Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
BMC Genomics ; 25(1): 867, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285374

RESUMEN

BACKGROUND: Myelocytomatosis (MYC) transcription factors are crucial mediators of the response of plants to environmental stresses through via binding to DNA regulatory regions. However, few systematic characterizations of MYC genes are available in Cucurbitaceae species. RESULTS: In this study, we identified 10, 8, 12, and 10 MYC genes in Cucumis sativus, Cucumis melo, Citrullus lanatus, and Benincasa hispida, respectively. Characterization revealed that all of the MYC proteins contain a highly conserved H4-V5-E6-E8-R9-R11-R12 sequence, which is essential for the binding of DNA regulatory regions. Evolutionary analysis enabled us to categorize 40 predicted MYC proteins from seven species into five distinct groups and revealed that the expansion of the MYC genes occurred before the divergence of monocots and dicots. The upstream promoter regions of the MYC genes contain a variety of developmental, stress, and hormone-responsive regulatory elements. The expression of cucumber MYC genes varies significantly across organs, with particularly high expression of CsaV3_3G001710 observed across all organs. Transcriptomic analysis revealed that certain cucumber MYC genes undergo specific upregulation or downregulation in response to both biotic and abiotic stressors. In particular, under temperature stress, the cucumber genes CsaV3_3G007980 and CsaV3_3G001710 were significantly upregulated. Interestingly, the homologs of these two genes in C. lanatus presented a similar expression pattern to that in C. sativus, whereas in B. hispida, they presented the opposite pattern, i.e., significant downregulation. These findings indicated that these two genes indeed respond to temperature stress but with different expression patterns, highlighting the divergent functions of homologous genes across different species. CONCLUSIONS: This study analyzed the size and composition of the MYC gene family in four Cucurbitaceae species and investigated stress-responsive expression profiles, especially under temperature stress. All the results showed that MYC genes play important roles in development and stress responses, laying a theoretical foundation for further investigations of these response mechanisms.


Asunto(s)
Cucurbitaceae , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Cucurbitaceae/genética , Evolución Molecular , Perfilación de la Expresión Génica , Genes myc , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Temperatura
2.
Virol J ; 21(1): 83, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600532

RESUMEN

BACKGROUND: Avian leukosis virus Subgroup-J (ALV-J) is a rapidly oncogenic evolving retrovirus infecting a variety of avian species; causing severe economic losses to the local poultry industry. METHODS: To investigate ALV-J, a total of 117 blood samples and 57 tissue specimens of different organs were collected for virological, and pathological identification, serological examinations, molecular characterization, and sequencing analysis. To the best of our knowledge, this is the first detailed report recorded in broiler flocks in Egypt. The present study targets the prevalence of a viral tumor disease circulating in broiler flocks in the El-Sharqia, El-Dakahliya, and Al-Qalyubiyya Egyptian governorates from 2021 to 2023 using different diagnostic techniques besides ALV-J gp85 genetic diversity determination. RESULT: We first isolated ALV-J on chicken embryo rough cell culture; showing aggregation, rounding, and degeneration. Concerning egg inoculation, embryonic death, stunting, and curling were observed. Only 79 serum samples were positive for ALV-J (67.52%) based on the ELISA test. Histopathological investigation showed tumors consist of uniform masses, usually well-differentiated myelocytes, lymphoid cells, or both in the liver, spleen, and kidneys. Immunohistochemical examination showed that the myelocytomatosis-positive signals were in the spleen, liver, and kidney. The PCR assay of ALV-J gp85 confirmed 545 base pairs with only 43 positive samples (75.4%). Two positive samples were sequenced and submitted to the Genbank with accession numbers (OR509852-OR509853). Phylogenetic analysis based on the gp85 gene showed that the ALV-J Dakahlia-2 isolate is genetically related to ALV-EGY/YA 2021.3, ALV-EGY/YA 2021.4, ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9 with amino acid identity percentage 96%, 97%; 96%, 96%; respectively. Furthermore, ALV-J Sharqia-1 isolate is highly genetically correlated to ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9, ALV-J isolate QL1, ALV-J isolate QL4, ALV-J isolate QL3, ALV-EGY/YA 2021.4 with amino acid identity percentage 97%, 97%; 98%, 97%, 97%, 95%; respectively. CONCLUSIONS: This study confirmed that ALV-J infection had still been prevalent in broilers in Egypt, and the genetic characteristics of the isolates are diverse.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Enfermedades de las Aves de Corral , Embrión de Pollo , Animales , Pollos , Leucosis Aviar/patología , Virus de la Leucosis Aviar/genética , Egipto/epidemiología , Filogenia , Evolución Molecular , Aminoácidos/genética
3.
BMC Cancer ; 23(1): 599, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380971

RESUMEN

BACKGROUND: Dihydropyrimidinase-like 3 (DPYSL3) is a cytosolic phosphoprotein expressed in the nervous system and is crucial for neurogenesis. A previous study showed that increased DPYSL3 expression promotes tumour aggressiveness in pancreatic ductal adenocarcinoma, gastric cancer, and colon cancer. However, the role of DPYSL3 in affecting the biological behaviour of urothelial carcinoma (UC) is not yet understood. METHODS: A UC transcriptomic dataset from the Gene Expression Omnibus and the Urothelial Bladder Cancer (BLCA) dataset from The Cancer Genome Atlas were used for the in silico study. We collected 340 upper urinary tract urothelial carcinoma (UTUC) and 295 urinary bladder urothelial carcinoma (UBUC) samples for the immunohistochemical study. Fresh tumour tissue from 50 patients was used to examine the DPYSL3 mRNA level. In addition, urothelial cell lines with and without DPYSL3 knockdown were used for the functional study. RESULTS: The in silico study revealed that DPYSL3 correlated with advanced tumour stage and metastasis development while functioning primarily in the nucleobase-containing compound metabolic process (GO:0006139). DPYSL3 mRNA expression is significantly upregulated in advanced UC. Furthermore, overexpression of the DPYSL3 protein is significantly associated with the aggressive behaviour of UTUC and UBUC. DPYSL3 expression independently predicts disease-specific survival (DSS) and metastatic-free survival (MFS) in patients with UC. In non-muscle-invasive UBUC, DPYSL3 expression predicts local recurrence-free survival. UC cell lines with DPYSL3 knockdown exhibited decreased proliferation, migration, invasion, and human umbilical vein endothelial cells (HUVECs) tube formation but increased apoptosis and G1 arrest. Gene ontology enrichment analysis revealed that the enriched processes related to DPYSL3 overexpression in UC were tissue morphogenesis, cell mesenchyme migration, smooth muscle regulation, metabolic processes, and RNA processing. In vivo study revealed DPYSL3 knockdown in UC tumours significantly suppressed the growth of tumours and decreased MYC and GLUT1 protein expression. CONCLUSIONS: DPYSL3 promotes the aggressiveness of UC cells by changing their biological behaviours and is likely associated with cytoskeletal and metabolic process modifications. Furthermore, DPYSL3 protein overexpression in UC was associated with aggressive clinicopathological characteristics and independently predicted poor clinical outcomes. Therefore, DPYSL3 can be used as a novel therapeutic target for UC.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias Pancreáticas , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Regulación hacia Arriba , Células Endoteliales , Pronóstico , Proteínas Musculares/genética
4.
Mol Med ; 26(1): 114, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33228517

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) are biomarkers participating in multiple disease development including acute myeloid leukemia (AML). Here, we investigated molecular mechanism of X Inactive-Specific Transcript (XIST) in regulating cellular viability, apoptosis and drug resistance in AML. METHODS: XIST, miR-29a and myelocytomatosis oncogene (MYC) expression in AML bone marrow cells collected from 62 patients was evaluated by RT-qPCR and Western blot analysis. Besides, the relationship among XIST, miR-29a and MYC was analyzed by dual luciferase reporter assay, RIP, and RNA pull down assays. AML KG-1 cells were treated with anti-tumor drug Adriamycin. The role of XIST/miR-29a/MYC in cellular viability, apoptosis and drug resistance in AML was accessed via gain- and loss-of-function approaches. At last, we evaluated role of XIST/miR-29a/MYC on tumorigenesis in vivo. RESULTS: XIST and MYC were up-regulated, and miR-29a was down-regulated in AML bone marrow cells. Silencing XIST inhibited cellular activity and drug resistance but promoted cellular apoptosis of KG-1 cells by down-regulating MYC. XIST inhibited miR-29a expression to up-regulate MYC. Moreover, silencing XIST inhibited tumorigenesis of AML cells in vivo. CONCLUSIONS: Overall, down-regulation of XIST decreased MYC expression through releasing the inhibition on miR-29a, thereby reducing drug resistance, inhibiting viability and promoting apoptosis of AML cells.


Asunto(s)
Resistencia a Antineoplásicos/genética , Regulación Leucémica de la Expresión Génica , Silenciador del Gen , Genes myc , Leucemia Mieloide Aguda/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Adolescente , Adulto , Animales , Apoptosis/genética , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
5.
Fish Shellfish Immunol ; 97: 27-33, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31843700

RESUMEN

Myelocytomatosis viral oncogene (MYC), a multifunctional transcription factor, (TF) exerts various physiological and pathological effects on animals. AjMYC could induce coelomocyte apoptosis in Apostichopus japonicus, but the underlying molecular mechanism remains poorly understood. In this study, the promoter sequence of apoptosis regulator Bcl-2-associated X (Bax) was cloned by genomic walking. The AjBax promoter region spaning 1189 bp, containing several transcription factor binding sites, included four potential E-boxes (-1030 bp to -1019 bp, -785 bp to -774 bp, -570 bp to -559 bp, -100 bp to -89 bp), two P53 binding sites (-439 bp to -430 bp, -845 bp to -836 bp), and one NF-κB site (-191 bp to -182 bp). Transient transfection of EPC cells with 5'-deletion constructs linked to luciferase reporter revealed that the region -1189/+454 contributed importantly to the expression of the AjBax. In addition, the AjBax promoter was induced by LPS, PGN or MAN. The four potential MYC binding sites were cotransfected with AjMYC in EPC cell whether AjMYC could activate AjBax expression as a transcriptional factor. Only P1 (-1189/+454) fragment containing the first MYC binding site transfection increased the luciferase activity by 2.08-fold (p < 0.01) compared with the control. The first MYC binding site -1030/-1019 was essential to induce AjBax transcription. Further functional assay indicated that AjBax was significantly induced by 3.54-fold increase (p < 0.01) after AjMYC overexpression in sea cucumber coelomocytes. All our findings supported that AjMYC could regulate coelomocyte apoptosis by directly targeting AjBax expression in A. japonicus.


Asunto(s)
Apoptosis/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Stichopus/genética , Proteína X Asociada a bcl-2/genética , Animales , Sitios de Unión , Clonación Molecular , Regulación de la Expresión Génica , Inmunidad Innata , ARN Interferente Pequeño , Transducción de Señal
6.
J Stroke Cerebrovasc Dis ; 27(10): 2829-2839, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30093210

RESUMEN

BACKGROUND: Despite the intense efforts devoted to preventing and treating cerebral ischemia, some individuals will continue to have completed infarctions. Failure of prevention or intervention does not, however, preclude therapeutic approaches to enhance recovery. Our study aims to explore the effect of multimodal rehabilitation program on the motor function recovery of rats with ischemic stroke. METHODS: Rat models of ischemic stroke were established using clean-grade adult male Sprague-Dawley rats. Motor function of rats was scored by the Bederson neurological function, balance beam test, and screen test. Nissl staining was conducted for morphological and structural changes of nerve cells in the arteriae cerebri anterior zone. Immunohistochemistry was applied to detect the expressions of growth-associated protein (GAP-43), synaptophysin (SYN) and Caspase-3, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was carried out in the corpus striatum 21 days after operation; reverse transcription quantitative polymerase chain reaction and Western blot analysis were conducted for testing messager RNA (mRNA) and protein expressions of heat shock protein 70 (Hsp70) and MYC proto-oncogene (c-Myc). RESULTS: Rats receiving multimodal rehabilitation program had lower Bederson neurological function, balance beam, and screen test scores on the 7th, 14th and 21st days after operation; more number of neurons surviving in the arteriae cerebri anterior zone at each time point after operation, higher GAP-43 expression on the 7th and 14th days after operation, and higher SYN expression on the 14th and 21st days after operation, on the 7th, 14th and 21st days after operation, higher mRNA and protein expressions of HSP70 and C-MYC, lower Caspase-3 positive expression and TUNEL positive stained cells. CONCLUSIONS: Multimodal rehabilitation program could promote motor function recovery of rats after ischemic stroke by upregulating GAP-43 and SYN expressions at arteriae cerebri anterior zone and upregulating HSP70 and C-MYC expressions in the brain tissues.


Asunto(s)
Isquemia Encefálica/rehabilitación , Cuerpo Estriado/metabolismo , Proteína GAP-43/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Actividad Motora , Proteínas Proto-Oncogénicas c-myc/metabolismo , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/terapia , Sinaptofisina/metabolismo , Animales , Apoptosis , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Terapia Combinada , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Proteína GAP-43/genética , Proteínas HSP70 de Choque Térmico/genética , Masculino , Neuronas/metabolismo , Neuronas/patología , Proteínas Proto-Oncogénicas c-myc/genética , Ratas Sprague-Dawley , Recuperación de la Función , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Sinaptofisina/genética , Factores de Tiempo , Regulación hacia Arriba
7.
Cancer ; 122(1): 20-33, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26539795

RESUMEN

Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma.


Asunto(s)
Neuroblastoma/genética , Animales , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/tendencias , Genómica/métodos , Genómica/tendencias , Humanos
8.
Dig Dis Sci ; 60(11): 3304-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26108419

RESUMEN

BACKGROUND: SATB1 plays an important role in human malignant progression, inducing cancer cell proliferation and metastasis by regulating downstream gene expressions. However, little is known about the underlying mechanisms in which SATB1 promotes pancreatic cancer tumorigenesis. AIMS: To investigate SATB1 expression levels and its biological functions in promoting pancreatic cancer growth and invasion. METHODS: SATB1 expression levels were detected in seven human pancreatic cancer cell lines and 16 pairs of normal pancreatic/pancreatic cancer tissues using RT-PCR and western blot. SW1990 or Capan-1 cells stably knockdown (shRNA) or transiently knockdown (siRNA) SATB1 cells, and PANC-1 stably overexpressing SATB1 cells were investigated with MTT, EdU assay, flow cytometry, and transwell invasion assay for cell proliferation and invasion activity. The binding of SATB1 to MYC promoter region was examined using reporter assay. Expression of SATB1 in 68 pancreatic cancer samples was studied by immunohistochemical staining and scoring. RESULTS: SATB1 was overexpressed in pancreatic cancer tissues samples, showing strong correlation with pancreatic cancer invasion depth and tumor staging. SATB1 induced MYC mRNA and protein expression; promoted pancreatic cancer cell growth; increased cell population in S phase; and enhanced pancreatic cancer cell invasion in vitro. On the other hand, SATB1 knockdown showed opposite effects. Furthermore, MYC blocking in SATB1-overexpressing cells attenuated the promotion of pancreatic cancer cell growth and invasion. Our data also indicated that SATB1 bound to specific promoter region of MYC. CONCLUSIONS: SATB1 is overexpressed in pancreatic cancer, promoting cancer cell proliferation and invasion through the activation of MYC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sitios de Unión , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Invasividad Neoplásica , Estadificación de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
9.
Asian-Australas J Anim Sci ; 28(11): 1545-50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26580277

RESUMEN

c-MYC (v-myelocytomatosis viral oncogene homologue) is a transcription factor that plays important role in many biological process including cell growth and differentiation, such as myogenesis and adipogenesis. In this study, we aimed to detect MYC gene polymorphisms, their genotype frequencies and to determine associations between these polymorphisms and meat quality traits in Berkshire pigs. We identified a single nucleotide polymorphism (SNP) in intron 2 of MYC gene by Sanger sequencing, i.e., g.3350G>C (rs321898326), that is only found in Berkshire pigs, but not in other breeds including Duroc, Landrace, and Yorkshire pigs that were used in this study. Genotypes of total 378 Berkshire pigs (138 sows and 240 boars) were determined using Hha I restriction enzyme digestion after polymerase chain reaction. Observed allele frequencies of GG, GC, and CC genotypes were 0.399, 0.508, and 0.093 respectively. Statistical analysis indicated that the g.3350G>C polymorphism was significantly associated with pH45min and cooking loss (p<0.05), suggesting that g.3350G>C SNP can be used for pre-selection of pH45min and cooking loss traits in Berkshire pigs.

10.
Semin Cancer Biol ; 23(4): 262-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23796463

RESUMEN

There is a widening recognition that cancer cells are products of complex developmental processes. Carcinogenesis and metastasis formation are increasingly described as systems-level, network phenomena. Here we propose that malignant transformation is a two-phase process, where an initial increase of system plasticity is followed by a decrease of plasticity at late stages of carcinogenesis as a model of cellular learning. We describe the hallmarks of increased system plasticity of early, tumor initiating cells, such as increased noise, entropy, conformational and phenotypic plasticity, physical deformability, cell heterogeneity and network rearrangements. Finally, we argue that the large structural changes of molecular networks during cancer development necessitate a rather different targeting strategy in early and late phase of carcinogenesis. Plastic networks of early phase cancer development need a central hit, while rigid networks of late stage primary tumors or established metastases should be attacked by the network influence strategy, such as by edgetic, multi-target, or allo-network drugs. Cancer stem cells need special diagnosis and targeting, since their dormant and rapidly proliferating forms may have more rigid, or more plastic networks, respectively. The extremely high ability of cancer stem cells to change the rigidity/plasticity of their networks may be their key hallmark. The application of early stage-optimized anti-cancer drugs to late-stage patients may be a reason of many failures in anti-cancer therapies. Our hypotheses presented here underlie the need for patient-specific multi-target therapies applying the correct ratio of central hits and network influences - in an optimized sequence.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Antineoplásicos/uso terapéutico , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología
11.
Eur J Med Chem ; 279: 116841, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244862

RESUMEN

Boron neutron capture therapy (BNCT) is a highly targeted, selective and effective technique to cure various types of cancers, with less harm to the healthy cells. In principle, BNCT treatment needs to distribute the 10boron (10B) atoms inside the tumor tissues, selectively and homogeneously, as well as to initiate a nuclear fission reaction by capturing sufficient neutrons which releases high linear energy particles to kill the tumor cells. In BNCT, it is crucial to have high quality boron agents with acceptable bio-selectivity, homogeneous distribution and deliver in required quantity, similar to chemotherapy and other radiotherapy for tumor treatment. Nevertheless, boron drugs currently used in clinical trials yet to meet the full requirements. On the other hand, BNCT processing has opened up the era of renaissance due to the advanced development of the high-quality neutron source and the global construction of new BNCT centers. Consequently, there is an urgent need to use boron agents that have increased biocapacity. Artificial intelligence (AI) tools such as molecular docking and molecular dynamic simulation technologies have been utilized to develop new medicines. In this work, the in silico assessments including bioinformatics assessments of BNCT related tumoral receptor proteins, computational assessments of optimized small molecules of boron agents, are employed to speed up the screening process for boron drugs. The outcomes will be applicable to pave the way for future BNCT that utilizes artificial intelligence. The in silico molecular docking and dynamic simulation results of the optimized small boron agents, such as 4-borono-l-phenylalanine (BPA) with optimized proteins like the L-type amino acid transporter 1 (LTA1, also known as SLC7A5) will be examined. The in silico assessments results will certainly be helpful to researchers in optimizing druggable boron agents for the BNCT application. The clinical status of the optimized proteins, which are highly relevant to cancers that may be treated with BNCT, has been assessed using bioinformatics technology and discussed accordingly. Furthermore, the evaluations of cytotoxicity (IC50), boron uptake and tissue distribution of the optimized ligands 1 and 7 have been presented.

12.
Toxicol Appl Pharmacol ; 271(3): 372-85, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22142766

RESUMEN

A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionary biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended.


Asunto(s)
Contaminantes Ambientales/toxicidad , Genómica/métodos , Animales , Humanos , Proto-Oncogenes Mas , Medición de Riesgo/métodos
13.
Biomed Pharmacother ; 164: 114926, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37244179

RESUMEN

High-fat diet (HFD)-induced obesity is a cause of resistant hypertension. We have shown a possible link between histone deacetylases (HDACs) and renal angiotensinogen (Agt) upregulation in the HFD-induced hypertension, whereas the underlying mechanisms remain to be elucidated. Here, using a HDAC1/2 inhibitor romidepsin (FK228) and siRNAs, we determined roles of HDAC1 and HDAC2 in HFD-induced hypertension and found the pathologic signaling axis between HDAC1 and Agt transcription. Treatment with FK228 canceled the increased blood pressure of male C57BL/6 mice induced by HFD. FK228 also blocked upregulation of renal Agt mRNA, protein, angiotensin II (Ang II) or serum Ang II. Activation and nuclear accumulation of both HDAC1 and HDAC2 occurred in the HFD group. The HFD-induced HDAC activation was associated with an increase in deacetylated c-Myc transcription factor. Silencing of HDAC1, HDAC2 or c-Myc in HRPTEpi cells decreased Agt expression. However, only HDAC1 knockdown, but not HDAC2, increased c-Myc acetylation, suggesting selective roles in two enzymes. Chromatin immunoprecipitation assay revealed that HFD induced the binding of HDAC1 and deacetylated c-Myc at the Agt gene promoter. A putative c-Myc binding sequence in the promotor region was necessary for Agt transcription. Inhibition of c-Myc downregulated Agt and Ang II levels in kidney and serum, ameliorating HFD-induced hypertension. Thus, the abnormal HDAC1/2 in the kidney may be responsible for the upregulation of the Agt gene expression and hypertension. The results expose the pathologic HDAC1/c-myc signaling axis in kidney as a promising therapeutic target for obesity-associated resistant hypertension.


Asunto(s)
Angiotensinógeno , Hipertensión , Animales , Masculino , Ratones , Angiotensina II/metabolismo , Angiotensinógeno/genética , Dieta Alta en Grasa/efectos adversos , Hipertensión/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal
14.
J Orthop Translat ; 39: 34-42, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36636358

RESUMEN

Background: Osteosarcoma (OS) is the most common primary malignancy in bone tissues, and effective therapeutics remain absent in clinical practice. Traditional Chinese medicines (TCM) have been used for thousands of years, which provide great insights into OS management. Gallic acid (GA) is a natural phenolic acid enriched in various foods and herbs. Several pharmacological activities of GA such as anti-oxidation and anti-inflammation have been well-established. However, its biological function in OS remains not fully understood. Methods: The potential anti-cancer properties of GA were evaluated in 143 â€‹B, U2OS and MG63 â€‹cells. Its effects on cell growth, cell cycle, apoptosis and migration were examined in these OS cells. The lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR, luciferase activity and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using an orthotopic mouse model. Results: In the present study, GA was found to suppress the tumor growth in vitro via inducing cell cycle arrest and apoptosis in OS cells, and inhibit the invasion and metastasis as well. Using the orthotopic animal model, GA was also found to suppress tumorigenesis in vivo. Long noncoding RNA (lncRNA) H19 was demonstrated to be down-regulated by GA, and thus disrupted the canonical Wnt/ß-catenin signaling in OS cells. Furthermore, the ectopic expression of H19 rescued the GA-induced suppressive effects on tumor growth and metastasis, and partially reversed the inactivation of Wnt/ß-catenin signaling. Conclusions: Taken together, our results indicated that GA inhibited tumor growth through an H19-mediated Wnt/ß-catenin signaling regulatory axis in OS cells. The translational potential of this article: The information gained from this study provides a novel underlying mechanism of GA mediated anti-OS activity, suggesting that GA may be a promising drug candidate for OS patients.

15.
Clin Transl Radiat Oncol ; 34: 42-50, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35345864

RESUMEN

Purpose: This retrospective study sought to identify predictors of metastatic site failure (MSF) at new and/or original (present at diagnosis) sites in high-risk neuroblastoma patients. Methods and materials: Seventy-six high-risk neuroblastoma patients treated on four institutional prospective trials from 1997 to 2014 with induction chemotherapy, surgery, myeloablative chemotherapy, stem-cell rescue, and were eligible for consolidative primary and metastatic site (MS) radiotherapy were eligible for study inclusion. Computed-tomography and I-123 MIBG scans were used to assess disease response and Curie scores at diagnosis, post-induction, post-transplant, and treatment failure. Outcomes were described using the Kaplan-Meier estimator. Cox proportional hazards frailty (cphfR) and CPH regression (CPHr) were used to identify covariates predictive of MSF at a site identified either at diagnosis or later. Results: MSF occurred in 42 patients (55%). Consolidative MS RT was applied to 30 MSs in 10 patients. Original-MSF occurred in 146 of 383 (38%) non-irradiated and 18 of 30 (60%) irradiated MSs (p = 0.018). Original- MSF occurred in post-induction MIBG-avid MSs in 68 of 81 (84%) non-irradiated and 12 of 14 (85%) radiated MSs (p = 0.867). The median overall and progression-free survival rates were 61 months (95% CI 42.6-Not Reached) and 24.1 months (95% CI 16.5-38.7), respectively. Multivariate CPHr identified inability to undergo transplant (HR 32.4 95%CI 9.3-96.8, p < 0.001) and/or maintenance chemotherapy (HR 5.2, 95%CI 1.7-16.2, p = 0.005), and the presence of lung metastases at diagnosis (HR 4.4 95%CI 1.7-11.1, p = 0.002) as predictors of new MSF. The new MSF-free survival rate at 3 years was 25% and 87% in patients with and without high-risk factors. Conclusions: Incremental improvements in systemic therapy influence the patterns and type of metastatic site failure in neuroblastoma. Persistence of MIBG-avidity following induction chemotherapy and transplant at MSs increased the hazard for MSF.

16.
Metabol Open ; 9: 100075, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33409483

RESUMEN

Ethylene glycol monomethyl ether (EGME) has been used in many products usually handled by humans including inks, paints, polishes, brake fluids and so on. This present study therefore, investigated its effect on lung, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of EGME for a period of 7, 14, and 21 days. Following 7 days of oral exposure to EGME, activities of GPx and SOD were significantly increased, as well as levels of K-Ras, c-Myc, p53, caspase-3, TNF-α and, IL-6, while NO level and GST activity were significantly reduced compared with control. At the end of 14 days exposure, GSH level was significantly decreased, while levels of K-Ras, c-Myc, p53, caspase-3, TNF-α, IL-6, NO and the activities of SOD and GPx were significantly elevated with respect to control. After 21 days of EGME administration, levels of Bcl-2, IL-10, GSH and NO as well as GST activity were significantly decreased, while levels of K-Ras, c-Myc, p53, Bax, caspase-3, IL-6, IL-1ß, TNF-α, as well as GPx, CAT, and SOD activities were significantly elevated compared with control. Lung histopathology revealed chronic disseminated alveolar inflammation, bronchiolitis, severe alveolar and bronchi hyperplasia, severe disseminated inflammation, thrombosis, and thickened vessels as a result of EGME exposures. Exposures to EGME could trigger lung damage via the disorganization of the antioxidant system, eliciting the up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.

17.
Dev Comp Immunol ; 102: 103487, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31472172

RESUMEN

Myelocytomatosis viral oncogene (MYC), a transcription factor in the MYC family, plays vital roles in vertebrate innate immunity by regulating related immune gene expressions. In this study, we cloned and characterized an MYC gene from sea cucumber Apostichopus japonicus via RNA-seq and RACE approaches (designated as AjMYC). A 2074 bp fragment representing the full-length cDNA of AjMYC was obtained. This gene includes an open reading frame (ORF) of 1296 bp encoding a polypeptide of 432 amino acid residues with the molecular weight of 48.85 kDa and theoretical pI of 7.22. SMART analysis indicated that AjMYC shares an MYC common HLH motif (354-406 aa) at the C-terminal. Spatial expression analysis revealed that AjMYC is constitutively expressed in all detected tissues with peak expression in the tentacle. Vibrio splendidus-challenged sea cucumber could significantly boost the expression of AjMYC transcripts by a 5.58-fold increase in the first stage. Similarly, 2.75- and 3.23-fold increases were detected in LPS-exposed coelomocytes at 1 and 24 h, respectively. In this condition, coelomocyte apoptotic rate increased from 11.98% to 56.23% at 1 h and to 59.08% at 24 h. MYC inhibitor treatment could not only inhibit the expression of AjMYC and Ajcaspase3, but also depress the coelomocyte apoptosis. Furthermore, AjMYC overexpression in EPC cells for 24 h also promoted the cell apoptosis rate from 21.31% to 45.85%. Collectively, all these results suggested that AjMYC is an important immune factor in coelomocyte apoptosis toward pathogen-challenged sea cucumber.


Asunto(s)
Genes myc , Proteínas Proto-Oncogénicas c-myc/metabolismo , Stichopus/inmunología , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Lipopolisacáridos/farmacología , Peso Molecular , Sistemas de Lectura Abierta , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Alineación de Secuencia , Distribución Tisular , Vibrio/patogenicidad
18.
Front Physiol ; 11: 572605, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551826

RESUMEN

Intracranial aneurysm (IA) is vascular enlargement occurred on the wall of cerebral vessels and can result in fatal subarachnoid hemorrhage when ruptured. Recent studies have supported the important role of long non-coding RNAs (lncRNAs) in IA treatment. This study identified functional significance of lncRNA myocardial infarction associated transcript (MIAT) in IA. Myocardial infarction associated transcript and ectodermal-neural cortex 1 (ENC1) expression was detected by reverse transcription quantitative polymerase chain reaction. Cell counting kit 8 assay flow cytometry were conducted to detect cell viability and apoptosis of endothelial cells in IA. The interaction among MIAT, ENC1, and myelocytomatosis oncogene (MYC) was analyzed by RNA pull down, RNA immunoprecipitation assay, chromatin immunoprecipitation assay, and dual luciferase reporter assay. Intracranial aneurysm was induced by ligating the left carotid artery and the bilateral posterior branch of the renal artery in rats for studying the role of MIAT and ENC1 in vivo. Myocardial infarction associated transcript and ENC1 were upregulated in IA. Endothelial cells in IA presented a decreased cell viability and an increased apoptotic rate. Myocardial infarction associated transcript could regulate the expression of ENC1, and MYC could bind to the promoter region of ENC1. High expression of MIAT increased endothelial cell apoptosis and vascular endothelial injury, while MIAT knockdown was identified to reduce the risk of IA both in vitro and in vivo through regulating ENC1. To sum up, MIAT silencing is preventive for IA occurrence by decreasing the MYC-mediated ENC1 expression, which represents a novel therapeutic target for IA.

19.
Metabol Open ; 7: 100051, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32924002

RESUMEN

Ethylene glycol monomethyl ether (EGME) is a major component of paints, lacquers, inks, and automobile brake fluids. As a result, exposures to humans are inevitable. We therefore, investigated in this study, its effect on testicular cells in a time-course manner in male Wistar rats. Animals were orally administered 50 mg/kg body weight of EGME for duration of 7, 14, and 21 days. Following 7 days of the administration, levels of NO and GSH were significantly reduced, while levels of c-Myc, K-Ras, caspase-3, IL-6, TNF-α, and IL-1ß were significantly increased compared with control. At the end of 14 days exposure, GPx, and SOD activities, as well as IL-10 level were significantly decreased, while levels of c-Myc, K-Ras, p53, Bax, caspase-3, IL-6, TNF-α, IL-1ß, and GST activity were significantly elevated compared with control. After 21 days of EGME administration, Bcl-2, IL-10, and NO levels were significantly decreased, while levels of c-Myc, K-Ras, p53, Bax, caspase-3, IL-6, TNF-α, IL-1ß, MDA and GST activity were significantly increased compared with control. After 7, 14, and 21 days of EGME administrations, testis histopathology showed severe loss of seminiferous tubules, the seminiferous epithelium revealed very few spermatocytes, spermatids, spermatogonia, spermatozoa, and Sertoli cells, while the interstitial tissue is eroded, with scanty abnormal Leydig cells, compared with the control that appeared normal. We therefore, concluded that EGME-induced testicular toxicity as a result of EGME administration could be via the disorganization of the endogenous antioxidant systems as well as up-regulation of pro-inflammatory, apoptotic and oncogenic mediators in rats.

20.
Biochem Biophys Rep ; 24: 100806, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32913901

RESUMEN

2-methoxyethanol (2-ME) is an organic solvent widely used in the manufacture of brake fluids, paints, resins, varnish, nail polish, acetate cellulose, wood coloring, and as a plasticizer in plastics manufacturing. We therefore, investigated its effect on the liver, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of 2-ME for a period of 7, 14, and 21 days. Following 7 days of administration of 2-ME, there was a significant increase in the level of Bax, c-Myc, K-Ras, TNF-α, IL-1ß, IL-6, MDA and GPx activity, while the levels of Bcl-2, NO and GSH were significantly reduced compared with control. At the end of 14 days exposure, Bcl-2, and GSH levels, as well as GST activity, were significantly decreased, while levels of Bax, c-Myc, K-Ras, caspase-3, TNF-α, IL-1ß, IL-6, MDA and NO were significantly increased compared with control. After 21 days of 2-ME administration, Bcl-2, IL-10, and GSH levels, as well as SOD and GST activities, were significantly decreased, while levels of Bax, c-Myc, K-Ras, caspase-3, p53, TNF-α, IL-1ß, IL-6, MDA and NO were significantly increased compared with control. Lastly, liver histopathology confirmed and corroborated the biochemical findings reported above. We therefore, advised that exposures to 2-ME should be strictly avoided as it could trigger hepatic damage through the disorganization of the antioxidant system, up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda