Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
RNA ; 24(4): 609-619, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358234

RESUMEN

RNA molecules play important roles in virtually every cellular process. These functions are often mediated through the adoption of specific structures that enable RNAs to interact with other molecules. Thus, determining the secondary structures of RNAs is central to understanding their function and evolution. In recent years several sequencing-based approaches have been developed that allow probing structural features of thousands of RNA molecules present in a sample. Here, we describe nextPARS, a novel Illumina-based implementation of in vitro parallel probing of RNA structures. Our approach achieves comparable accuracy to previous implementations, while enabling higher throughput and sample multiplexing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Conformación de Ácido Nucleico , ARN Mensajero/química , Análisis de Secuencia de ARN/métodos , Biología Computacional
2.
BMC Genomics ; 20(1): 215, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30866797

RESUMEN

BACKGROUND: Massively-parallel-sequencing, coupled with sample multiplexing, has made genetic tests broadly affordable. However, intractable index mis-assignments (commonly exceeds 1%) were repeatedly reported on some widely used sequencing platforms. RESULTS: Here, we investigated this quality issue on BGI sequencers using three library preparation methods: whole genome sequencing (WGS) with PCR, PCR-free WGS, and two-step targeted PCR. BGI's sequencers utilize a unique DNA nanoball (DNB) technology which uses rolling circle replication for DNA-nanoball preparation; this linear amplification is PCR free and can avoid error accumulation. We demonstrated that single index mis-assignment from free indexed oligos occurs at a rate of one in 36 million reads, suggesting virtually no index hopping during DNB creation and arraying. Furthermore, the DNB-based NGS libraries have achieved an unprecedentedly low sample-to-sample mis-assignment rate of 0.0001 to 0.0004% under recommended procedures. CONCLUSIONS: Single indexing with DNB technology provides a simple but effective method for sensitive genetic assays with large sample numbers.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Bacterias/genética , Humanos , Secuenciación Completa del Genoma , Flujo de Trabajo
3.
Methods Mol Biol ; 1654: 179-196, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28986790

RESUMEN

Small and long noncoding RNAs (ncRNAs) are key regulators of gene expression. Variations in ncRNA expression patterns can consequently affect the control of many cellular processes. Not just since 2006, when Andrew Z Fire and Craig C Mello were jointly awarded The Nobel Prize in Physiology or Medicine for their discovery of RNA interference, great efforts were undertaken to unleash the biomedical applicability of small noncoding RNAs, in particular microRNAs. With the technological evolution of massive parallel sequencing technologies over the last years, which now are available for an increasing number of scientists, there is a demand for comprehensible and efficient workflows reliable even for unique and valuable clinical specimens. Here we describe a highly reproducible low-cost protocol for analyses of miRNA expression patterns using tagged cDNA libraries and a multiplex sequencing strategy following an Illumina-like protocol. This protocol easily allows the identification of expression differences from samples of tissues of 1-2 mm3 and fluids of 50-200 µL. We further provide entry points into useful computational biology applications, whose target groups explicitly involve non-bioinformaticians.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , ARN Largo no Codificante/genética , Animales , Biblioteca de Genes , Humanos
4.
BMC Res Notes ; 10(1): 147, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28376874

RESUMEN

BACKGROUND: Malaria still poses one of the major threats to human health. Development of effective antimalarial drugs has decreased this threat; however, the emergence of drug-resistant Plasmodium falciparum, a cause of Malaria, is disconcerting. The antimalarial drug chloroquine has been effectively used, but resistant parasites have spread worldwide. Interestingly, the withdrawal of the drug reportedly leads to an increased population of susceptible parasites in some cases. We examined the prevalence of genomic polymorphisms in a malaria parasite P. falciparum, associated with resistance to an antimalarial drug chloroquine, after the withdrawal of the drug from Indonesia. RESULTS: Blood samples were collected from 95 malaria patients in North Sulawesi, Indonesia, in 2010. Parasite DNA was extracted and analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for pfcrt and pfmdr1. In parallel, multiplex amplicon sequencing for the same genes was carried out with Illumina MiSeq. Of the 59 cases diagnosed as P. falciparum infection by microscopy, PCR-RFLP analysis clearly identified the genotype 76T in pfcrt in 44 cases. Sequencing analysis validated the identified genotypes in the 44 cases and demonstrated that the haplotype in the surrounding genomic region was exclusively SVMNT. Results of pfmdr1 were successfully obtained for 51 samples, where the genotyping results obtained by the two methods were completely consistent. In pfmdr1, the 86Y mutant genotype was observed in 45 cases (88.2%). CONCLUSIONS: Our results suggest that the prevalence of the mutated genotypes remained dominant even 6 years after the withdrawal of chloroquine from this region. Diversified haplotype of the resistance-related locus, potentially involved in fitness costs, unauthorized usage of chloroquine, and/or a short post-withdrawal period may account for the observed high persistence of prevalence.


Asunto(s)
Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Antimaláricos/uso terapéutico , ADN Protozoario/química , ADN Protozoario/genética , Resistencia a Múltiples Medicamentos/genética , Frecuencia de los Genes , Genotipo , Geografía , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Indonesia , Malaria Falciparum/parasitología , Mutación , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
5.
Microb Genom ; 3(10): e000132, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29177090

RESUMEN

Illumina sequencing platforms have enabled widespread bacterial whole genome sequencing. While Illumina data is appropriate for many analyses, its short read length limits its ability to resolve genomic structure. This has major implications for tracking the spread of mobile genetic elements, including those which carry antimicrobial resistance determinants. Fully resolving a bacterial genome requires long-read sequencing such as those generated by Oxford Nanopore Technologies (ONT) platforms. Here we describe our use of the ONT MinION to sequence 12 isolates of Klebsiella pneumoniae on a single flow cell. We assembled each genome using a combination of ONT reads and previously available Illumina reads, and little to no manual intervention was needed to achieve fully resolved assemblies using the Unicycler hybrid assembler. Assembling only ONT reads with Canu was less effective, resulting in fewer resolved genomes and higher error rates even following error correction with Nanopolish. We demonstrate that multiplexed ONT sequencing is a valuable tool for high-throughput bacterial genome finishing. Specifically, we advocate the use of Illumina sequencing as a first analysis step, followed by ONT reads as needed to resolve genomic structure.


Asunto(s)
Genómica , Klebsiella pneumoniae/genética , Biblioteca de Genes , Filogenia , Secuenciación Completa del Genoma
6.
Genetics ; 207(2): 447-463, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28827289

RESUMEN

Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2 We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.


Asunto(s)
Caenorhabditis elegans/genética , Mapeo Cromosómico/métodos , Cromosomas/genética , Mutación , Termotolerancia/genética , Secuenciación Completa del Genoma/métodos , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Mapeo Cromosómico/normas , Secuenciación Completa del Genoma/normas
7.
Front Microbiol ; 7: 2104, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119667

RESUMEN

Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15[Formula: see text]) and nitrite (15[Formula: see text]), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added [Formula: see text] was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or [Formula: see text] produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15[Formula: see text] was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that [Formula: see text] and 15[Formula: see text] each contributed N equally to N2O by a "hybrid-N2O" mechanism consistent with a reaction between NH2OH and [Formula: see text], or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0-34.4‰) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia with 15[Formula: see text] and [Formula: see text]. However, the site preference of dissolved N2O here was low (4.9‰), indicating that another mechanism, not captured during the incubations, was important. Multiplex sequencing of 16S rRNA revealed distinct ammonia oxidizer communities: AOB dominated numerically in Lake Lugano, and AOA dominated in the seawater. Potential for hybrid N2O formation exists among both communities, and at least in AOB-dominated environments, acidification may accelerate this mechanism.

8.
Microorganisms ; 3(2): 113-36, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-27682082

RESUMEN

Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute <2% of microbiota in these environments, with the Methylocystaceae one to two orders of magnitude more abundant than the Methylococcaceae in all environments sampled. The Methylococcaceae are also less diverse in forest soil compared to the other two habitats. Nonmetric multidimensional scaling analyses indicated that the majority of methanotrophs from the Methylococcaceae and Methylocystaceae tend to occur in one habitat only (peat or Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography.

9.
J Virol Methods ; 193(2): 314-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23831448

RESUMEN

Bluetongue (BT) is an economically important endemic disease of livestock in tropics and subtropics. In addition, its recent spread to temperate regions like North America and Northern Europe is of serious concern. Rapid serotyping and characterization of BT virus (BTV) is an essential step in the identification of origin of the virus and for controlling the disease. Serotyping of BTV is typically performed by serum neutralization, and of late by nucleotide sequencing. This report describes the near complete genome sequencing and typing of two isolates of BTV using Illumina next generation sequencing platform. Two of the BTV RNAs were multiplexed with ten other unknown samples. Viral RNA was isolated and fragmented, reverse transcribed, the cDNA ends were repaired and ligated with a multiplex oligo. The genome library was amplified using primers complementary to the ligated oligo and subjected to single and paired end sequencing. The raw reads were assembled using a de novo method and reference-based assembly was performed based on the contig data. Near complete sequences of all segments of BTV were obtained with more than 20× coverage, and single read sequencing method was sufficient to identify the genotype and serotype of the virus. The two viruses used in this study were typed as BTV-1 and BTV-9E.


Asunto(s)
Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/genética , Lengua Azul/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virología/métodos , Animales , Lengua Azul/epidemiología , Virus de la Lengua Azul/aislamiento & purificación , Genotipo , Epidemiología Molecular/métodos , Serotipificación/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda