anxiety and reduced CCI-induced brain chemokines. Future studies will explore sex-specific dosing and treatment mechanisms for sgp130-Fc therapy.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Receptor gp130 de Citocinas , Modelos Animales de Enfermedad , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Ratones , Masculino , Receptor gp130 de Citocinas/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Quimiocinas/metabolismo , Interleucina-6/metabolismo , Cognición/efectos de los fármacos , Cognición/fisiología
8.
Horm Behav ; 164: 105598, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968677

RESUMEN

Estrogens have inconsistent effects on learning and memory in both the clinical and preclinical literature. Preclinical literature has the advantage of investigating an array of potentially important factors contributing to the varied effects of estrogens on learning and memory, with stringently controlled studies. This study set out to identify specific factors in the animal literature that influence the effects of estrogens on cognition, for possible translation back to clinical practice. The literature was screened and studies meeting strict inclusion criteria were included in the analysis. Eligible studies included female ovariectomized rodents with an adequate vehicle for the estrogen treatment, with an outcome of spatial learning and memory in the Morris water maze. Training days of the Morris water maze were used to assess acquisition of spatial learning, and the probe trial was used to evaluate spatial memory recall. Continuous outcomes were pooled using a random effects inverse variance method and reported as standardized mean differences with 95 % confidence intervals. Subgroup analyses were developed a priori to assess important factors. The overall analysis favoured treatment for the later stages of training and for the probe trial. Factors including the type of estrogen, route, schedule of administration, age of animals, timing relative to ovariectomy, and duration of treatment were all found to be important. The subgroup analyses showed that chronic treatment with 17ß-estradiol, either cyclically or continuously, to young animals improved spatial recall. These results, observed in animals, can inform and guide further clinical research on hormone replacement therapy for cognitive benefits.


Asunto(s)
Estrógenos , Aprendizaje Espacial , Memoria Espacial , Animales , Femenino , Estradiol/farmacología , Estradiol/administración & dosificación , Estrógenos/farmacología , Estrógenos/administración & dosificación , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Ovariectomía , Roedores/fisiología , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología
9.
Am J Geriatr Psychiatry ; 32(5): 555-583, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38158285

RESUMEN

OBJECTIVE: Immunotherapy has been reported to ameliorate Alzheimer's disease (AD) in the animal model; however, the immunologic approaches and mechanisms have not been specifically described. Thus, the systematic review and meta-analysis were conducted to explore the effect and potential mechanism of immunotherapy on AD animal experiments based on behavioral indicators. METHODS: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and the Cochrane Collaboration guidelines and the inclusion/exclusion criteria of immunotherapy in animal studies, 15 studies were systematically reviewed after extraction from a collected database of 3,742 publications. Finally, the effect and mechanism of immunotherapy on AD models were described by performing multiple subgroup analyses. RESULTS: After immunotherapy, the escape latency was reduced by 18.15 seconds and the number of crossings over the platform location was increased by 1.60 times in the Morris Water Maze. Furthermore, compared to the control group, active and passive immunization could markedly ameliorate learning and memory impairment in 3 × Tg AD animal models, and active immunization could ameliorate the learning and memory ability of the APPswe/PS1ΔE9 AD animal model. Meanwhile, it could be speculated that cognitive dysfunction was improved by immunotherapy, perhaps mainly via reducing Aß40, Aß42, and Tau levels, as well as increasing IL-4 levels. CONCLUSION: Immunotherapy significantly ameliorated the cognitive dysfunction of AD animal models by assessing behavioral indicators.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides , Ratones Transgénicos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Inmunoterapia , Modelos Animales de Enfermedad , Cognición , Aprendizaje por Laberinto
10.
J Toxicol Environ Health A ; 87(10): 421-427, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38551405

RESUMEN

Vascular dementia (VD) a heterogenous group of brain disorders in which cognitive impairment is attributable to vascular risk factors and cerebrovascular disease. A common phenomenon in VD is a dysfunctional cerebral regulatory mechanism associated with insufficient cerebral blood flow, ischemia and hypoxia. Under hypoxic conditions oxygen supply to the brain results in neuronal death leading to neurodegenerative diseases including Alzheimer's (AD) and VD. In conditions of hypoxia and low oxygen perfusion, expression of hypoxia-inducible factor 1 alpha (HIF-1α) increases under conditions of low oxygen and low perfusion associated with upregulation of expression of hypoxia-upregulated mitochondrial movement regulator (HUMMR), which promotes anterograde mitochondrial transport by binding with trafficking protein kinesin 2 (TRAK2). Schisandrin B (Sch B) an active component derived from Chinese herb Wuweizi prevented ß-amyloid protein induced morphological alterations and cell death using a SH-SY5Y neuronal cells considered an AD model. It was thus of interest to determine whether Sch B might also alleviate VD using a rat bilateral common carotid artery occlusion (BCAO) dementia model. The aim of this study was to examine the effects of Sch B in BCAO on cognitive functions such as Morris water maze test and underlying mechanisms involving expression of HIF-1α, TRAK2, and HUMMR levels. The results showed that Sch B improved learning and memory function of rats with VD and exerted a protective effect on the hippocampus by inhibition of protein expression of HIF-1α, TRAK2, and HUMMR factors. Evidence indicates that Sch B may be considered as an alternative in VD treatment.


Asunto(s)
Demencia Vascular , Lignanos , Neuroblastoma , Compuestos Policíclicos , Ratas , Humanos , Animales , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Aprendizaje por Laberinto/fisiología , Hipoxia , Cognición , Hipocampo , Oxígeno/farmacología , Ciclooctanos
11.
Metab Brain Dis ; 39(6): 1051-1063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896206

RESUMEN

Oxidative stress from generation of increased reactive oxygen species or has been reported to play an important role in dementia. Oxidative stress due to free radicals of oxygen or reactive oxygen species could be precipitating factors in the etiology of dementia. Apomorphine has been reported to have neuroprotective effects. To monitor memory enhancing and neuroprotective effects of apomorphine, we determined the antioxidant enzymes activities, lipid peroxidation, acetylcholine esterase (AChE) activity in brain and plasma, following repetitive administration of apomorphine in rat model of dementia. Biogenic amine levels were also monitored in hippocampus. Repeated administration of scopolamine was taken as an animal model of dementia. Decreased glutathione peroxidase, superoxide dismutase and catalase activities were observed in these animal models of dementia. While increased lipid peroxidation was also observed in the brain and plasma samples. The results showed significant effects of apomorphine. The activities of antioxidant enzymes displayed increased activities in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly higher in brain and plasma of apomorphine treated rats. Superoxide dismutase (SOD) was significantly decreased in plasma of scopolamine injected rats; and a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in scopolamine treated rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM). Short-term memory and long-term memory was impaired significantly in scopolamine treated rats, which was prevented by apomorphine. Moreover, a marked decrease in biogenic amines was also found in the brain of scopolamine treated rats and was reverted in apomorphine treated rats. Results showed that scopolamine-treatment induced memory impairment and induced oxidative stress in rats as compared to saline-treated controls. These impairments were significantly restored by apomorphine administration. In conclusion, our data suggests that apomorphine at the dose of 1 mg/kg could be a potential therapeutic agent to treat dementia and related disorders.


Asunto(s)
Apomorfina , Demencia , Modelos Animales de Enfermedad , Memoria , Fármacos Neuroprotectores , Ratas Wistar , Escopolamina , Animales , Apomorfina/farmacología , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Masculino , Demencia/tratamiento farmacológico , Demencia/metabolismo , Demencia/prevención & control , Memoria/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Glutatión Peroxidasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
12.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612521

RESUMEN

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Asunto(s)
Dihidroergotamina , Escopolamina , Animales , Ratas , Histamina , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Encéfalo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Antagonistas de los Receptores H2 de la Histamina
13.
J Neurophysiol ; 130(5): 1174-1182, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37702542

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with insidious onset and progressive development. There is an urgent need to find drugs that prevent and slow AD progression. We focus our attention on 3,6'-disinapoyl sucrose (DISS), an oligosaccharide with antidepressant and antioxidant activities. In this work, APP/PS1 transgenic mice were used to explore the neuroprotective impact of DISS to provide new applications for prevention and therapy of AD. This study aims to assess DISS's neuroprotective impact on learning and memory deficits in APP/PS1 transgenic mice using behavioral tests (Morris water maze, novel object recognition test, and passive avoidance test). Morphological alterations of hippocampus neurons were observed by Nissl staining and neuronal apoptosis was assessed by TUNEL assay. By using ELISA, the expressions of inflammatory factors were evaluated, and Western blotting was used to measure the protein expressions of neuron-related regulators in the hippocampus. DISS significantly ameliorated the cognitive disorder in APP/PS1 transgenic mice, reduced apoptosis by decreasing the ratio of Bax/B-cell lymphoma/leukemia-2 (Bcl-2) in hippocampal neurons, and restored the abnormal secretion of inflammatory factors (IL-2, TNF-α, IL-1ß, and IL-6). Moreover, the gavage of high-dose DISS can boost the expressions of CREB/brain-derived neurotrophic factor (BDNF). Overall, our results indicate that DISS improves cognitive function in APP/PS1 transgenic mice by inhibiting neural apoptosis and activating the CREB/BDNF signal pathway.NEW & NOTEWORTHY In this study, for the first time, DISS was used in APP/PS1 transgenic mice to explore its neuroprotective effect. After gavage DISS for 1 mo, the impairment of learning and spatial memory ability and the loss of neurons in APP/PS1 mice were alleviated. DISS reduced a neuroprotective effect in AD mice via decreasing neuronal apoptosis, enhancing the expressions of CREB phosphorylation and BDNF, pointing to DISS as a new therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Fármacos Neuroprotectores , Ratones , Animales , Ratones Transgénicos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Sacarosa/farmacología , Sacarosa/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Cognición , Modelos Animales de Enfermedad , Aprendizaje por Laberinto
14.
Hippocampus ; 33(1): 6-17, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468186

RESUMEN

The hippocampus, a medial temporal lobe brain region, is critical for the consolidation of information from short-term memory into long-term episodic memory and for spatial memory that enables navigation. Hippocampal damage in humans has been linked to amnesia and memory loss, characteristic of Alzheimer's disease and other dementias. Numerous studies indicate that the rodent hippocampus contributes significantly to long-term memory for spatial and nonspatial information. For example, muscimol-induced depression of CA1 neuronal activity in the dorsal hippocampus impairs the encoding, consolidation, and retrieval of nonspatial object memory in mice. Here, a chemogenetic designer receptor exclusively activated by designer drugs (DREADDs) approach was used to test the selective involvement of CA1 pyramidal neurons in memory retrieval for objects and for spatial location in a cohort of male C57BL/6J mice. Activation of the inhibitory (hM4Di) DREADDs receptor expressed in CA1 neurons significantly impaired the retrieval of object memory in the spontaneous object recognition task and of spatial memory in the Morris water maze. Silencing of CA1 neuronal activity in hM4Di-expressing mice was confirmed by comparing Fos expression in vehicle- and clozapine-N-oxide-treated mice after exploration of a novel environment. Histological analyses revealed that expression of the hM4Di receptor was limited to CA1 neurons of the dorsal hippocampus. These results suggest that a common subset of CA1 neurons (i.e., those expressing hM4Di receptors) in mouse hippocampus contributed to the retrieval of long-term memory for nonspatial and spatial information. Our findings support the view that the contribution of the rodent hippocampus is like that of the primate hippocampus, specifically essential for global memory. Our results further validate mice as a suitable model system to study the neurobiological mechanisms of human episodic memory, but also in developing treatments and understanding the underlying causes of diseases affecting long-term memory, such as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Memoria Espacial , Animales , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Hipocampo/fisiología , Ratones Endogámicos C57BL , Células Piramidales/fisiología , Memoria Espacial/fisiología , Drogas de Diseño
15.
Hippocampus ; 33(6): 759-768, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36938702

RESUMEN

The hippocampus is a key structure involved in learning and remembering spatial information. However, the extent to which hippocampal region CA2 is involved in these processes remains unclear. Here, we show that chronically silencing dorsal CA2 impairs reversal learning in the Morris water maze. After platform relocation, CA2-silenced mice spent more time in the vicinity of the old platform location and less time in the new target quadrant. Accordingly, behavioral strategy analysis revealed increased perseverance in navigating to the old location during the first day and an increased use of non-spatial strategies during the second day of reversal learning. Confirming previous indirect indications, these results demonstrate that CA2 is recruited when mice must flexibly adapt their behavior as task contingencies change. We discuss how these findings can be explained by recent theories of CA2 function and outline testable predictions to understand the underlying neural mechanisms. Demonstrating a direct involvement of CA2 in spatial learning, this work lends further support to the notion that CA2 plays a fundamental role in hippocampal information processing.


Asunto(s)
Región CA2 Hipocampal , Aprendizaje Espacial , Animales , Ratones , Hipocampo , Aprendizaje por Laberinto , Aprendizaje Inverso , Región CA2 Hipocampal/fisiología
16.
Crit Rev Toxicol ; 53(6): 372-384, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37540214

RESUMEN

To justify investigations on learning and memory (L&M) function in extended one-generation reproductive toxicity studies (EOGRTS; Organization for Economic Co-operation and Development (OECD) test guideline (TG) 443) for registration under Registration, Evaluation, Authorization, and Restriction of Chemical (REACH), the European Chemicals Agency has referred to three publications based on which the Agency concluded that "perturbation of thyroid hormone signaling in offspring affects spatial cognitive abilities (learning and memory)" and "Therefore, it is necessary to conduct spatial learning and memory tests for F1 animals". In this paper, the inclusion of the requested L&M tests in an EOGRTS is challenged. In addition, next to the question on the validity of rodent models in general for testing thyroid hormone-dependent perturbations in brain development, the reliability of the publications specifically relied upon by the agency is questioned as these contain numerous fundamental errors in study methodology, design, and data reporting, provide contradicting results, lack crucial information to validate the results and exclude confounding factors, and finally show no causal relationship. Therefore, in our opinion, these publications cannot be used to substantiate, support, or conclude that decreases in blood thyroid (T4) hormone level on their own would result in impaired L&M in rats and are thus not adequate to use as fundament to ask for L&M testing as part of an EOGRTS.


Asunto(s)
Reproducción , Pruebas de Toxicidad , Ratas , Animales , Pruebas de Toxicidad/métodos , Reproducibilidad de los Resultados , Cognición
17.
Bioorg Chem ; 138: 106596, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37186997

RESUMEN

Scutellarein hybrids were designed, synthesized and evaluated as multifunctional therapeutic agents for the treatment of Alzheimer's disease (AD). Compounds 11a-i, containing a 2-hydroxymethyl-3,5,6-trimethylpyrazine fragment at the 7-position of scutellarein, were found to have balanced and effective multi-target potencies against AD. Among them, compound 11e exhibited the most potent inhibition of electric eel and human acetylcholinesterase enzymes with IC50 values of 6.72 ± 0.09 and 8.91 ± 0.08 µM, respectively. In addition, compound 11e displayed not only excellent inhibition of self- and Cu2+-induced Aß1-42 aggregation (91.85% and 85.62%, respectively) but also induced disassembly of self- and Cu2+-induced Aß fibrils (84.54% and 83.49% disaggregation, respectively). Moreover, 11e significantly reduced tau protein hyperphosphorylation induced by Aß25-35, and also exhibited good inhibition of platelet aggregation. A neuroprotective assay demonstrated that pre-treatment of PC12 cells with 11e significantly decreased lactate dehydrogenase levels, increased cell viability, enhanced expression of relevant apoptotic proteins (Bcl-2, Bax and caspase-3) and inhibited RSL3-induced PC12 cell ferroptosis. Furthermore, hCMEC/D3 and hPepT1-MDCK cell line permeability assays indicated that 11e would have optimal blood-brain barrier and intestinal absorption characteristics. In addition, in vivo studies revealed that compound 11e significantly attenuated learning and memory impairment in an AD mice model. Toxicity experiments with the compound did not reveal any safety concerns. Notably, 11e significantly reduced ß-amyloid precursor protein (APP) and ß-site APP cleaving enzyme-1 (BACE-1) protein expression in brain tissue of scopolamine-treated mice. Taken together, these outstanding properties qualified compound 11e as a promising multi-target candidate for AD therapy, worthy of further studies.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Ratas , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Inhibidores de la Colinesterasa , Diseño de Fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
18.
Nutr Neurosci ; 26(12): 1222-1231, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36408931

RESUMEN

The present study focused on examining the impact of vitamin C (Vit C) administration on the function of memory and the status of oxidative stress (OS) in the hippocampal area of the brain using an unpredictable chronic mild stress (UCMS) model in rats. To this end, 50 male Wistar rats (11-12 weeks of age at the start of the study) were assigned to five groups of six animals, including control, UCMS, UCMS + Vit C 50 mg/Kg, UCMS + Vit C 100 mg/Kg, and UCMS + Vit C 400 mg/Kg. The animals received daily intraperitoneal injections of Vit C at a certain time (9 am) before the initiation of a stressor. UCMS, including a progression of typical stressors, was applied for four weeks. Subsequently, using the passive avoidance (PA) and Morris water maze (MWM) tests were performed to investigate learning and memory. Eventually, hippocampal tissues were evaluated in terms of OS criteria. The results revealed that the latency to enter the dark chamber (P < 0. 01 and P < 0.05, PA test) and the time spent in the target quadrant (P < 0.0001, MWM test) were shorter in the UCMS group, while latency to discover the platform was longer (P < 0.05 and P < 0.001, MWM test) compared to the control group. However, UCMS decreased the content of thiol (P < 0.0001), as well as the activities of catalase (P < 0.0001) and superoxide dismutase (P < 0.0001), whereas the concentration of malondialdehyde (P < 0.01) increased in the hippocampal region of the brain in comparison to the control group. Interestingly, Vit C treatment reversed the mentioned effects of UCMS. Therefore, the latency to enter the dark chamber (P < 0. 05 and P < 0.01,1 and 24 h after the shock, PA test, UCMS + Vit C 400) and the time spent in the target quadrant (P < 0. 01 and P < 0.05, MWM test, UCMS + Vit C 400 and UCMS + Vit C 100, respectively) were longer in the UCMS + Vit C groups. Moreover, Vit C increased the content of thiol (P < 0.05, UCMS + Vit C 400), as well as the activity of catalase (P < 0.001, UCMS + Vit C 400) and superoxide dismutase (P < 0.0001, UCMS + Vit C 400, UCMS + Vit C 100), whereas the concentration of malondialdehyde (P < 0. 05 and P < 0.01, UCMS + Vit C 100, UCMS + Vit C 400) decreased in the hippocampal region of the brain in comparison to the UCMS group. Overall, these results suggest that Vit C could reverse UCMS-induced learning and memory impairment possibly through the modulation of brain OS.Key points Memory and learning impairments were induced by unpredictable chronic mild stress (UCMS)Vitamin C could prevent cognitive impairments caused by UCMS in rats by attenuation of oxidative stress in the brain.


Asunto(s)
Ácido Ascórbico , Trastornos de la Memoria , Ratas , Animales , Masculino , Catalasa , Ratas Wistar , Aprendizaje por Laberinto , Trastornos de la Memoria/prevención & control , Trastornos de la Memoria/inducido químicamente , Hipocampo/metabolismo , Estrés Oxidativo , Vitaminas , Malondialdehído , Superóxido Dismutasa/metabolismo , Compuestos de Sulfhidrilo
19.
Nutr Neurosci ; : 1-16, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647279

RESUMEN

BACKGROUND: The neuroprotective potential of blueberry (BB) extracts against Alzheimer's disease (AD) has been previously hinted at, while its exact mechanism has remained largely enigmatic. OBJECTIVE: Our study endeavored to unravel the impacts and mechanisms by which BB extracts ameliorated the learning and memory prowess of AD-afflicted mice, with a specific focus on the MEK-ERK pathway. METHODS: We employed 3-month-old APP/PS1 transgenic mice and stratified them into three distinct groups: AD+BB, AD, and control (CT). The Morris Water Maze Test (MWMT) was then administered to gauge their learning and memory faculties. In vitro experiments were executed on Aß25-35-afflicted rat hippocampal neurons, which were subsequently treated with varying concentrations of BB extracts. We then assessed the expression levels of genes and proteins integral to the MEK-ERKBDNF/UCH-L1 pathway. RESULTS: The data showed that the AD mice demonstrated compromised learning and memory faculties in MWMT. However, the AD+BB cohort showcased marked improvements in performance. Furthermore, in the AD subset, significant elevations in the expressions of MEK2 and ERK1/2 were observed, both at the mRNA and protein levels. Conversely, UCH-L1 mRNA expressions exhibited a decline, while BDNF expressions surged significantly. However, post BB extract treatment, the expressions of MEK2 and ERK1/2 were subdued, with UCH-L1 and BDNF mRNA expressions reverting to control levels. CONCLUSIONS: Our findings propounded that BB extracts could offer therapeutic promise for AD by bolstering learning and memory capacities. The unwarranted activation of the MEK-ERK pathway, coupled with the aberrant expressions of BDNF and UCH-L1, might underpin AD's pathogenesis.

20.
Learn Behav ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723403

RESUMEN

Sex differences have been found in allocentric spatial learning and memory tasks, with the literature indicating that males outperform females, although this issue is still controversial. This study aimed to explore the behavior of male and female rats during the habituation and learning of a spatial memory task performed in the Morris Water Maze (MWM). The study included a large sample of 89 males and 85 females. We found that females searched slightly faster than males during habituation with a visible platform. During learning, both male and female rats decreased the latency and distance traveled to find the hidden platform over the days, with males outperforming females in the distance traveled. Females swam faster but did not find the platform earlier, suggesting a less directed navigational strategy. Both sexes increased time spent in the target zone over the days, with no sex differences. Although females swam more in the periphery during the first days of the task, both sexes decreased the time spent in this area. Finally, only males increased swimming in the pool's center over the days, spending more time than females in this area across the entire training. In conclusion, we need to register several variables in the MWM and analyze path strategies to obtain more robust results concerning sex differences. Research on spatial learning should include both sexes to achieve a more equitable, representative, and translational science.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda