Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(34): e2321659121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39116178

RESUMEN

The primary motor cortex does not uniquely or directly produce alpha motoneurone (α-MN) drive to muscles during voluntary movement. Rather, α-MN drive emerges from the synthesis and competition among excitatory and inhibitory inputs from multiple descending tracts, spinal interneurons, sensory inputs, and proprioceptive afferents. One such fundamental input is velocity-dependent stretch reflexes in lengthening muscles, which should be inhibited to enable voluntary movement. It remains an open question, however, the extent to which unmodulated stretch reflexes disrupt voluntary movement, and whether and how they are inhibited in limbs with numerous multiarticular muscles. We used a computational model of a Rhesus Macaque arm to simulate movements with feedforward α-MN commands only, and with added velocity-dependent stretch reflex feedback. We found that velocity-dependent stretch reflex caused movement-specific, typically large and variable disruptions to arm movements. These disruptions were greatly reduced when modulating velocity-dependent stretch reflex feedback (i) as per the commonly proposed (but yet to be clarified) idealized alpha-gamma (α-γ) coactivation or (ii) an alternative α-MN collateral projection to homonymous γ-MNs. We conclude that such α-MN collaterals are a physiologically tenable propriospinal circuit in the mammalian fusimotor system. These collaterals could still collaborate with α-γ coactivation, and the few skeletofusimotor fibers (ß-MNs) in mammals, to create a flexible fusimotor ecosystem to enable voluntary movement. By locally and automatically regulating the highly nonlinear neuro-musculo-skeletal mechanics of the limb, these collaterals could be a critical low-level enabler of learning, adaptation, and performance via higher-level brainstem, cerebellar, and cortical mechanisms.


Asunto(s)
Macaca mulatta , Neuronas Motoras , Reflejo de Estiramiento , Reflejo de Estiramiento/fisiología , Animales , Neuronas Motoras/fisiología , Movimiento/fisiología , Músculo Esquelético/fisiología , Corteza Motora/fisiología , Simulación por Computador , Modelos Neurológicos , Brazo/fisiología
2.
Exp Physiol ; 109(1): 17-26, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-36869596

RESUMEN

Proprioception is the sense that lets us perceive the location, movement and action of the body parts. The proprioceptive apparatus includes specialized sense organs (proprioceptors) which are embedded in the skeletal muscles. The eyeballs are moved by six pairs of eye muscles and binocular vision depends on fine-tuned coordination of the optical axes of both eyes. Although experimental studies indicate that the brain has access to eye position information, both classical proprioceptors (muscle spindles and Golgi tendon organ) are absent in the extraocular muscles of most mammalian species. This paradox of monitoring extraocular muscle activity in the absence of typical proprioceptors seemed to be resolved when a particular nerve specialization (the palisade ending) was detected in the extraocular muscles of mammals. In fact, for decades there was consensus that palisade endings were sensory structures that provide eye position information. The sensory function was called into question when recent studies revealed the molecular phenotype and the origin of palisade endings. Today we are faced with the fact that palisade endings exhibit sensory as well as motor features. This review aims to evaluate the literature on extraocular muscle proprioceptors and palisade endings and to reconsider current knowledge of their structure and function.


Asunto(s)
Músculos Oculomotores , Células Receptoras Sensoriales , Animales , Músculos Oculomotores/inervación , Músculos Oculomotores/fisiología , Mecanorreceptores , Propiocepción/fisiología , Husos Musculares , Mamíferos
3.
J Physiol ; 601(2): 275-285, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36510697

RESUMEN

Muscle spindles, one of the two main classes of proprioceptors together with Golgi tendon organs, are sensory structures that keep the central nervous system updated about the position and movement of body parts. Although they were discovered more than 150 years ago, their function during movement is not yet fully understood. Here, we summarize the morphology and known functions of muscle spindles, with a particular focus on locomotion. Although certain properties such as the sensitivity to dynamic and static muscle stretch are long known, recent advances in molecular biology have allowed the characterization of the molecular mechanisms for signal transduction in muscle spindles. Building upon classic literature showing that a lack of sensory feedback is deleterious to locomotion, we bring to the discussion more recent findings that support a pivotal role of muscle spindles in maintaining murine and human locomotor robustness, defined as the ability to cope with perturbations. Yet, more research is needed to expand the existing mechanistic understanding of how muscle spindles contribute to the production of robust, functional locomotion in real world settings. Future investigations should focus on combining different animal models to identify, in health and disease, those peripheral, spinal and brain proprioceptive structures involved in the fine tuning of motor control when locomotion happens in challenging conditions.


Asunto(s)
Mecanorreceptores , Husos Musculares , Ratones , Humanos , Animales , Husos Musculares/fisiología , Mecanorreceptores/fisiología , Propiocepción/fisiología , Locomoción/fisiología , Columna Vertebral , Músculo Esquelético/fisiología
4.
J Physiol ; 601(8): 1467-1482, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36852473

RESUMEN

The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), which in turn are enhanced by the neuromodulators serotonin and noradrenaline. Local vibration (LV) induces excitatory Ia input onto motoneurons and may alter neuromodulatory inputs. Therefore, we investigated whether LV influences the contribution of PICs to motoneuron firing. This was assessed in voluntary contractions with concurrent, ongoing LV, as well as after a bout of prolonged LV. High-density surface electromyograms (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. Twenty males performed isometric, triangular, dorsiflexion contractions to 20% and 50% of maximal torque at baseline, during LV of the tibialis anterior muscle, and after 30-min of LV. HD-EMG signals were decomposed, and motor units tracked across time points to estimate PICs through a paired motor unit analysis, which quantifies motor unit recruitment-derecruitment hysteresis (ΔF). During ongoing LV, ΔF was lower for both 20% and 50% ramps. Although significant changes in ΔF were not observed after prolonged LV, a differential effect across the motoneuron pool was observed. This study demonstrates that PICs can be non-pharmacologically modulated by LV. Given that LV leads to reflexive motor unit activation, it is postulated that lower PIC contribution to motoneuron firing during ongoing LV results from decreased neuromodulatory inputs associated with lower descending corticospinal drive. A differential effect in motoneurons of different recruitment thresholds after prolonged LV is provocative, challenging the interpretation of previous observations and motivating future investigations. KEY POINTS: Neuromodulatory inputs from the brainstem influence motoneuron intrinsic excitability through activation of persistent inward currents (PICs). PICs make motoneurons more responsive to excitatory input. We demonstrate that vibration applied on the muscle modulates the contribution of PICs to motoneuron firing, as observed through analysis of the firing of single motor units. The effects of PICs on motoneuron firing were lower when vibration was concurrently applied during voluntary ramp contractions, likely due to lower levels of neuromodulation. Additionally, prolonged exposure to vibration led to differential effects of lower- vs. higher-threshold motor units on PICs, with lower-threshold motor units tending to present an increased and higher-threshold motor units a decreased contribution of PICs to motoneuron firing. These results demonstrate that muscle vibration has the potential to influence the effects of neuromodulation on motoneuron firing. The potential of using vibration as a non-pharmacological neuromodulatory intervention should be further investigated.


Asunto(s)
Neuronas Motoras , Vibración , Masculino , Humanos , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Electromiografía , Contracción Isométrica
5.
Eur J Neurosci ; 58(2): 2504-2514, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37278127

RESUMEN

Male and female rats differ in muscle fibre composition, related motor unit contractile properties, and muscle spindle density but not number. On the other hand, their motoneurons' intrinsic properties, excitability and firing properties are similar. The aim of this study was to investigate whether apparent sex differences in body mass and muscle force influence the proprioceptive input from muscle spindles to motoneurons. Medial gastrocnemius motoneurons were investigated intracellularly in deeply anaesthetised male and female rats. Monosynaptic Ia excitatory postsynaptic potentials (EPSPs) were evoked using electrical stimulation of primary afferents from homonymous muscle. Data were analysed using a mixed linear model. The central latencies of EPSPs were 0.38-0.80 ms, with no differences in means between males and females. The maximum EPSP amplitude varied between 2.03 and 8.09 mV in males and 1.24 and 6.79 mV in females. The mean maximum EPSP amplitude was 26% higher in males than in females. The mean EPSP rise time, half-decay time and total duration did not differ between the sexes. EPSP amplitudes correlated with the resting membrane potential, input resistance and EPSP rise time in both sexes. The observed sex differences in the Ia proprioceptive input may be related either to mechanical loading differences in males and females associated with their different body mass or hormonal differences influencing the levels of neuromodulation in spinal circuits. The results highlight the importance of taking sex into consideration in the studies on the influence of afferent inputs on MN excitability.


Asunto(s)
Potenciales Evocados , Médula Espinal , Femenino , Masculino , Animales , Ratas , Médula Espinal/fisiología , Neuronas Motoras/fisiología , Contracción Muscular/fisiología , Músculo Esquelético , Sinapsis/fisiología
6.
J Neurophysiol ; 127(2): 412-420, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020504

RESUMEN

Hand proprioception, the sense of the posture and movements of the wrist and digits, is critical to dexterous manual behavior and to stereognosis, the ability to sense the three-dimensional structure of objects held in the hand. To better understand this sensory modality and its role in hand function, we sought to characterize the acuity with which the postures and movements of finger joints are sensed. To this end, we measured the ability of human subjects to discriminate changes in posture and speed around the three joints of the index finger. In these experiments, we isolated the sensory component by imposing the postures on an otherwise still hand, to complement other studies in which subjects made judgments on actively achieved postures. We found that subjects could reliably sense 12-16% changes in joint angle and 18-32% changes in joint speed. Furthermore, the acuity for posture and speed was comparable across the three joints of the finger. Finally, task performance was unaffected by the presence of a vibratory stimulus, calling into question the role of cutaneous cues in hand proprioception.NEW & NOTEWORTHY Manual dexterity and stereognosis are supported by two exquisite sensory systems, namely touch and proprioception. Here, we measure the sensitivity of hand proprioception and show that humans can sense the posture and movements of the fingers with great accuracy. We also show that application of a skin vibration does not impair sensitivity, suggesting that proprioceptive acuity relies primarily on receptors in the muscles (and possibly tendons) rather than the skin.


Asunto(s)
Dedos/fisiología , Husos Musculares/fisiología , Propiocepción/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Masculino , Movimiento/fisiología , Postura/fisiología , Adulto Joven
7.
J Neurophysiol ; 125(4): 1223-1235, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502932

RESUMEN

Perception of limb position and motion combines sensory information from spindles in muscles that span one joint (monoarticulars) and two joints (biarticulars). This anatomical organization should create interactions in estimating limb position. We developed two models, one with only monoarticulars and one with both monoarticulars and biarticulars, to explore how biarticulars influence estimates of arm position in hand (x, y) and joint (shoulder, elbow) coordinates. In hand coordinates, both models predicted larger medial-lateral than proximal-distal errors, although the model with both muscle groups predicted that biarticulars would reduce this bias. In contrast, the two models made significantly different predictions in joint coordinates. The model with only monoarticulars predicted that errors would be uniformly distributed because estimates of angles at each joint would be independent. In contrast, the model that included biarticulars predicted that errors would be coupled between the two joints, resulting in smaller errors for combinations of flexion or extension at both joints and larger errors for combinations of flexion at one joint and extension at the other joint. We also carried out two experiments to examine errors made by human subjects during an arm position matching task in which a robot passively moved one arm to different positions and the subjects moved their other arm to mirror-match each position. Errors in hand coordinates were similar to those predicted by both models. Critically, however, errors in joint coordinates were only similar to those predicted by the model with monoarticulars and biarticulars. These results highlight how biarticulars influence perceptual estimates of limb position by helping to minimize medial-lateral errors.NEW & NOTEWORTHY It is unclear how sensory information from muscle spindles located within muscles spanning multiple joints influences perception of body position and motion. We address this issue by comparing errors in estimating limb position made by human subjects with predicted errors made by two musculoskeletal models, one with only monoarticulars and one with both monoarticulars and biarticulars. We provide evidence that biarticulars produce coupling of errors between joints, which help to reduce errors.


Asunto(s)
Modelos Biológicos , Músculo Esquelético/fisiología , Propiocepción/fisiología , Desempeño Psicomotor/fisiología , Extremidad Superior/fisiología , Adulto , Anciano , Femenino , Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Husos Musculares/fisiología , Adulto Joven
8.
J Peripher Nerv Syst ; 26(1): 17-34, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33426723

RESUMEN

The foot-sole cutaneous receptors (section 2), their function in stance control (sway minimisation, exploratory role) (2.1), and the modulation of their effects by gait pattern and intended behaviour (2.2) are reviewed. Experimental manipulations (anaesthesia, temperature) (2.3 and 2.4) have shown that information from foot sole has widespread influence on balance. Foot-sole stimulation (2.5) appears to be a promising approach for rehabilitation. Proprioceptive information (3) has a pre-eminent role in balance and gait. Reflex responses to balance perturbations are produced by both leg and foot muscle stretch (3.1) and show complex interactions with skin input at both spinal and supra-spinal levels (3.2), where sensory feedback is modulated by posture, locomotion and vision. Other muscles, notably of neck and trunk, contribute to kinaesthesia and sense of orientation in space (3.3). The effects of age-related decline of afferent input are variable under different foot-contact and visual conditions (3.4). Muscle force diminishes with age and sarcopenia, affecting intrinsic foot muscles relaying relevant feedback (3.5). In neuropathy (4), reduction in cutaneous sensation accompanies the diminished density of viable receptors (4.1). Loss of foot-sole input goes along with large-fibre dysfunction in intrinsic foot muscles. Diabetic patients have an elevated risk of falling, and vision and vestibular compensation strategies may be inadequate (4.2). From Charcot-Marie-Tooth 1A disease (4.3) we have become aware of the role of spindle group II fibres and of the anatomical feet conditions in balance control. Lastly (5) we touch on the effects of nerve stimulation onto cortical and spinal excitability, which may participate in plasticity processes, and on exercise interventions to reduce the impact of neuropathy.


Asunto(s)
Pie/fisiología , Marcha/fisiología , Músculo Esquelético/fisiología , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Propiocepción/fisiología , Células Receptoras Sensoriales/fisiología , Percepción del Tacto/fisiología , Humanos , Fenómenos Fisiológicos de la Piel
9.
J Manipulative Physiol Ther ; 44(5): 363-371, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34103172

RESUMEN

OBJECTIVE: The purpose of this study was to characterize trunk muscle spindle responses immediately after high-velocity, low-amplitude spinal manipulation (HVLA-SM) delivered at various thrust magnitudes and thrust durations. METHODS: Secondary analysis from multiple studies involving anesthetized adult cats (N = 70; 2.3-6.0 kg) receiving L6 HVLA-SM. Muscle spindle afferent recordings were obtained from L6 dorsal rootlets before, during, and immediately after HVLA-SM. L6 HVLA-SM was delivered posteriorly-to-anteriorly using a feedback motor with peak thrust magnitudes of 25%, 55%, and 85% of cat body weight (BW) and thrust durations of 25, 50, 75, 100, 150, 200, and 250 ms. Time to the first action potential and muscle spindle discharge frequency at 1 and 2 seconds post-HVLA-SM were determined. RESULTS: A significant association between HVLA-SM thrust magnitude and immediate (≤2 s) muscle spindle response was found (P < .001). For non-control thrust magnitude, pairwise comparisons (25%, 55%, 85% BW), 55% BW thrust magnitude had the most consistent effect on immediate post-HVLA-SM discharge outcomes (false discovery rate < 0.05). No significant association was found between thrust duration and immediate post-HVLA-SM muscle spindle response (P > .05). CONCLUSION: The present study found that HVLA-SM thrust magnitudes delivered at 55% BW were more likely to affect immediate (≤2 s) post-HVLA-SM muscle spindle response.


Asunto(s)
Manipulación Espinal , Husos Musculares , Animales , Gatos , Músculo Esquelético , Raíces Nerviosas Espinales , Torso
10.
J Neurophysiol ; 122(3): 901-903, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31322464

RESUMEN

Muscle spindles are integral to proprioception and their behavior is of particular interest for the design of somatosensory neuroprostheses. Prior knowledge about human muscle spindles has been limited to microneurography recordings in peripheral nerves using joint movements that do not disrupt the electrode. Recent studies demonstrate a new methodology for studying the afferent encoding of proprioception during freestanding, providing important information for neural engineering and the broader scientific community (Knellwolf TP, Burton AR, Hammam E, Macefield VG. J Neurophysiol 120: 953-959, 2018; Knellwolf TP, Burton AR, Hammam E, Macefield VG. J Neurophysiol 121: 74-84, 2019; Macefield VG, Knellwolf TP. J Neurophysiol 120: 452-467, 2018).


Asunto(s)
Electrodiagnóstico , Fenómenos Electrofisiológicos , Husos Musculares/fisiología , Prótesis Neurales , Propiocepción/fisiología , Electrodiagnóstico/instrumentación , Electrodiagnóstico/métodos , Electrodiagnóstico/tendencias , Humanos
11.
J Neurophysiol ; 122(2): 525-538, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166819

RESUMEN

In addition to being a prerequisite for many activities of daily living, the ability to maintain steady upright standing is a relevant model to study sensorimotor integrative function. Upright standing requires managing multimodal sensory inputs to produce finely tuned motor output that can be adjusted to accommodate changes in standing conditions and environment. The sensory information used for postural control mainly arises from the vestibular system of the inner ear, vision, and proprioception. Proprioception (sense of body position and movement) encompasses signals from mechanoreceptors (proprioceptors) located in muscles, tendons, and joint capsules. There is general agreement that proprioception signals from leg muscles provide the primary source of information for postural control. This is because of their exquisite sensitivity to detect body sway during unperturbed upright standing that mainly results from variations in leg muscle length induced by rotations around the ankle joint. However, aging is associated with alterations of muscle spindles and their neural pathways, which induce a decrease in the sensitivity, acuity, and integration of the proprioceptive signal. These alterations promote changes in postural control that reduce its efficiency and thereby may have deleterious consequences for the functional independence of an individual. This narrative review provides an overview of how aging alters the proprioceptive signal from the legs and presents compelling evidence that these changes modify the neural control of upright standing.


Asunto(s)
Envejecimiento/fisiología , Pierna/fisiología , Husos Musculares/fisiología , Equilibrio Postural/fisiología , Propiocepción/fisiología , Posición de Pie , Humanos
12.
J Neurophysiol ; 121(1): 74-84, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427762

RESUMEN

We recently developed an approach for recording from muscle spindles in the intrinsic muscles of the foot in freestanding humans by inserting a tungsten microelectrode into the posterior tibial nerve behind the medial malleolus of the ankle. Here we characterize the behavior of muscle spindles in the small muscles of the foot in 1) seated subjects with the leg horizontal and the foot naturally plantarflexed and 2) standing subjects. In the first study, recordings were made from 26 muscle spindle afferents located within flexor digiti minimi brevis ( n = 4), abductor digiti minimi ( n = 3), quadratus plantae ( n = 3), plantar interossei ( n = 4), flexor digitorum brevis ( n = 3), dorsal interossei ( n = 2), and lumbricals ( n = 2), with one each supplying abductor hallucis, adductor hallucis, and flexor hallucis brevis. The identity of another two muscle afferents was unknown. The majority of the units were silent at rest, only seven (27%) being spontaneously active. Because of the anatomic constraints of the foot, some spindles supplying muscles acting on the toes responded to movements of one or more digits. In the second study, 12 muscle spindle afferents were examined during standing. The ongoing discharge of eight spindle afferents covaried with changes in the center of pressure during postural sway. We conclude that the majority of spindle endings in the small muscles of the foot are silent at rest, which may allow them to encode changes in conformation of the foot when it is loaded during standing. Moreover, these muscle spindle afferents can provide useful proprioceptive information during standing and postural sway. NEW & NOTEWORTHY We have characterized the firing properties of muscle spindles in the intrinsic muscles of the human foot for the first time. The majority of the spindle endings are silent in seated subjects, and most fire tonically during standing, their discharge covarying with center of pressure during postural sway. We conclude that spindle endings in the intrinsic muscles of the foot provide useful proprioceptive information during free standing.


Asunto(s)
Pie/fisiología , Husos Musculares/fisiología , Postura/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Descanso , Soporte de Peso/fisiología , Adulto Joven
13.
J Neurophysiol ; 121(4): 1143-1149, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30699044

RESUMEN

Studies on anesthetized animals have revealed that nociceptors can excite fusimotor neurons and thereby change the sensitivity of muscle spindles to stretch; such nociceptive reflexes have been suggested to underlie the mechanisms that lead to chronic musculoskeletal pain syndromes. However, the validity of the "vicious cycle" hypothesis in humans has yielded results contrasting with those found in animals. Given that spindle firing rates are much lower in humans than in animals, it is possible that some of the discrepancies between human experimental data and those obtained in animals could be explained by differences in background fusimotor drive when the leg muscles are relaxed. We examined the effects of tonic muscle pain during voluntary contractions of the ankle dorsiflexors. Unitary recordings were obtained from 10 fusimotor-driven muscle spindle afferents (6 primary, 4 secondary) supplying the ankle dorsiflexors via a microelectrode inserted percutaneously into the common peroneal nerve. A series of 1-min weak contractions was performed at rest and during 1 h of muscle pain induced by intramuscular infusion of 5% hypertonic saline into the tibialis anterior muscle. We did not observe any statistically significant increases in muscle spindle firing rates of six afferents followed during tonic muscle pain, although discharge variability increased slightly. Furthermore, a participant's capacity to maintain a constant level of force, while relying on proprioceptive feedback in the absence of visual feedback, was not compromised during pain. We conclude that nociceptive inputs from contracting muscle do not excite fusimotor neurons during voluntary isometric contractions in humans. NEW & NOTEWORTHY Data obtained in the cat have shown that muscle pain causes a marked increase in the firing of muscle spindles, attributed to a nociceptor-driven fusimotor reflex. However, our studies of muscle spindles in relaxed leg muscles failed to find any effect on spindle discharge. Here we showed that experimental muscle pain failed to increase the firing of muscle spindle afferents during weak voluntary contractions, when fusimotor drive sufficient to increase their firing is present.


Asunto(s)
Contracción Isométrica , Husos Musculares/fisiología , Mialgia/fisiopatología , Adolescente , Adulto , Tobillo/fisiología , Tobillo/fisiopatología , Retroalimentación Sensorial , Femenino , Humanos , Masculino , Husos Musculares/fisiopatología , Nocicepción , Nervio Peroneo/fisiología , Nervio Peroneo/fisiopatología , Reflejo
14.
Exp Brain Res ; 237(1): 111-120, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30341466

RESUMEN

The control and the execution of motor tasks are largely influenced by proprioceptive feedback, i.e. the information about the position and movement of the body. In 1972, it was discovered that a vibratory stimulation applied non-invasively to a muscle or a tendon induces a movement illusion consistent with the elongation of the vibrated muscle/tendon. Although this phenomenon was reported by several studies, it is still unclear how to reliably reproduce it because of the many different features of the stimulation altering the sensation (e.g. frequency, duration, location). By performing a psychophysical test, we analysed the effects of the stimulation point and the preload force on the minimum stimulation amplitude needed to elicit an illusion of movement. In particular, we stimulated two groups of healthy subjects on three target regions of the biceps brachii muscle (the distal tendon, the muscle belly and one of the proximal tendons) applying three preload force ranges (0.5-0.75N, 1-2N and 3-4N). Our results showed that the minimum stimulation amplitude eliciting a sensation is affected by the preload force. On the contrary, it did not change significantly among the three stimulated regions. Nevertheless, the reported vividness of the illusion of movement changed across the stimulated points decreasing while moving from the distal to the proximal tendons. Overall, these outcomes contribute to the scientific debate on the features that modulate the vibration-induced movement illusion proposing ways to increase the reliability of the procedure in basic and applied research studies.


Asunto(s)
Ilusiones/fisiología , Movimiento/fisiología , Músculo Esquelético/inervación , Propiocepción/fisiología , Umbral Sensorial/fisiología , Vibración , Adulto , Análisis de Varianza , Electromiografía , Femenino , Humanos , Cinestesia , Masculino , Músculo Esquelético/fisiología , Reproducibilidad de los Resultados
15.
J Neurophysiol ; 120(6): 2788-2795, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30230986

RESUMEN

Patients with hereditary sensory and autonomic neuropathy type III (HSAN III) exhibit marked ataxia, including gait disturbances. We recently showed that functional muscle spindle afferents in the leg, recorded via intraneural microelectrodes inserted into the peroneal nerve, are absent in HSAN III, although large-diameter cutaneous afferents are intact. Moreover, there is a tight correlation between loss of proprioceptive acuity at the knee and the severity of gait impairment. We tested the hypothesis that manual motor performance is also compromised in HSAN III, attributed to the predicted absence of muscle spindles in the intrinsic muscles of the hand. Manual performance in the Purdue pegboard task was assessed in 12 individuals with HSAN III and 11 age-matched healthy controls. The mean (±SD) pegboard score (number of pins inserted in 30 s) was 8.1 ± 1.9 and 8.6 ± 1.8 for the left and right hand, respectively, significantly lower than the scores for the controls (15.0 ± 1.3 and 16.0 ± 1.1; P < 0.0001). Performance was not improved after kinesiology tape was applied over the joints of the hand. In 5 patients we inserted a tungsten microelectrode into the ulnar nerve at the wrist. No spontaneous or stretch-evoked muscle afferent activity could be identified in any of the 11 fascicles supplying intrinsic muscles of the hand, whereas touch-evoked activity from low-threshold cutaneous mechanoreceptor afferents could readily be recorded from 4 cutaneous fascicles. We conclude that functional muscle spindles are absent in the short muscles of the hand and most likely absent in the long finger flexors and extensors, and that this largely accounts for the poor manual motor performance in HSAN III. NEW & NOTEWORTHY We describe the impaired manual motor performance in patients with hereditary sensory and autonomic neuropathy type III (Riley-Day syndrome), who exhibit congenital insensitivity to pain, poor proprioception, and marked gait ataxia. We show that functional muscle spindles are absent in the intrinsic muscles of the hand, which we argue contributes to their poor performance in a task involving the precision grip.


Asunto(s)
Disautonomía Familiar/fisiopatología , Mano/fisiopatología , Husos Musculares/fisiopatología , Corteza Sensoriomotora/fisiopatología , Adulto , Fascia/fisiopatología , Femenino , Humanos , Masculino , Movimiento , Nervio Cubital/fisiopatología
16.
J Neurophysiol ; 120(5): 2484-2497, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133381

RESUMEN

Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying how this speed-dependent amplitude modulation is achieved remains obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors that signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno-associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed-dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, is the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed-dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases. NEW & NOTEWORTHY Animals upregulate the activity of extensor muscles to increase their walking speed, but the mechanism behind this is not known. We show that this speed-dependent amplitude modulation requires proprioceptive sensory feedback from muscle spindles of ankle extensor muscle. In the absence of muscle spindle feedback, animals cannot walk at higher speeds as they can when muscle spindle feedback is present.


Asunto(s)
Retroalimentación Sensorial , Husos Musculares/fisiología , Caminata/fisiología , Animales , Femenino , Masculino , Ratones , Contracción Muscular , Husos Musculares/inervación , Propiocepción
17.
J Neurophysiol ; 119(5): 1782-1794, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29384454

RESUMEN

In amyotrophic lateral sclerosis (ALS), loss of motoneuron function leads to weakness and, ultimately, respiratory failure and death. Regardless of the initial pathogenic factors, motoneuron loss follows a specific pattern: the largest α-motoneurons die before smaller α-motoneurons, and γ-motoneurons are spared. In this article, we examine how homeostatic responses to this orderly progression could lead to local microcircuit dysfunction that in turn propagates motoneuron dysfunction and death. We first review motoneuron diversity and the principle of α-γ coactivation and then discuss two specific spinal motoneuron microcircuits: those involving proprioceptive afferents and those involving Renshaw cells. Next, we propose that the overall homeostatic response of the nervous system is aimed at maintaining force output. Thus motoneuron degeneration would lead to an increase in inputs to motoneurons, and, because of the pattern of neuronal degeneration, would result in an imbalance in local microcircuit activity that would overwhelm initial homeostatic responses. We suggest that this activity would ultimately lead to excitotoxicity of motoneurons, which would hasten the progression of disease. Finally, we propose that should this be the case, new therapies targeted toward microcircuit dysfunction could slow the course of ALS.


Asunto(s)
Vías Aferentes/patología , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Progresión de la Enfermedad , Neuronas Motoras/patología , Husos Musculares/patología , Propiocepción/fisiología , Células de Renshaw/patología , Humanos
18.
Exp Brain Res ; 236(7): 1997-2008, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29730751

RESUMEN

The origin of the sense of effort has been debated for several decades and there is still no consensus among researchers regarding the underlying neural mechanisms. Some advocate that effort perception mainly arises from an efference copy originating within the brain while others believe that it is predominantly carried by muscle afferent signals. To move the debate forward, we here tested the hypothesis that there is not one but several senses of effort which depend on the way it is evaluated. For this purpose, we used two different psychophysical tests designed to test effort perception in elbow flexors. One was a bilateral isometric force-matching task in which subjects were asked to direct similar amounts of effort toward their two arms, while the other consisted of a unilateral voluntary isometric contraction in which subjects had to rate their perceived effort using a Borg scale. Throughout two distinct experiments, effort perception was evaluated before and following different tendon vibration protocols intended to differentially desensitize muscle spindles and Golgi tendon organs, and to affect the gain between the central effort and muscle contraction intensity. By putting all the results together, we found that spindle afferents played divergent roles across tasks. Namely, while they only acted as modulators of motor pathway excitability during the bilateral task, they clearly intervened as the predominant psychobiological signal of effort perception during the unilateral task. Therefore, the sensory origin of the sense of effort is not central or peripheral. Rather, it is context-dependent.


Asunto(s)
Contracción Muscular/fisiología , Husos Musculares/inervación , Músculo Esquelético/fisiología , Propiocepción/fisiología , Adulto , Articulación del Codo/inervación , Electromiografía , Femenino , Lateralidad Funcional , Humanos , Masculino , Vibración , Adulto Joven
19.
Exp Brain Res ; 236(4): 1193-1204, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29468386

RESUMEN

This study was designed to explore the effects of intrafusal thixotropy, a property affecting muscle spindle sensitivity, on the sense of force. For this purpose, psychophysical measurements of force perception were performed using an isometric force matching paradigm of elbow flexors consisting of matching different force magnitudes (5, 10 and 20% of subjects' maximal voluntary force). We investigated participants' capacity to match these forces after their indicator arm had undergone voluntary isometric conditioning contractions known to alter spindle thixotropy, i.e., contractions performed at long ('hold long') or short muscle lengths ('hold short'). In parallel, their reference arm was conditioned at the intermediate muscle length ('hold-test') at which the matchings were performed. The thixotropy hypothesis predicts that estimation errors should only be observed at low force levels (up to 10% of the maximal voluntary force) with overestimation of the forces produced following 'hold short' conditioning and underestimation following 'hold long' conditioning. We found the complete opposite, especially following 'hold-short' conditioning where subjects underestimated the force they generated with similar relative error magnitudes across force levels. In a second experiment, we tested the hypothesis that estimation errors depended on the degree of afferent-induced facilitation using the Kohnstamm phenomenon as a probe of motor pathway excitability. Because the stronger post-effects were observed following 'hold-short' conditioning, it appears that the conditioning-induced excitation of spindle afferents leads to force misjudgments by introducing a decoupling between the central effort and the cortical motor outputs.


Asunto(s)
Contracción Muscular/fisiología , Husos Musculares/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Propiocepción/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Electromiografía , Humanos , Contracción Isométrica/fisiología , Adulto Joven
20.
J Physiol ; 600(10): 2269-2270, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114007
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda