Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 181(6): 1346-1363.e21, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32473126

RESUMEN

Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-ß3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-ß3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell ß3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by ß3-integrin, providing a previously unrecognized mechanism of cancer growth control.


Asunto(s)
Integrina beta3/metabolismo , Neoplasias/metabolismo , Carga Tumoral/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Femenino , Humanos , Masculino , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
2.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37642459

RESUMEN

The vasculature consists of vessels of different sizes that are arranged in a hierarchical pattern. Two cell populations work in concert to establish this pattern during embryonic development and adopt it to changes in blood flow demand later in life: endothelial cells that line the inner surface of blood vessels, and adjacent vascular mural cells, including smooth muscle cells and pericytes. Despite recent progress in elucidating the signalling pathways controlling their crosstalk, much debate remains with regard to how mural cells influence endothelial cell biology and thereby contribute to the regulation of blood vessel formation and diameters. In this Review, I discuss mural cell functions and their interactions with endothelial cells, focusing on how these interactions ensure optimal blood flow patterns. Subsequently, I introduce the signalling pathways controlling mural cell development followed by an overview of mural cell ontogeny with an emphasis on the distinguishing features of mural cells located on different types of blood vessels. Ultimately, I explore therapeutic strategies involving mural cells to alleviate tissue ischemia and improve vascular efficiency in a variety of diseases.


Asunto(s)
Células Sanguíneas , Células Endoteliales , Femenino , Embarazo , Humanos , Diferenciación Celular , Desarrollo Embrionario , Biología
3.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823339

RESUMEN

The kidney vasculature has a complex architecture that is essential for renal function. The molecular mechanisms that direct development of kidney blood vessels are poorly characterized. We identified a regionally restricted, stroma-derived signaling molecule, netrin 1 (Ntn1), as a regulator of renal vascular patterning in mice. Stromal progenitor (SP)-specific ablation of Ntn1 (Ntn1SPKO) resulted in smaller kidneys with fewer glomeruli, as well as profound defects of the renal artery and transient blood flow disruption. Notably, Ntn1 ablation resulted in loss of arterial vascular smooth muscle cell (vSMC) coverage and in ectopic SMC deposition at the kidney surface. This was accompanied by dramatic reduction of arterial tree branching that perdured postnatally. Transcriptomic analysis of Ntn1SPKO kidneys revealed dysregulation of vSMC differentiation, including downregulation of Klf4, which we find expressed in a subset of SPs. Stromal Klf4 deletion similarly resulted in decreased smooth muscle coverage and arterial branching without, however, the disruption of renal artery patterning and perfusion seen in Ntn1SPKO. These data suggest a stromal Ntn1-Klf4 axis that regulates stromal differentiation and reinforces stromal-derived smooth muscle as a key regulator of renal blood vessel formation.


Asunto(s)
Perfilación de la Expresión Génica , Riñón , Ratones , Animales , Netrina-1/genética , Netrina-1/metabolismo , Riñón/fisiología , Diferenciación Celular/genética , Morfogénesis , Miocitos del Músculo Liso
4.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297968

RESUMEN

Vascular networks comprise endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, whereas those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor ß (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed actin alpha2, smooth muscle (acta2). Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing cells. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration, and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.


Asunto(s)
Miocitos del Músculo Liso , Pericitos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Proteínas de Pez Cebra , Pez Cebra , Animales , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098369

RESUMEN

Neurovascular unit and barrier maturation rely on vascular basement membrane (vBM) composition. Laminins, a major vBM component, are crucial for these processes, yet the signaling pathway(s) that regulate their expression remain unknown. Here, we show that mural cells have active Wnt/ß-catenin signaling during central nervous system development in mice. Bulk RNA sequencing and validation using postnatal day 10 and 14 wild-type versus adenomatosis polyposis coli downregulated 1 (Apcdd1-/-) mouse retinas revealed that Lama2 mRNA and protein levels are increased in mutant vasculature with higher Wnt/ß-catenin signaling. Mural cells are the main source of Lama2, and Wnt/ß-catenin activation induces Lama2 expression in mural cells in vitro. Markers of mature astrocytes, including aquaporin 4 (a water channel in astrocyte endfeet) and integrin-α6 (a laminin receptor), are upregulated in Apcdd1-/- retinas with higher Lama2 vBM deposition. Thus, the Wnt/ß-catenin pathway regulates Lama2 expression in mural cells to promote neurovascular unit and barrier maturation.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Ratones , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
6.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245218

RESUMEN

Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1-Ibsp+Sparcl1+ and Plap-1-Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.


Asunto(s)
Ligamento Periodontal , Transcriptoma , Animales , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Osteoblastos , ARN/metabolismo
7.
Dev Dyn ; 253(5): 519-541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38112237

RESUMEN

BACKGROUND: Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells. However, the overlapping and distinct expression patterns of these markers in tandem have not been fully described. RESULTS: Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular cell populations on the cranial, axial, and intersegmental vessels between 1 and 5 days postfertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord-a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. CONCLUSION: Together, our findings highlight the variability and versatility of tracking both pdgfrb and tagln expression in mural cells of the developing zebrafish embryo and reveal unexpected embryonic cell populations that express pdgfrb and tagln.


Asunto(s)
Animales Modificados Genéticamente , Pericitos , Proteínas de Pez Cebra , Pez Cebra , Animales , Vasos Sanguíneos/embriología , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/fisiología , Pericitos/citología , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Glia ; 71(2): 317-333, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36165697

RESUMEN

Nerve/glial antigen 2 (NG2) is a protein marker of NG2 glia and mural cells, and NG2 promoter activity is utilized to target these cells. However, the NG2 promoter cannot target NG2 glia and mural cells separately. This has been an obstacle for NG2 glia-specific manipulation. Here, we developed transgenic mice in which either cell type can be targeted using the NG2 promoter. We selected a tetracycline-controllable gene induction system for cell type-specific transgene expression, and generated NG2-tetracycline transactivator (tTA) transgenic lines. We crossed tTA lines with the tetO-ChR2 (channelrhodopsin-2)-EYFP line to characterize tTA-dependent transgene induction. We isolated two unique NG2-tTA mouse lines: one that induced ChR2-EYFP only in mural cells, likely due to the chromosomal position effect of NG2-tTA insertion, and the other that induced it in both cell types. We then applied a Cre-mediated set-subtraction strategy to the latter case and eliminated ChR2-EYFP from mural cells, resulting in NG2 glia-specific transgene induction. We further demonstrated that tTA-dependent ChR2 expression could manipulate cell function. Optogenetic mural cell activation decreased cerebral blood flow, as previously reported, indicating that tTA-mediated ChR2 expression was sufficient to impact cellular function. ChR2-mediated depolarization was observed in NG2 glia in acute hippocampal slices. In addition, ChR2-mediated depolarization of NG2 glia inhibited their proliferation but promoted their differentiation in juvenile mice. Since the tTA-tetO combination is expandable, the mural cell-specific NG2-tTA line and the NG2 glia-specific NG2-tTA line will permit us to conduct observational and manipulation studies to examine in vivo function of these cells separately.


Asunto(s)
Neuroglía , Optogenética , Animales , Ratones , Neuroglía/metabolismo , Ratones Transgénicos , Antígenos/genética , Antígenos/metabolismo , Tetraciclinas/metabolismo
9.
EMBO Rep ; 22(11): e52389, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34569705

RESUMEN

The migratory cardiac neural crest cells (CNCCs) contribute greatly to cardiovascular development. A thorough understanding of the cell lineages, developmental chronology, and transcriptomic states of CNCC derivatives during normal development is essential for deciphering the pathogenesis of CNCC-associated congenital anomalies. Here, we perform single-cell transcriptomic sequencing of 34,131 CNCC-derived cells in mouse hearts covering eight developmental stages between E10.5 and P7. We report the presence of CNCC-derived mural cells that comprise pericytes and microvascular smooth muscle cells (mVSMCs). Furthermore, we identify the transition from the CNCC-derived pericytes to mVSMCs and the key regulators over the transition. In addition, our data support that many CNCC derivatives had already committed or differentiated to a specific lineage when migrating into the heart. We explore the spatial distribution of some critical CNCC-derived subpopulations with single-molecule fluorescence in situ hybridization. Finally, we computationally reconstruct the differentiation path and regulatory dynamics of CNCC derivatives. Our study provides novel insights into the cell lineages, developmental chronology, and regulatory dynamics of CNCC derivatives during development.


Asunto(s)
Corazón , Cresta Neural , Transcriptoma , Animales , Diferenciación Celular , Corazón/crecimiento & desarrollo , Hibridación Fluorescente in Situ , Ratones , Cresta Neural/citología , Análisis de la Célula Individual
10.
Dev Biol ; 480: 62-68, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400136

RESUMEN

The onset of circulation in a developing embryo requires intact blood vessels to prevent hemorrhage. The development of endothelial cells, and their subsequent recruitment of perivascular mural cells are important processes to establish and maintain vascular integrity. These processes are genetically controlled during development, and mutations that affect endothelial cell specification, pattern formation, or maturation through the addition of mural cells can result in early developmental hemorrhage. We created a strong loss of function allele of the zebrafish GDP-mannose 4,6 dehydratase (gmds) gene that is required for the de novo synthesis of GDP-fucose, and homozygous embryos display cerebral hemorrhages. Our data demonstrate that gmds mutants have early defects in vascular patterning with ectopic branches observed at time of hemorrhage. Subsequently, defects in the number of mural cells that line the vasculature are observed. Moreover, activation of Notch signaling rescued hemorrhage phenotypes in gmds mutants, highlighting a potential downstream pathway that requires protein fucosylation for vascular integrity. Finally, supplementation with fucose can rescue hemorrhage frequency in gmds mutants, demonstrating that synthesis of GDP-fucose via an alternative (salvage) pathway may provide an avenue toward therapeutic correction of phenotypes observed due to defects in de novo GDP-fucose synthesis. Together, these data are consistent with a novel role for the de novo and salvage protein fucosylation pathways in regulating vascular integrity through a Notch dependent mechanism.


Asunto(s)
Células Endoteliales/metabolismo , Hidroliasas/metabolismo , Receptores Notch/metabolismo , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Fucosa/metabolismo , Glicosilación , Guanosina Difosfato Fucosa/metabolismo , Hemorragia/genética , Hemorragia/prevención & control , Hidroliasas/genética , Mutación con Pérdida de Función/genética , Mutación , Fenotipo , Receptores Notch/fisiología , Transducción de Señal , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
Adv Exp Med Biol ; 1147: 109-124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147874

RESUMEN

Tumors of mesenchymal origin are a diverse group, with >130 distinct entities currently recognized by the World Health Organization. A subset of mesenchymal tumors grow or invade in a perivascular fashion, and their potential relationship to pericytes is a matter of ongoing interest. In fact, multiple intersections exist between pericytes and tumors of mesenchymal origin. First, pericytes are the likely cell of origin for a group of mesenchymal tumors with a common perivascular growth pattern. These primarily benign tumors grow in a perivascular fashion and diffusely express canonical pericyte markers such as CD146, smooth muscle actin (SMA), platelet-derived growth factor receptor beta (PDGFR-ß), and RGS5. These benign tumors include glomus tumor, myopericytoma, angioleiomyoma, and myofibroma. Second and as suggested by animal models, pericytes may give rise to malignant sarcomas. This is not a suggestion that all sarcomas within a certain subtype arise from pericytes, but that genetic modifications within a pericyte cell type may give rise to sarcomas. Third, mesenchymal tumors that are likely not a pericyte derivative co-opt pericyte markers in certain contexts. These include the PEComa family of tumors and liposarcoma. Fourth and finally, as "guardians" that enwrap the microvasculature, nonneoplastic pericytes may be important in sarcoma disease progression.


Asunto(s)
Tumor Glómico , Pericitos , Sarcoma , Neoplasias de los Tejidos Blandos , Adulto , Animales , Humanos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas
12.
Adv Exp Med Biol ; 1147: 265-278, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147882

RESUMEN

Pericytes are mural cells that are found ubiquitously throughout the microvasculature. Their main physiological roles are to support endothelial cells, regulate microvascular blood flow, and respond to perturbations in their microenvironment. Pericytes are sensitive to the metabolic abnormalities that are characteristic of type 2 diabetes mellitus, including dyslipidemia, hyperglycemia, and hyperinsulinemia. As a consequence of these abnormalities, advanced glycation end products, reactive oxygen species, polyol pathway activation, and protein kinase C isoform activation cause pericyte dysfunction and contribute to the pathogenesis of many common complications of type 2 diabetes. Pericyte dysfunction is known to be a contributing factor to the pathogenesis of retinopathy, nephropathy, neuropathy, beta cell dysfunction, and peripheral artery disease in people with type 2 diabetes. Therapies should target pericytes to treat these common diabetic complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Hiperglucemia , Pericitos , Productos Finales de Glicación Avanzada , Humanos , Especies Reactivas de Oxígeno
13.
Adv Exp Med Biol ; 1122: 187-210, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30937870

RESUMEN

Mural cells known as pericytes envelop the endothelial layer of microvessels throughout the body and have been described to have tissue-specific functions. Cardiac pericytes are abundantly found in the heart, but they are relatively understudied. Currently, their importance is emerging in cardiovascular homeostasis and dysfunction due to their pleiotropism. They are known to play key roles in vascular tone and vascular integrity as well as angiogenesis. However, their dysfunctional presence and/or absence is critical in the mechanisms that lead to cardiac pathologies such as myocardial infarction, fibrosis, and thrombosis. Moreover, they are targeted as a therapeutic potential due to their mesenchymal properties that could allow them to repair and regenerate a damaged heart. They are also sought after as a cell-based therapy based on their healing potential in preclinical studies of animal models of myocardial infarction. Therefore, recognizing the importance of cardiac pericytes and understanding their biology will lead to new therapeutic concepts.


Asunto(s)
Corazón , Microvasos/citología , Miocardio/citología , Pericitos/citología , Animales , Humanos , Neovascularización Fisiológica , Regeneración
14.
J Autoimmun ; 91: 83-96, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29753567

RESUMEN

Fibrosis remains a serious health concern in patients with chronic liver disease. We recently reported that chemically induced chronic murine liver injury triggers increased expression of junctional adhesion molecules (JAMs) JAM-B and JAM-C by endothelial cells and de novo synthesis of JAM-C by hepatic stellate cells (HSCs). Here, we demonstrate that biopsies of patients suffering from primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) or autoimmune hepatitis (AIH) display elevated levels of JAM-C on portal fibroblasts (PFs), HSCs, endothelial cells and cholangiocytes, whereas smooth muscle cells expressed JAM-C constitutively. Therefore, localization and function of JAM-B and JAM-C were investigated in three mouse models of autoimmune-driven liver inflammation. A PBC-like disease was induced by immunization with 2-octynoic acid-BSA conjugate, which resulted in the upregulation of both JAMs in fibrotic portal triads. Analysis of a murine model of PSC revealed a role of JAM-C in PF cell-cell adhesion and contractility. In mice suffering from AIH, endothelial cells increased JAM-B level and HSCs and capsular fibroblasts became JAM-C-positive. Most importantly, AIH-mediated liver fibrosis was reduced in JAM-B-/- mice or when JAM-C was blocked by soluble recombinant JAM-C. Interestingly, loss of JAM-B/JAM-C function had no effect on leukocyte infiltration, suggesting that the well-documented function of JAMs in leukocyte recruitment to inflamed tissue was not effective in the tested chronic models. This might be different in patients and may even be complicated by the fact that human leukocytes express JAM-C. Our findings delineate JAM-C as a mediator of myofibroblast-operated contraction of the liver capsule, intrahepatic vasoconstriction and bile duct stricture. Due to its potential to interact heterophilically with endothelial JAM-B, JAM-C supports also HSC/PF mural cell function. Together, these properties allow JAM-B and JAM-C to actively participate in vascular remodeling associated with liver/biliary fibrosis and suggest them as valuable targets for anti-fibrosis therapies.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Colangitis Esclerosante/metabolismo , Células Endoteliales/metabolismo , Hepatitis Autoinmune/metabolismo , Inmunoglobulinas/metabolismo , Inflamación/metabolismo , Cirrosis Hepática Biliar/metabolismo , Hígado/patología , Miocitos del Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Animales , Adhesión Celular , Moléculas de Adhesión Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Ácidos Grasos Monoinsaturados/inmunología , Femenino , Fibrosis , Humanos , Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Remodelación Vascular , Vasoconstricción
15.
Genesis ; 54(6): 350-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27060598

RESUMEN

The Pdgfrb-Cre line has been used as a tool to specifically target pericytes and vascular smooth muscle cells. Recent studies showed additional targeting of cardiac and mesenteric lymphatic endothelial cells (LECs) by the Pdgfrb-Cre transgene. In the heart, this was suggested to provide evidence for a previously unknown nonvenous source of LECs originating from yolk sac (YS) hemogenic endothelium (HemEC). Here we show that Pdgfrb-Cre does not, however, target YS HemEC or YS-derived erythro-myeloid progenitors (EMPs). Instead, a high proportion of ECs in embryonic blood vessels of multiple organs, as well as venous-derived LECs were targeted. Assessment of temporal Cre activity using the R26-mTmG double reporter suggested recent occurrence of Pdgfrb-Cre recombination in both blood and lymphatic ECs. It thus cannot be excluded that Pdgfrb-Cre mediated targeting of LECs is due to de novo expression of the Pdgfrb-Cre transgene or their previously established venous endothelial origin. Importantly, Pdgfrb-Cre targeting of LECs does not provide evidence for YS HemEC origin of the lymphatic vasculature. Our results highlight the need for careful interpretation of lineage tracing using constitutive Cre lines that cannot discriminate active from historical expression. The early vascular targeting by the Pdgfrb-Cre also warrants consideration for its use in studies of mural cells. genesis 54:350-358, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.


Asunto(s)
Células Endoteliales/metabolismo , Corazón/crecimiento & desarrollo , Linfangiogénesis/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Linaje de la Célula , Marcación de Gen , Integrasas/genética , Vasos Linfáticos/metabolismo , Ratones Transgénicos , Miocitos del Músculo Liso/metabolismo , Venas/crecimiento & desarrollo , Venas/metabolismo , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo
16.
Hum Reprod ; 31(7): 1562-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27112698

RESUMEN

STUDY QUESTION: Does Bisphenol A (BPA) impair steroid hormone production in human luteinized granulosa cells in vitro? SUMMARY ANSWER: At supra-physiological concentrations, BPA alters progesterone and estradiol synthesis in vitro and significantly reduces the mRNA and protein expression levels of three genes encoding steroidogenesis enzymes. WHAT IS KNOWN ALREADY: In IVF patients, the effects of BPA exposure on cycle outcome are controversial. Previous animal studies have shown that granulosa cell steroid hormone synthesis is compromised after BPA exposure, but their findings have been difficult to replicate in humans due, in part, to the low availability of discarded biological material. STUDY DESIGN, SIZE, DURATION: Luteinized granulosa cells obtained from 44 fertile and infertile patients undergoing in vitro fertilization were cultured for 48 h with different concentrations of BPA (0, 0.2, 0.02, 2.0, 20 µg/ml). PARTICIPANTS/MATERIALS, SETTING, METHODS: Culture medium and total RNA extracted from the luteinized granulosa cells were examined for estradiol and progesterone levels as well as mRNA and protein expression of steroidogenesis enzymes, using enzyme immunoassays, real-time PCR and western blots. MAIN RESULTS AND THE ROLE OF CHANCE: Treatment of granulosa cells with 2 or 20 µg/ml BPA for 48 h resulted in significantly lower progesterone biosynthesis (P < 0.005 and <0.001, respectively). Estradiol production was significantly altered only after incubation with 20 µg/ml of BPA (P < 0.001). These concentrations also significantly reduced the mRNA levels of 3ß-hydroxysteroid dehydrogenase (3ß-HSD), CYP11A1 and CYP19A1 without affecting StAR and 17ß-hydroxysteroid dehydrogenase mRNA expression. Similarly, 3ß-HSD, CYP11A1 and CYP19A1 protein levels were reduced after administration of 20 µg/ml BPA. Lower BPA concentrations similar to, and up to 100 times, the concentrations measured in human follicular fluid, serum and urine did not alter steroidogenesis in primary granulosa cell cultures. LIMITATIONS, REASONS FOR CAUTION: This was an in vitro study investigating the effects of acute exposure (48 h) of BPA on discarded material. As such, the model may not accurately reflect the effect of BPA on the physiological events of follicular steroid hormone synthesis in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Our results show that in vitro exposure to BPA at low doses does not affect granulosa cells steroidogenesis. Combined with recent in vivo studies, these data can be reassuring but further studies are needed to assess the effects of chronic exposure to BPA on ovarian steroidogenesis. STUDY FUNDING AND COMPETING INTERESTS: This study was supported by grant number 1936/12 from the Israeli Science Foundation (ISF). The authors have no conflict of interest.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Contaminantes Ambientales/toxicidad , Hormonas Esteroides Gonadales/biosíntesis , Células de la Granulosa/efectos de los fármacos , Fenoles/toxicidad , Adulto , Medios de Cultivo , Exposición a Riesgos Ambientales , Estradiol/metabolismo , Femenino , Humanos , Progesterona/metabolismo , ARN Mensajero/metabolismo
17.
Acta Neurochir Suppl ; 121: 29-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26463919

RESUMEN

Brain arteriovenous malformation (bAVM) is an important cause of intracranial hemorrhage (ICH), particularly in the young population. ICH is the first clinical symptom in about 50 % of bAVM patients. The vessels in bAVM are fragile and prone to rupture, causing bleeding into the brain. About 30 % of unruptured and non-hemorrhagic bAVMs demonstrate microscopic evidence of hemosiderin in the vascular wall. In bAVM mouse models, vascular mural cell coverage is reduced in the AVM lesion, accompanied by vascular leakage and microhemorrhage. In this review, we discuss possible signaling pathways involved in abnormal vascular development in bAVM.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Endoglina/metabolismo , Endotelio Vascular/metabolismo , Malformaciones Arteriovenosas Intracraneales/metabolismo , Hemorragias Intracraneales/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptores Notch/metabolismo , Angiopoyetinas/metabolismo , Animales , Permeabilidad Capilar , Modelos Animales de Enfermedad , Humanos , Malformaciones Arteriovenosas Intracraneales/complicaciones , Hemorragias Intracraneales/etiología , Receptor TIE-2/metabolismo , Rotura Espontánea , Transducción de Señal
18.
Am J Physiol Cell Physiol ; 307(9): C878-92, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25143350

RESUMEN

Microvascular stability and regulation of capillary tonus are regulated by pericytes and their interactions with endothelial cells (EC). While the RhoA/Rho kinase (ROCK) pathway has been implicated in modulation of pericyte contractility, in part via regulation of the myosin light chain phosphatase (MLCP), the mechanisms linking Rho GTPase activity with actomyosin-based contraction and the cytoskeleton are equivocal. Recently, the myosin phosphatase-RhoA-interacting protein (MRIP) was shown to mediate the RhoA/ROCK-directed MLCP inactivation in vascular smooth muscle. Here we report that MRIP directly interacts with the ß-actin-specific capping protein ßcap73. Furthermore, manipulation of MRIP expression influences pericyte contractility, with MRIP silencing inducing cytoskeletal remodeling and cellular hypertrophy. MRIP knockdown induces a repositioning of ßcap73 from the leading edge to stress fibers; thus MRIP-silenced pericytes increase F-actin-driven cell spreading twofold. These hypertrophied and cytoskeleton-enriched pericytes demonstrate a 2.2-fold increase in contractility upon MRIP knockdown when cells are plated on a deformable substrate. In turn, silencing pericyte MRIP significantly affects EC cycle progression and angiogenic activation. When MRIP-silenced pericytes are cocultured with capillary EC, there is a 2.0-fold increase in EC cycle entry. Furthermore, in three-dimensional models of injury and repair, silencing pericyte MRIP results in a 1.6-fold elevation of total tube area due to EC network formation and increased angiogenic sprouting. The pivotal role of MRIP expression in governing pericyte contractile phenotype and endothelial growth should lend important new insights into how chemomechanical signaling pathways control the "angiogenic switch" and pathological angiogenic induction.


Asunto(s)
Células Endoteliales/fisiología , Endotelio Vascular/citología , Neovascularización Fisiológica , Pericitos/metabolismo , Pericitos/ultraestructura , Proteínas de Capping de la Actina/metabolismo , Animales , Células COS , Bovinos , Ciclo Celular , Tamaño de la Célula , Células Cultivadas , Chlorocebus aethiops , Citoesqueleto/ultraestructura , Células Endoteliales/citología , Humanos , Ratones , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Células 3T3 NIH , Pericitos/citología , Interferencia de ARN , Quinasas Asociadas a rho/metabolismo
19.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915529

RESUMEN

Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating klf2a levels and altered targeting of vSMCs between arteries and veins. Increasing Piezo1 activity suppressed klf2a and increased vSMC association with the cardinal vein, while inhibition of Piezo1 activity increased klf2a levels and decreased vSMC association with arteries. We supported the small molecule data with in vivo genetic suppression of piezo1 and 2 in zebrafish, resulting in loss of transgelin+ vSMCs on the dorsal aorta. Further, endothelial cell (EC)-specific Piezo1 knockout in mice was sufficient to decrease vSMC accumulation along the descending dorsal aorta during development, thus phenocopying our zebrafish data, and supporting functional conservation of Piezo1 in mammals. To determine mechanism, we used in vitro modeling assays to demonstrate that differential sensing of pulsatile versus laminar flow forces across endothelial cells changes the expression of mural cell differentiation genes. Together, our findings suggest a crucial role for EC Piezo1 in sensing force within large arteries to mediate mural cell differentiation and stabilization of the arterial vasculature.

20.
Mol Neurobiol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592587

RESUMEN

Human blood vessel organoids (hBVOs) offer a promising platform for investigating vascular diseases and identifying therapeutic targets. In this study, we focused on in vitro modeling and therapeutic target finding of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common form of hereditary stroke disorder caused by mutations in the NOTCH3 gene. Despite the identification of these mutations, the underlying pathological mechanism is elusive, and effective therapeutic approaches are lacking. CADASIL primarily affects the blood vessels in the brain, leading to ischemic strokes, migraines, and dementia. By employing CRISPR/Cas9 base-editing technology, we generated human induced pluripotent stem cells (hiPSCs) carrying Notch3 mutations. These mutant hiPSCs were differentiated into hBVOs. The NOTCH3 mutated hBVOs exhibited CADASIL-like pathology, characterized by a reduced vessel diameter and degeneration of mural cells. Furthermore, we observed an accumulation of Notch3 extracellular domain (Notch3ECD), increased apoptosis, and cytoskeletal alterations in the NOTCH3 mutant hBVOs. Notably, treatment with ROCK inhibitors partially restored the disconnection between endothelial cells and mural cells in the mutant hBVOs. These findings shed light on the pathogenesis of CADASIL and highlight the potential of hBVOs for studying and developing therapeutic interventions for this debilitating human vascular disorder.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda