Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Mol Microbiol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994875

RESUMEN

Endolysins produced by bacteriophages hydrolyze host cell wall peptidoglycan to release newly assembled virions. D29 mycobacteriophage specifically infects mycobacteria including the pathogenic Mycobacterium tuberculosis. D29 encodes LysA endolysin, which hydrolyzes mycobacterial cell wall peptidoglycan. We previously showed that LysA harbors two catalytic domains (N-terminal domain [NTD] and lysozyme-like domain [LD]) and a C-terminal cell wall binding domain (CTD). While the importance of LD and CTD in mycobacteriophage biology has been examined in great detail, NTD has largely remained unexplored. Here, to address NTD's significance in D29 physiology, we generated NTD-deficient D29 (D29∆NTD) by deleting the NTD-coding region from D29 genome using CRISPY-BRED. We show that D29∆NTD is viable, but has a longer latent period, and a remarkably reduced burst size and plaque size. A large number of phages were found to be trapped in the host during the D29∆NTD-mediated cell lysis event. Such poor release of progeny phages during host cell lysis strongly suggests that NTD-deficient LysA produced by D29∆NTD, despite having catalytically-active LD, is unable to efficiently lyse host bacteria. We thus conclude that LysA NTD is essential for optimal release of progeny virions, thereby playing an extremely vital role in phage physiology and phage propagation in the environment.

2.
J Basic Microbiol ; 64(6): e2400027, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548701

RESUMEN

Bacteriophages infecting Mycobacterium smegmatis mc2155 are numerous and, hence, are classified into clusters based on nucleotide sequence similarity. Analyzing phages belonging to clusters/subclusters can help gain deeper insights into their biological features and potential therapeutic applications. In this study, for genomic characterization of B1 subcluster mycobacteriophages, a framework of online tools was developed, which enabled functional annotation of about 55% of the previously deemed hypothetical proteins in B1 phages. We also studied the phenotype, lysogeny status, and antimycobacterial activity of 10 B1 phages against biofilm and an antibiotic-resistant M. smegmatis strain (4XR1). All 10 phages belonged to the Siphoviridae family, appeared temperate based on their spontaneous release from the putative lysogens and showed antibiofilm activity. The highest inhibitory and disruptive effects on biofilm were 64% and 46%, respectively. This systematic characterization using a combination of genomic and experimental tools is a promising approach to furthering our understanding of viral dark matter.


Asunto(s)
Biopelículas , Genoma Viral , Genómica , Lisogenia , Micobacteriófagos , Mycobacterium smegmatis , Micobacteriófagos/genética , Micobacteriófagos/fisiología , Biopelículas/crecimiento & desarrollo , Genoma Viral/genética , Mycobacterium smegmatis/virología , Mycobacterium smegmatis/genética , Filogenia
3.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000573

RESUMEN

Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.


Asunto(s)
Proteínas de Unión al ADN , Micobacteriófagos , Mycobacterium smegmatis , Proteínas Virales , Micobacteriófagos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mycobacterium smegmatis/virología , Mycobacterium smegmatis/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Lisogenia/genética , Genoma Viral , ADN Viral/genética
4.
J Bacteriol ; 205(1): e0033722, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36598232

RESUMEN

The genus Mycobacterium contains several slow-growing human pathogens, including Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium avium. Mycobacterium smegmatis is a nonpathogenic and fast growing species within this genus. In 1990, a mutant of M. smegmatis, designated mc2155, that could be transformed with episomal plasmids was isolated, elevating M. smegmatis to model status as the ideal surrogate for mycobacterial research. Classical bacterial models, such as Escherichia coli, were inadequate for mycobacteria research because they have low genetic conservation, different physiology, and lack the novel envelope structure that distinguishes the Mycobacterium genus. By contrast, M. smegmatis encodes thousands of conserved mycobacterial gene orthologs and has the same cell architecture and physiology. Dissection and characterization of conserved genes, structures, and processes in genetically tractable M. smegmatis mc2155 have since provided previously unattainable insights on these same features in its slow-growing relatives. Notably, tuberculosis (TB) drugs, including the first-line drugs isoniazid and ethambutol, are active against M. smegmatis, but not against E. coli, allowing the identification of their physiological targets. Furthermore, Bedaquiline, the first new TB drug in 40 years, was discovered through an M. smegmatis screen. M. smegmatis has become a model bacterium, not only for M. tuberculosis, but for all other Mycobacterium species and related genera. With a repertoire of bioinformatic and physical resources, including the recently established Mycobacterial Systems Resource, M. smegmatis will continue to accelerate mycobacterial research and advance the field of microbiology.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium smegmatis/genética , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Isoniazida
5.
Clin Infect Dis ; 76(1): 103-112, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676823

RESUMEN

BACKGROUND: Nontuberculous Mycobacterium infections, particularly Mycobacterium abscessus, are increasingly common among patients with cystic fibrosis and chronic bronchiectatic lung diseases. Treatment is challenging due to intrinsic antibiotic resistance. Bacteriophage therapy represents a potentially novel approach. Relatively few active lytic phages are available and there is great variation in phage susceptibilities among M. abscessus isolates, requiring personalized phage identification. METHODS: Mycobacterium isolates from 200 culture-positive patients with symptomatic disease were screened for phage susceptibilities. One or more lytic phages were identified for 55 isolates. Phages were administered intravenously, by aerosolization, or both to 20 patients on a compassionate use basis and patients were monitored for adverse reactions, clinical and microbiologic responses, the emergence of phage resistance, and phage neutralization in serum, sputum, or bronchoalveolar lavage fluid. RESULTS: No adverse reactions attributed to therapy were seen in any patient regardless of the pathogen, phages administered, or the route of delivery. Favorable clinical or microbiological responses were observed in 11 patients. Neutralizing antibodies were identified in serum after initiation of phage delivery intravenously in 8 patients, potentially contributing to lack of treatment response in 4 cases, but were not consistently associated with unfavorable responses in others. Eleven patients were treated with only a single phage, and no phage resistance was observed in any of these. CONCLUSIONS: Phage treatment of Mycobacterium infections is challenging due to the limited repertoire of therapeutically useful phages, but favorable clinical outcomes in patients lacking any other treatment options support continued development of adjunctive phage therapy for some mycobacterial infections.


Asunto(s)
Bacteriófagos , Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium , Terapia de Fagos , Humanos , Ensayos de Uso Compasivo , Preparaciones Farmacéuticas , Infecciones por Mycobacterium no Tuberculosas/microbiología , Fibrosis Quística/microbiología , Antibacterianos/uso terapéutico
6.
Curr Issues Mol Biol ; 45(8): 6432-6448, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37623225

RESUMEN

In this study, we conducted the morphological observation, biological and genomic characterization, evolutionary analysis, comparative genomics description, and proteome identification of a recently isolated mycobacteriophage, WIVsmall. Morphologically, WIVsmall is classified as a member of the Siphoviridae family, characterized by a flexible tail, measuring approximately 212 nm in length. The double-stranded phage genome DNA of WIVsmall spans 53,359 base pairs, and exhibits a G + C content of 61.01%. The genome of WIVsmall comprises 103 protein-coding genes, while no tRNA genes were detected. The genome annotation unveiled the presence of functional gene clusters responsible for mycobacteriophage assembly and maturation, replication, cell lysis, and functional protein synthesis. Based on the analysis of the phylogenetic tree, the genome of WIVsmall was classified as belonging to subgroup F1. A comparative genomics analysis indicated that the WIVsmall genome exhibited the highest similarity to the phage SG4, with a percentage of 64%. The single-step growth curve analysis of WIVsmall revealed a latent period of 120 min, and an outbreak period of 200 min.

7.
Microbiology (Reading) ; 168(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36748635

RESUMEN

A unique feature found in the genomes of mycobacteriophages such as L5 belonging to the A cluster is the presence of multiple dispersed repeated elements known as stoperators. The phage repressor binds these repeat elements, shutting off transcription globally and thereby promoting lysogeny. Interestingly, the sequence of these stoperators closely matches that of the consensus -35 region of prokaryotic promoters, leading us to propose that they may have a role to play in the initiation of transcription by serving as RNA polymerase binding sites. Mycobacteriophage D29 is closely related to phage L5, and their genome organizations are very similar. As in L5, there are multiple stoperators in the genome of D29. The positions occupied by the stoperators in the two genomes are almost identical. The significant difference between the two phages is that D29 lacks the gene encoding the equivalent of the L5 repressor. Since phage D29 does not produce a repressor, we considered it to be a suitable model for testing our hypothesis that the stoperators function as promoters in the absence of the repressor. To prove our point, we targeted CRISPR guide RNAs against six stoperators. In the case of five out of the six, we found a significant reduction in downstream gene expression and phage growth. Based on this observation and primer extension assays, we conclude that promoting gene expression is likely to be the primary function of stoperators.


Asunto(s)
Micobacteriófagos , Micobacteriófagos/genética , Regiones Promotoras Genéticas , Lisogenia , Expresión Génica
8.
Microbiology (Reading) ; 168(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35353035

RESUMEN

Mycobacteriophage D29 infects species belonging to the genus Mycobacterium including the deadly pathogen Mycobacterium tuberculosis. D29 is a lytic phage, although, related to the lysogenic mycobacteriophage L5. This phage is unable to lysogenize in mycobacteria as it lacks the gene encoding the phage repressor. Infection by many mycobacteriophages cause various changes in the host that ultimately leads to inactivation of the latter. One of the host targets often modified in the process is RNA polymerase. During our investigations with phage D29 infected Mycobacterium smegmatis (Msm) we observed that the promoters from both phage, and to a lesser extent those of the host were found to be more active in cells that were exposed to D29, as compared to the unexposed. Further experiments indicate that the RNA polymerase purified from phage infected cells possessed higher affinity for promoters particularly those that were phage derived. Comparison of the purified RNA polymerase preparations from infected and uninfected cells showed that several ancillary transcription factors, Sigma factor F, Sigma factor H, CarD and RbpA are prominently associated with the RNA polymerase from infected cells. Based on our observations we conclude that the higher activity of RNA polymerase observed in D29 infected cells is due to its increased association with ancillary transcription factors.


Asunto(s)
Micobacteriófagos , Mycobacterium tuberculosis , ARN Polimerasas Dirigidas por ADN/genética , Lisogenia , Micobacteriófagos/genética , Mycobacterium smegmatis/genética
9.
J Biol Chem ; 294(19): 7615-7631, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30894414

RESUMEN

Mycobacteriophages express various peptides/proteins to infect Mycobacterium tuberculosis (M. tb). Particular attention has been paid to mycobacteriophage-derived endolysin proteins. We herein characterized a small mycobacteriophage-derived peptide designated AK15 with potent anti-M. tb activity. AK15 adopted cationic amphiphilic α-helical structure, and on the basis of this structure, we designed six isomers with increased hydrophobic moment by rearranging amino acid residues of the helix. We found that one of these isomers, AK15-6, exhibits enhanced anti-mycobacterial efficiency. Both AK15 and AK15-6 directly inhibited M. tb by trehalose 6,6'-dimycolate (TDM) binding and membrane disruption. They both exhibited bactericidal activity, cell selectivity, and synergistic effects with rifampicin, and neither induced drug resistance to M. tb They efficiently attenuated mycobacterial load in the lungs of M. tb-infected mice. We observed that lysine, arginine, tryptophan, and an α-helix are key structural requirements for their direct anti-mycobacterial action. Of note, they also exhibited immunomodulatory effects, including inhibition of proinflammatory response in TDM-stimulated or M. tb-infected murine bone marrow-derived macrophages (BMDMs) and M.tb-infected mice and induction of only a modest level of cytokine (tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6)) production in murine BMDMs and a T-cell cytokine (interferin-γ (IFN-γ) and TNF-α) response in murine lung and spleen. In summary, characterization of a small mycobacteriophage-derived peptide and its improved isomer revealed that both efficiently restrain M. tb infection via dual mycobactericidal-immunoregulatory activities. Our work provides clues for identifying small mycobacteriophage-derived anti-mycobacterial peptides and improving those that have cationic amphiphilic α-helices.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Micobacteriófagos/química , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/tratamiento farmacológico , Proteínas Virales/farmacología , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/agonistas , Péptidos Catiónicos Antimicrobianos/química , Sinergismo Farmacológico , Humanos , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/virología , Rifampin/agonistas , Rifampin/farmacología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Proteínas Virales/química
10.
BMC Microbiol ; 20(1): 148, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513117

RESUMEN

BACKGROUND: Whole genome sequencing promises to revolutionize our ability to link genotypic and phenotypic variation in a wide range of model and non-model species. RESULTS: Here we describe the isolation and characterization of a novel mycobacteriophage named BGlluviae that grows on Mycobacterium smegmatis mc2155. BGlluviae normally produces turbid plaques but a spontaneous clear plaque was also recovered. The genomic DNA from pure populations of the BGlluviae phage and the clear plaque mutant were sequenced. A single substitution, at amino acid 54 (I to T), in the immunity repressor protein resulted in a clear plaque phenotype. CONCLUSIONS: This substitution is predicted to be located at the subunit interaction interface of the repressor protein, and thus prevents the establishment of lysogeny.


Asunto(s)
Sustitución de Aminoácidos , Micobacteriófagos/genética , Mycobacterium smegmatis/virología , Secuenciación Completa del Genoma/métodos , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Lisogenia , Modelos Moleculares , Micobacteriófagos/clasificación , Micobacteriófagos/aislamiento & purificación , Fenotipo , Filogenia , Conformación Proteica , Proteínas Virales/química , Proteínas Virales/genética
11.
Virol J ; 17(1): 124, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807206

RESUMEN

BACKGROUND: Nontuberculous mycobacterial (NTM) infections are increasing in prevalence, with current estimates suggesting that over 100,000 people in the United States are affected each year. It is unclear how certain species of mycobacteria transition from environmental bacteria to clinical pathogens, or what genetic elements influence the differences in virulence among strains of the same species. A potential mechanism of genetic evolution and diversity within mycobacteria is the presence of integrated viruses called prophages in the host genome. Prophages may act as carriers of bacterial genes, with the potential of altering bacterial fitness through horizontal gene transfer. In this study, we quantify the frequency and composition of prophages within mycobacteria isolated from clinical samples and compare them against the composition of PhagesDB, an environmental mycobacteriophage database. METHODS: Prophages were predicted by agreement between two discovery tools, VirSorter and Phaster, and the frequencies of integrated prophages were compared by growth rate. Prophages were assigned to PhagesDB lettered clusters. Bacterial virulence gene frequency was calculated using a combination of the Virulence Factor Database (VFDB) and the Pathosystems Resource Integration Center virulence database (Patric-VF) within the gene annotation software Prokka. CRISPR elements were discovered using CRT. ARAGORN was used to quantify tRNAs. RESULTS: Rapidly growing mycobacteria (RGM) were more likely to contain prophage than slowly growing mycobacteria (SGM). CRISPR elements were not associated with prophage abundance in mycobacteria. The abundance of tRNAs was enriched in SGM compared to RGM. We compared the abundance of bacterial virulence genes within prophage genomes from clinical isolates to mycobacteriophages from PhagesDB. Our data suggests that prophages from clinical mycobacteria are enriched for bacterial virulence genes relative to environmental mycobacteriophage from PhagesDB. CONCLUSION: Prophages are present in clinical NTM isolates. Prophages are more likely to be present in RGM compared to SGM genomes. The mechanism and selective advantage of this enrichment by growth rate remain unclear. In addition, the frequency of bacterial virulence genes in prophages from clinical NTM is enriched relative to the PhagesDB environmental proxy. This suggests prophages may act as a reservoir of genetic elements bacteria could use to thrive within a clinical environment.


Asunto(s)
Genoma Bacteriano , Lisogenia , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/virología , Profagos/genética , Humanos , Micobacterias no Tuberculosas/genética , Micobacterias no Tuberculosas/crecimiento & desarrollo , Micobacterias no Tuberculosas/patogenicidad , Virulencia
12.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365915

RESUMEN

Mycobacteriophages possess different sets of lytic enzymes for disruption of the complex cell envelope of the mycobacteria host cells and release of the viral progeny. Lysin B (LysB) enzymes are mycolylarabinogalactan esterases that cleave the ester bond between the arabinogalactan and mycolic acids in the mycolylarabinogalactan-peptidoglycan (mAGP) complex in the cell envelope of mycobacteria. In the present study, four LysB enzymes were produced recombinantly and characterized with respect to their enzymatic and antibacterial activities. Examination of the kinetic parameters for the hydrolysis of para-nitrophenyl ester substrates, shows LysB-His6 enzymes to be active against a range of substrates (C4-C16), with a catalytic preference towards p-nitrophenyl laurate (C12). With p-nitrophenyl butyrate as substrate, LysB-His6 enzymes showed highest activity at 37 °C. LysB-His6 enzymes also hydrolyzed different Tween substrates with highest activity against Tween 20 and 80. Metal ions like Ca2+ and Mn2+ enhanced the enzymatic activity of LysB-His6 enzymes, while transition metal ions like Zn2+ and Cu2+ inhibited the enzymatic activity. The mycolylarabinogalactan esterase activity of LysB-His6 enzymes against mAGP complex was confirmed by LC-MS. LysB-His6 enzymes showed marginal antibacterial activity when tested alone against Mycobacterium smegmatis, however a synergetic activity was noticed when combined with outer membrane permealizers. These results confirm that LysB enzymes are lipolytic enzymes with potential application as antimycobacterials.


Asunto(s)
Esterasas/metabolismo , Micobacteriófagos/enzimología , Proteínas Virales/metabolismo , Cobre/metabolismo , Esterasas/química , Galactanos/metabolismo , Manganeso/metabolismo , Peptidoglicano/metabolismo , Proteínas Virales/química , Zinc/metabolismo
13.
World J Microbiol Biotechnol ; 36(6): 83, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32468233

RESUMEN

Bacteriophage-derived endolysin enzymes play a critical role in disintegration of the host bacterial cell wall and hence have gained considerable attention as possible therapeutics for the treatment of drug-resistant infections. Endolysins can target both dividing and non-dividing cells and given the vital role peptidoglycan plays in bacterial survival, bacteria are less likely to modify it even if continuously exposed to lysins. Hence, probability of bacteria developing resistance to lysins appear bleak. Endolysins from mycobacteriophages offer great potential as alternative therapeutics for the drug-resistant TB. However, considering that a large number of mycobacteriophages have been discovered so far, the information on endolysins come from only a few mycobacteriophages. In this study, we report the structural and functional characterization of endolysins (LysinA and LysinB) encoded by mycobacteriophage PDRPxv which belongs to B1 sub cluster. On in silico analysis, we found LysinA to be a modular protein having peptidase domain at the N-terminal (104 aa), a central amidase domain (174 aa) and the peptidoglycan binding domain (62 aa) at the C-terminal. Additionally, 'H-X-H', which is a conserved motif and characteristic of peptidase domains, and the conserved residues His-His-Asp, which are characteristic of amidase domain were also observed. In LysinB enzyme, a single α/ß hydrolase domain having a catalytic triad (Ser-Asp-His) and G-X-S-X-G motif, which are characteristic of the serine esterase enzymes were predicted to be present. Both the enzymes were purified as recombinant proteins and their antimycobacterial activity against M. smegmatis was demonstrated through turbidimetric experiments and biochemical assay. Interesting observation in this study is the secretory nature of LysinA evident by its periplasmic expression in E.coli, which might explain the ability of PDRPxv to lyse the bacterial host in the absence of transmembrane Holin protein.


Asunto(s)
Endopeptidasas , Micobacteriófagos/enzimología , Antibacterianos/biosíntesis , Simulación por Computador , Endopeptidasas/biosíntesis , Endopeptidasas/química , Endopeptidasas/aislamiento & purificación , Endopeptidasas/farmacología , Escherichia coli/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Virales/biosíntesis , Proteínas Virales/química , Proteínas Virales/aislamiento & purificación , Proteínas Virales/farmacología
14.
Bull Exp Biol Med ; 169(3): 361-364, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32743783

RESUMEN

The use of lytic mycobacteriophages to treat tuberculosis under conditions of acquired resistance to anti-tuberculosis drugs is one of the most practical ways to improve the effectiveness of therapy and reduce the spread of this disease. We studied the efficacy of antimycobacterial action of mycobacteriophage D29 encapsulated into 400-nm liposomes in cell models of tuberculosis infection in vitro. The antimycobacterial action of lytic mycobacteriophage D29 used in free or liposome-encapsulated forms was demonstrated on cell models of intracellularly infected RAW264.7 macrophages and tuberculous granuloma formed by human blood mononuclear cells. The experiments demonstrated pronounced advantage of liposomal form of mycobacteriophage according to the criteria of their penetration into macrophages and lysis of Mycobacterium tuberculosis in culture.


Asunto(s)
Liposomas/química , Micobacteriófagos/efectos de los fármacos , Animales , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Ratones , Micobacteriófagos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Células RAW 264.7
15.
Microbiology (Reading) ; 165(7): 722-736, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31091188

RESUMEN

Mycobacteriophages that are specific to mycobacteria are sources of various effector proteins that are capable of eliciting bactericidal responses. We describe a genomics approach in combination with bioinformatics to identify mycobacteriophage proteins that are toxic to mycobacteria upon expression. A genomic library comprising phage genome collections was screened for clones capable of killing Mycobacterium smegmatis strain mc2155. We identified four unique clones: clones 45 and 12N (from the mycobacteriophage D29) and clones 66 and 85 (from the mycobacteriophage Che12). The gene products from clones 66 and 45 were identified as Gp49 of the Che12 phage and Gp34 of the D29 phage, respectively. The gene products of the other two clones, 85 and 12N, utilized novel open reading frames (ORFs) coding for synthetic proteins. These four clones (clones 45, 66, 85 and 12N) caused growth defects in M. smegmatis and Mycobacterium bovis upon expression. Clones with Gp49 and Gp34 also induced growth defects in Escherichia coli, indicating that they target conserved host machineries. Their expression induced various morphological changes, indicating that they affected DNA replication and cell division steps. We predicted that Gp34 is a Xis protein that is required in phage DNA excision from the bacterial chromosome. Gp49 is predicted to have an HTH motif with DNA-bending/twisting properties. We suggest that this methodology is useful to identify new phage proteins with the desired properties without laboriously characterizing the individual phages. It is universal and could be applied to other bacteria-phage systems. We speculate that the existence of a virtually unlimited number of phages with unique gene products could offer a cheaper and less hazardous alternative to explore new antimicrobial molecules.


Asunto(s)
Micobacteriófagos/genética , Mycobacterium bovis/virología , Mycobacterium smegmatis/virología , Proteínas Virales/genética , Genoma Viral , Genómica , Micobacteriófagos/clasificación , Micobacteriófagos/aislamiento & purificación , Micobacteriófagos/fisiología , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium smegmatis/crecimiento & desarrollo , Sistemas de Lectura Abierta , Filogenia , Proteínas Virales/química , Proteínas Virales/metabolismo
16.
Microbiology (Reading) ; 164(9): 1168-1179, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30024363

RESUMEN

Mycobacteriophage D29 is a lytic phage that infects various species of Mycobacterium including M. tuberculosis. Its genome has 77 genes distributed almost evenly between two converging operons designated as left and right. Transcription of the phage genome is negatively regulated by multiple copies of an operator-like element known as stoperator that acts by binding the phage repressor Gp71. The function of the D29 genes and their expression status are poorly understood and therefore we undertook a transcriptome analysis approach to address these issues. The results indicate that the average transcript intensity of the right arm genes was higher than of those on the left, at the early stage of infection. Moreover, the fold increase from early to the late stage was found to be less for the right arm genes than for the left. Both observations support the prediction that the right arm genes are expressed early whereas the left arm ones are expressed late. The analysis further revealed a break in the continuity of the right arm operon between 89, the first gene in it, and 88, the next. Gene 88 was found to be expressed from a newly identified promoter located between 88 and 89. Another new promoter was found upstream of 89. Thus, the promoter Pleft, identified earlier, is not the only one that drives expression of the right arm genes. All these promoters overlap with stoperators, with which they share a conserved sequence motif, TTGACA, commonly known as the -35 promoter element. We demonstrate mutually exclusive binding of RNA polymerase and Gp71 to the stoperator-promoters and conclude that stoperators can function as -35 promoter elements and that they can control gene expression not only negatively as was believed earlier but in many cases positively as well.


Asunto(s)
Perfilación de la Expresión Génica , Micobacteriófagos/genética , Mycobacterium tuberculosis/virología , Operón , Regiones Promotoras Genéticas , Genes Virales , Proteínas Virales/biosíntesis , Proteínas Virales/genética
17.
Can J Microbiol ; 64(7): 483-491, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29544082

RESUMEN

Bacteriophages are being considered as a promising natural resource for the development of alternative strategies against mycobacterial diseases, especially in the context of the wide-spread occurrence of drug resistance among the clinical isolates of Mycobacterium tuberculosis. However, there is not much information documented on mycobacteriophages from India. Here, we report the isolation of 17 mycobacteriophages using Mycobacterium smegmatis as the bacterial host, where 9 phages also lyse M. tuberculosis H37Rv. We present detailed analysis of one of these mycobacteriophages - PDRPv. Transmission electron microscopy and polymerase chain reaction analysis (of a conserved region within the TMP gene) show PDRPv to belong to the Siphoviridae family and B1 subcluster, respectively. The genome (69 110 bp) of PDRPv is circularly permuted double-stranded DNA with ∼66% GC content and has 106 open reading frames (ORFs). On the basis of sequence similarity and conserved domains, we have assigned function to 28 ORFs and have broadly categorized them into 6 groups that are related to replication and genome maintenance, DNA packaging, virion release, structural proteins, lysogeny-related genes and endolysins. The present study reports the occurrence of novel antimycobacterial phages in India and highlights their potential to contribute to our understanding of these phages and their gene products as potential antimicrobial agents.


Asunto(s)
Bacteriólisis/fisiología , Micobacteriófagos/aislamiento & purificación , Micobacteriófagos/metabolismo , Mycobacterium tuberculosis/virología , Composición de Base , ADN Viral/genética , Genes Virales/genética , Genoma Viral , India , Micobacteriófagos/clasificación , Micobacteriófagos/genética , Mycobacterium smegmatis/virología , Sistemas de Lectura Abierta , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/aislamiento & purificación
18.
Biopolymers ; 108(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27287926

RESUMEN

Holins are pore-forming membrane proteins synthesized by lytic phages. The second transmembrane domain (TM2) of Mycobacteriophage D29 holin presents an Ala- and Gly-rich sequence, with a currently unknown structure and function. In this study, we present the spectroscopic characterization of synthetic TM2 in various solvents, detergents, and lipids. We find that TM2 adopts α-helical conformation under conditions that promote intra-strand hydrogen bonding, such as organic solvents and detergent micelles. When we transfer the peptide to a well-hydrated environment, a polyproline II-like structure is obtained. Surprisingly, we find that the polyproline II-like conformation is retained in lipid vesicles. Based on our results, we present a putative role for TM2 in the process of pore formation by holin. © 2016 The Authors. Peptide Science Published by Wiley Periodicals, Inc. Biopolymers (Pept Sci) 108: 1-10, 2017.


Asunto(s)
Micobacteriófagos/metabolismo , Solventes/química , Proteínas Virales/química , Secuencia de Aminoácidos , Dicroismo Circular , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Micelas , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/química , Replegamiento Proteico , Estructura Secundaria de Proteína , Proteínas Virales/metabolismo , Agua/química
19.
Klin Lab Diagn ; 62(12): 757-763, 2017.
Artículo en Ruso | MEDLINE | ID: mdl-30856310

RESUMEN

In conditions of prevalence of medicine-resistant strains of mycobacteria of tuberculosis necessity in accelerated, including phenotype techniques of detection of sensitivity of mycobacteria to anti-microbial chemotherapeutic medications in clinical samples is an actual issue. The results of application of accelerated phenotype techniques of detection of sensitivity of clinical strains of mycobacteria of tuberculosis to anti-microbial chemotherapeutic medications on the basis application of lytic mycobacteriophage D29 are presented. The principle of technique is in evaluation of reproduction of mycobacteriophage in cells of mycobacteria of tuberculosis in presence of sensitive to them anti-bacterial medications. The reproduction of mycobacteriophage is evaluated by quantitative analysis of phage DNA in polymerase chain reaction in real-time. The study used 102 clinical strains of mycobacteria of tuberculosis obtained after primary cultivation or re-cultivation in tubes of MGIT system (Bactec). After positive results of growth of mycobacteria of tuberculosis were obtained, the samples were incubated during 48 hours in CO2 incubator in the presence of critical concentrations of 10 widely applied in case of treatment tuberculosis medicinal substances in liquid nutrient medium Middlebrook 7H9 enriched with components OADC, in format of 24 well cultural plate with volume of nutrient medium 1 ml per well. Whereupon, in plate wells deposited 2x103 plaque-forming units of mycobacteriophage D29. After 24 hours a qualitative detection of phage DNA was implemented with polymerase chain reaction in real-time using reagents phage D29 ("Syntol", Russia). The increasing of threshold level of fluorescence of Ct more than to 2 cycles in samples with antibiotic as compared with control testifies sensitivity of the analyzed strain of mycobacteria of tuberculosis to antibiotic. The level of coincidence made up to 91% in comparative study with inoculation in Lowenstein-Jensen nutrient medium. The level of coincidence made up to 96% in comparative study with Bactec test-system of limited number of strains with establishment of sensitivity for 10 medications. The data was confirmed concerning inverse relationship of value ∆Ct and minimal inhibiting concentration of medication. The supposed high efficiency of possible reagents' set on the basis of presented technique on cost/quality criterion.

20.
Appl Microbiol Biotechnol ; 100(18): 8169-77, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27345061

RESUMEN

The soaring incidences of infection by antimicrobial resistant (AR) pathogens and shortage of effective antibiotics with new mechanisms of action have renewed interest in phage therapy. This scenario is exemplified by resistant tuberculosis (TB), caused by resistant Mycobacterium tuberculosis. Mycobacteriophage SWU1 A321_gp67 encodes a putative GTPase-activating protein. Mycobacterium smegmatis with gp67 overexpression showed changed colony formation and biofilm morphology and supports the efficacy of streptomycin and capreomycin against Mycobacterium. gp67 down-regulated the transcription of genes involved in cell wall and biofilm development. To our knowledge, this is the first report to show that phage protein in addition to lysin or recombination components can synergize with existing antibiotics. Phage components might represent a promising new clue for better antibiotic potentiators.


Asunto(s)
Antituberculosos/farmacología , Capreomicina/farmacología , Activadores de GTP Fosfohidrolasa/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Micobacteriófagos/enzimología , Mycobacterium smegmatis/efectos de los fármacos , Estreptomicina/farmacología , Proteínas Activadoras de GTPasa/genética , Micobacteriófagos/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda