Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artículo en Zh | MEDLINE | ID: mdl-37248179

RESUMEN

Objective: To systematically study the anti-fibrotic effect of N-acetyl-seryl-as partyl-lysyl-proline (Ac-SDKP) on pulmonary fibrosis. Methods: In May 2021, a computer search was performed on CNKI, Wanfang Knowledge Service Platform, VIP.com, China Biomedical Literature Database, Pubmed, OVID and other databases. The retrieval time was from January 2008 to May 2021. Randomized controlled experiments on the inhibition of pulmonary fibrosis by Ac-SDKP were screened. The control group was the pulmonary fibrosis model group and the experimental group was the Ac-SDKP treatment group. The quality of the literature was assessed using the syrcle risk of bias assessment tool, and data were extracted. Data analysis was Performed using revman 5.4 software. Results: 18 papers were included, with a total of 428 animal models. The results of meta analysis showed that the contents of α-smooth muscle actin (α-SMA), type I collagen, type Ⅲ collagen, transforming growth factor-ß (TGF-ß) and Nodule area in the exPerimental group were lower than those in the control grouP. [SMD=-2.44, 95%CI (-3.71--1.17), P=0.000][SMD=-5.36, 95%CI (-7.13--3.59), P=0.000] [SMD=-3.07, 95%CI (-4.13--2.02), P<0.000][SMD=-2.88, 95%CI (-3.63--2.14), P=0.000] [SMD=-1.80, 95%CI (-2.42--1.18), P=0.000], the content of hydroxy proline in the experimental group was higher than that in the control group [SMD=7.62, 95%CI (4.90-10.33), P=0.000], all indexes included in the literature were statistically significant. Conclusion: Ac-SDKP has obvious inhibitory effect on the process of pulmonary fibrosis, and may become a new clinical drug for the treatment of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratas , Animales , Ratas Wistar , Fibrosis , Modelos Animales de Enfermedad , Prolina
2.
Artículo en Zh | MEDLINE | ID: mdl-35255573

RESUMEN

Objective: To study the effect of anti-fibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) on phosphorylated heat shock protein 27 (P-HSP27) and zinc finger family transcriptional repressor 1 (SNAI1) expression to explore the anti-silicosis fibrosis effect of Ac-SDKP. Methods: In December 2014, the rat silicosis animal model was prepared by one-time bronchial infusion of silicon dioxide (SiO(2)) dust. 80 SPF healthy adult Wistar rats were selected, and the rats were divided into 8 groups according to the random number table method, 10 in each group. Model control group for 4 weeks (feeding for 4 weeks) , model control group for 8 weeks (feeding for 8 weeks) : bronchial perfusion with normal saline 1.0 ml per animal. Silicosis model group for 4 weeks (feeding for 4 weeks) and silicosis model group for 8 weeks (feeding for 8 weeks) : bronchial perfusion of 50 mg/ml SiO(2) suspension 1.0 ml per animal. Ac-SDKP administration group for 4 weeks (feeding for 4 weeks) , Ac-SDKP administration group for 8 weeks (feeding for 8 weeks) : Ac-SDKP 800 µg·kg(-1)·d(-1) was administered by intraperitoneal pump. Ac-SDKP preventive treatment group: 48 h after Ac-SDKP 800 µg·kg(-1)·d(-1) administration, bronchial perfusion of SiO(2) suspension 1.0 ml per animal, raised for 8 weeks. Ac-SDKP anti-fibrosis treatment group: after bronchial perfusion of 1.0 ml of SiO(2) suspension for 4 weeks, Ac-SDKP 800 µg·kg(-1)·d(-1) was administered for 4 weeks. Western blotting was used to detect the expression of P-HSP27, SNAI1, α-smooth muscle actin (α-SMA) , and collage typeⅠ and Ⅲ in each group. The expression of P-HSP27 and SNAI1 was detected by immunohistochemistry, and the co-localized expression of P-HSP27 and α-SMA was detected by laser confocal microscopy. Results: Compared with the model control group, the expressions of P-HSP27, SNAI1, α-SMA, and collage typeⅠ and Ⅲ in the silicosis fibrosis area of the rats in the silicosis model group were enhanced, and the differences were statistically significant (P<0.05) . After Ac-SDKP intervention, compared with silicosis model group for 8 weeks, the expressions of P-HSP27, SNAI1 α-SMA, and collage typeⅠ and Ⅲ in the Ac-SDKP preventive and anti-fibrosis treatment groups were significantly decreased, and the differences were statistically significant (P<0.05) . However, the expressions of P-HSP27 SNAI1, and collage typeⅠ and Ⅲ between the Ac-SDKP administration group and the model control group did not change significantly, and the differences were not statistically significant (P>0.05) . Laser confocal results showed that the positive cells expressing P-HSP27 and α-SMA in the lung tissue of the silicosis model group were more than those in the model control group. Compared with the silicosis model group, the Ac-SDKP prevention and anti-fibrosis treatment groups expressing the positive cells of P-HSP27 and α-SMA decreased. Compared with the model control group for 8 weeks, there were some double-positive cells expressing P-HSP27 and α-SMA in the nodules of the silicosis model group for 8 weeks. Conclusion: Ac-SDKP may play an anti-silicic fibrosis effect by regulating the P-HSP27/SNAI1 pathway.


Asunto(s)
Proteínas de Choque Térmico HSP27 , Silicosis , Animales , Oligopéptidos , Ratas , Ratas Wistar , Dióxido de Silicio , Silicosis/metabolismo
3.
Clin Exp Pharmacol Physiol ; 48(11): 1558-1565, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34347311

RESUMEN

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a physiological antifibrotic peptide that is hydrolysed by angiotensin I-converting enzyme (ACE). The beneficial antifibrotic effects of ACE inhibitors have been attributed, in part, to its inhibition of Ac-SDKP cleavage. There is indirect evidence that the SDK fragment of Ac-SDKP is the main component required for its antiproliferative action. However, the exact component of the physiological peptide that is responsible for its antifibrotic effect has yet to be determined. Ac-SDKP-derived analogues that are resistant to ACE degradation may provide a new avenue for fibrosis therapy. We tested the antifibrotic potential of various Ac-SDKP peptide sequences and an analogue resistant to ACE degradation in lung fibroblasts. We investigated the contribution and molecular mechanism of action of the amino acid residues in the Ac-SDKP sequence to its antifibrotic effects, and the effects of Ac-SDKP peptides in the prevention of collagen deposition in cells. The Ac-DKP fragment moderately inhibited endothelin-1 (ET-1) mediated transforming growth factor-ß (TGF- ß) expression, and could be slowly cleaved by ACE, revealing a different sequence requirement for the antifibrotic action of Ac-SDKP. The Ac-SDψKP analogue (where the peptide bond between the aspartate and lysine is reduced) inhibited TGF-ß/small mother against decapentaplegic (Smad)-3 signalling and collagen deposition. The Ac-SDKP peptide, in combination with ACEi, demonstrated a greater inhibition of hydroxyproline as compared to Ac-SDKP alone.


Asunto(s)
Oligopéptidos
4.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576239

RESUMEN

Glycolytic reprogramming is an important metabolic feature in the development of pulmonary fibrosis. However, the specific mechanism of glycolysis in silicosis is still not clear. In this study, silicotic models and silica-induced macrophage were used to elucidate the mechanism of glycolysis induced by silica. Expression levels of the key enzymes in glycolysis and macrophage activation indicators were analyzed by Western blot, qRT-PCR, IHC, and IF analyses, and by using a lactate assay kit. We found that silica promotes the expression of the key glycolysis enzymes HK2, PKM2, LDHA, and macrophage activation factors iNOS, TNF-α, Arg-1, IL-10, and MCP1 in silicotic rats and silica-induced NR8383 macrophages. The enhancement of glycolysis and macrophage activation induced by silica was reduced by Ac-SDKP or siRNA-Ldha treatment. This study suggests that Ac-SDKP treatment can inhibit glycolytic reprogramming in silica-induced lung macrophages and silicosis.


Asunto(s)
Glucólisis , Pulmón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Dióxido de Silicio/efectos adversos , Silicosis/terapia , Animales , Fibroblastos/metabolismo , Inflamación/tratamiento farmacológico , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/farmacología , Fibrosis Pulmonar/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar
5.
Toxicol Appl Pharmacol ; 369: 17-29, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30826375

RESUMEN

Crystalline silica (SiO2) particles have very strong toxicity to the lungs, and silicosis is an excessive pulmonary interstitial remodeling disease that follows persistent SiO2 injury. We showed here that DNA double strand breaks (DSBs) and apoptosis were aggravated during rat silicosis induced by SiO2 exposure. Ac-SDKP attenuates lung parenchymal distortion and collagen deposition, and decreases the expression of γH2AX, p21, and cleaved caspase-3, as well as improves the reduction of pulmonary function caused by silicosis. In vitro, we found an evolution of smooth muscle actin α (α-SMA), collagen type I (Col I) in both A549 and MRC-5 cells in response to transforming growth factor-beta 1 (TGF-ß1) + SiO2. Only A549 cells showed any reduction in the rate of apoptosis induced by the double stimulation, because of the anti-apoptotic effects of TGF-ß1. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is an anti-fibrotic tetrapeptide. It also has the ability to promote the apoptosis of leukemia cells. However its role in promoting cell apoptosis in silicosis is still unknown. We here found that Ac-SDKP could induce cell apoptosis and inhibit fibrotic response in A549 and MRC-5 cells treated with TGF-ß1 + SiO2, and these effects depended on regulation of α-tubulin acetyltransferase 1 (α-TAT1). These findings suggest that Ac-SDKP may have therapeutic value in the treatment of silicotic fibrosis.


Asunto(s)
Acetiltransferasas/metabolismo , Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Pulmón/efectos de los fármacos , Proteínas de Microtúbulos/metabolismo , Oligopéptidos/farmacología , Dióxido de Silicio/toxicidad , Silicosis/tratamiento farmacológico , Factor de Crecimiento Transformador beta1/toxicidad , Células A549 , Animales , Colágeno Tipo I/metabolismo , Roturas del ADN de Doble Cadena , Modelos Animales de Enfermedad , Células Epiteliales/enzimología , Células Epiteliales/patología , Fibroblastos/enzimología , Fibroblastos/patología , Humanos , Pulmón/enzimología , Pulmón/patología , Masculino , Ratas Sprague-Dawley , Transducción de Señal , Silicosis/enzimología , Silicosis/patología , Regulación hacia Arriba
6.
Toxicol Appl Pharmacol ; 350: 1-10, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29684394

RESUMEN

Damage to alveolar epithelial cells (AECs) caused by long-term inhalation of large amounts of silica dust plays a significant role in the pathology of silicosis. The present study was undertaken to investigate the regulatory mechanism(s) involved in type II AEC damage from silicon dioxide (SiO2) as well as the mechanism(s) related to the prevention of silicosis by the antifibrotic tetra peptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). The 2-DE results showed that SiO2 induced endoplasmic reticulum (ER) stress in A549 cells. In addition, typical apoptotic characteristics were observed using a transmission electron microscope (TEM) in A549 cells stimulated by SiO2 and in type II AECs from silicotic rats. Mechanistic study showed that both Ac-SDKP and 4-phenylbutyrate (4-PBA), an inhibiter of ER stress, attenuated GRP78, phosphor-PERK, phosphor-eIF2α, CHOP and Caspase-12 protein expression in A549 cells stimulated by SiO2 and in type II AECs from silicotic rats. Treatment with Ac-SDKP and 4-PBA in vivo effectively inhibited collagen deposition in the lungs of silicotic rats. In summary, ER stress is involved in the apoptosis of type II AECs both in vitro and in vivo. Ac-SDKP effectively suppresses SiO2-induced apoptosis in type II AECs by attenuating the Caspase-12 and PERK/eIF2α/CHOP pathway activation caused by ER stress, thus preventing silicotic fibrosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Oligopéptidos/uso terapéutico , Alveolos Pulmonares/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Silicosis/prevención & control , Células A549 , Administración por Inhalación , Animales , Apoptosis/fisiología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/fisiología , Inhibidores de Crecimiento/farmacología , Inhibidores de Crecimiento/uso terapéutico , Humanos , Masculino , Oligopéptidos/farmacología , Alveolos Pulmonares/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control , Ratas , Ratas Wistar , Mucosa Respiratoria/patología , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/toxicidad , Silicosis/etiología , Silicosis/patología
7.
Nephrology (Carlton) ; 23(4): 297-307, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28075040

RESUMEN

AIM: Angiotensin-converting enzyme inhibitors (ACEi) are widely used to deter the progression of chronic kidney disease (CKD). Besides controlling hypertension and reduction of intra-glomerular pressure, ACEi appear to have anti-fibrotic effects in the renal cortex. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), an endogenous tetrapeptide that is degraded by ACE, has also been shown to ameliorate the pro-fibrotic phenotype displayed in CKD in our recent study. Whether the anti-fibrotic properties of ACEi are mediated by Ac-SDKP has not been fully investigated. METHODS: To delineate the role of Ac-SDKP in ACE blockade, 12-week-old male BALB/c mice underwent sham operation or unilateral ureteric obstruction (UUO). UUO mice were subjected to: (i) vehicle; (ii) captopril or (iii) captopril in conjunction with S17092, a prolyl oligopeptidase inhibitor. After 7 days, mice were sacrificed and kidneys harvested for analyses. RESULTS: After UUO, there were heightened expressions of collagen I, collagen III, fibronectin and α-SMA associated with significant levels of tubulointerstitial injury on histological examination. Furthermore, p44/42 mitogen-activated protein kinase (MAPK) and transforming growth factor beta 1(TGF-ß1) signalling were upregulated. These were significantly ameliorated by captopril treatment alone but unaffected by co-administration of captopril with S17092. Captopril treatment had resulted in elevated urinary Ac-SDKP levels, an effect that was eliminated by the co-administration with S17092. CONCLUSION: This study allowed the investigation of the renoprotective property of ACEi in the absence of Ac-SDKP and proved conclusively that Ac-SDKP is the prime anti-fibrotic mediator of captopril, acting via p44/42 MAPK and TGF-ß1 signalling pathways. Future research to expand CKD armamentarium should explore the utility of augmenting Ac-SDKP levels.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Captopril/farmacología , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Oligopéptidos/metabolismo , Obstrucción Ureteral/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Fibrosis , Indoles/farmacología , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Prolil Oligopeptidasas , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa , Transducción de Señal/efectos de los fármacos , Tiazolidinas/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
8.
Am J Physiol Renal Physiol ; 310(10): F1026-34, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26962108

RESUMEN

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Previously, we have shown that prolyl oligopeptidase (POP) is involved in the Ac-SDKP release from thymosin-ß4 (Tß4). However, POP can only hydrolyze peptides shorter than 30 amino acids, and Tß4 is 43 amino acids long. This indicates that before POP hydrolysis takes place, Tß4 is hydrolyzed by another peptidase that releases NH2-terminal intermediate peptide(s) with fewer than 30 amino acids. Our peptidase database search pointed out meprin-α metalloprotease as a potential candidate. Therefore, we hypothesized that, prior to POP hydrolysis, Tß4 is hydrolyzed by meprin-α. In vitro, we found that the incubation of Tß4 with both meprin-α and POP released Ac-SDKP, whereas no Ac-SDKP was released when Tß4 was incubated with either meprin-α or POP alone. Incubation of Tß4 with rat kidney homogenates significantly released Ac-SDKP, which was blocked by the meprin-α inhibitor actinonin. In addition, kidneys from meprin-α knockout (KO) mice showed significantly lower basal Ac-SDKP amount, compared with wild-type mice. Kidney homogenates from meprin-α KO mice failed to release Ac-SDKP from Tß4. In vivo, we observed that rats treated with the ACE inhibitor captopril increased plasma concentrations of Ac-SDKP, which was inhibited by the coadministration of actinonin (vehicle, 3.1 ± 0.2 nmol/l; captopril, 15.1 ± 0.7 nmol/l; captopril + actinonin, 6.1 ± 0.3 nmol/l; P < 0.005). Similar results were obtained with urinary Ac-SDKP after actinonin treatment. We conclude that release of Ac-SDKP from Tß4 is mediated by successive hydrolysis involving meprin-α and POP.


Asunto(s)
Riñón/metabolismo , Metaloendopeptidasas/metabolismo , Oligopéptidos/metabolismo , Serina Endopeptidasas/metabolismo , Timosina/metabolismo , Animales , Presión Sanguínea , Captopril , Ácidos Hidroxámicos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Prolil Oligopeptidasas , Distribución Aleatoria , Ratas Sprague-Dawley
9.
Toxicol Appl Pharmacol ; 294: 1-10, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26785300

RESUMEN

The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-ß1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-ß1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-ß1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-ß1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-ß1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Oligopéptidos/farmacología , Sustancias Protectoras/farmacología , Alveolos Pulmonares/efectos de los fármacos , Silicosis/patología , Actinas/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Humanos , Masculino , Alveolos Pulmonares/citología , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Ratas , Ratas Wistar , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Quinasas Asociadas a rho/metabolismo
10.
Exp Mol Pathol ; 97(1): 176-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24998956

RESUMEN

The synthetic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has been shown to be a modulator of molecular aspects of the fibrosis pathway. This study reveals that Ac-SDKP exerts an anti-fibrotic effect on human type II alveolar epithelial cells (A549), which are a source of myofibroblasts once exposed to TGF-ß1, by decreasing the expression of heat shock protein 27 (HSP27). We used A549 cells in vitro to detect morphological evidence of epithelial-mesenchymal transition (EMT) by phase-contrast microscopy. Immunocytochemical and western blot analysis determined the distributions of cytokeratin 8 (CK8), α-smooth muscle actin (α-SMA), and SNAI1. Confocal laser scanning microscopy revealed a colocalization of HSP27 and SNAI1 on TGF-ß1-induced A549 cells. These results also demonstrated that A549 cells became spindle-like when exposed to TGF-ß1. Coincident with these morphological changes, expression levels of CK8 and E-cad decreased, while those of vimentin and α-SMA increased. This process was accompanied by increases in levels of HSP27, SNAI1, and type I and type III collagen. In vitro transfection experiments demonstrated that the inhibition of HSP27 in cultured A549 cells could decrease the expression of SNAI1 and α-SMA while increasing the expression of E-cad. A noticeable reduction in collagen types I and III was also evident. Our results found that Ac-SDKP inhibited the transition of cultured A549 cells to myofibroblasts and attenuated collagen synthesis through modulating the expression of HSP27.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Oligopéptidos/farmacología , Actinas/metabolismo , Antígenos CD8/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular/efectos de los fármacos , Colágeno/biosíntesis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Miofibroblastos/efectos de los fármacos , Alveolos Pulmonares/citología , Alveolos Pulmonares/efectos de los fármacos , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Vimentina/metabolismo
11.
Biomedicines ; 11(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37509566

RESUMEN

Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people's attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-ß1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-ß1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-ß1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen.

12.
Biomed Pharmacother ; 166: 115411, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37651800

RESUMEN

Kinesin family member 3 A (KIF3A) decrease have been reported in silicotic patients and rats. However, the detailed mechanisms of KIF3A in silicosis remain unknown. In this study, we demonstrated that KIF3A effectively blocked the expression of ß-catenin and downstream myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling, thus inhibiting silica-induced epithelial-myofibroblast transition (EMyT). Moreover, KIF3A was identified as a downstream mediator of an antifibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Knockdown of KIF3A expression reactivated ß-catenin/myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling that was attenuated by Ac-SDKP in vitro. Collectively, our findings suggest that Ac-SDKP plays its anti-fibrosis role via KIF3A-mediated ß-catenin suppression, at least in part, in both in vivo model of silicosis and in vitro model of EMyT.


Asunto(s)
Silicosis , beta Catenina , Animales , Ratas , Cinesinas , Miofibroblastos , Factor de Respuesta Sérica , Dióxido de Silicio/toxicidad , Factores de Transcripción
13.
J Clin Transl Hepatol ; 11(5): 1035-1049, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37577240

RESUMEN

Background and Aims: Prolyl endopeptidase (PREP) is a serine endopeptidase that participates in many pathological processes including inflammation, oxidative stress, and autophagy. Our previous studies found that PREP knockout exhibited multiple benefits in high-fat diet (HFD) or methionine choline-deficient diet-induced metabolic dysfunction-associated fatty liver disease (MAFLD). However, cumulative studies have suggested that PREP performs complex functions during disease development. Therefore, further understanding the role of PREP in MAFLD development is the foundation of PREP intervention. Methods: In this study, an HFD-induced MAFLD model at different time points (4, 8, 12, and 16 weeks) was used to explore dynamic changes in the PREP proline-glycine-proline (PGP)/N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) system. To explore its potential value in MAFLD treatment, saline, or the PREP inhibitor, KYP-2047, was administered to HFD-induced MAFLD mice from the 10th to 16th weeks. Results: PREP activity and expression were increased in HFD-mice compared with control mice from the 12th week onwards, and increased PREP mainly resulted in the activation of the matrix metalloproteinase 8/9 (MMP8/9)-PREP-PGP axis rather than the thymosin ß4-meprin α/PREP-AcSDKP axis. In addition, KYP-2047 reduced HFD-induced liver injury and oxidative stress, improved lipid metabolism through the suppression of lipogenic genes and the induction of ß-oxidation-related genes, and attenuated hepatic inflammation by decreasing MMP8/9 and PGP. Moreover, KYP2047 restored HFD-induced impaired autophagy and this was verified in HepG2 cells. Conclusions: These findings suggest that increased PREP activity/expression during MAFLD development might be a key factor in the transition from simple steatosis to steatohepatitis, and KYP-2047 might possess therapeutic potential for MAFLD treatment.

14.
J Inflamm Res ; 14: 1647-1660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33948088

RESUMEN

BACKGROUND: Silica-induced inflammatory activation is associated with silicosis and various non-respiratory conditions. The present study was designed to examine the anti-inflammatory effects of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) on lung macrophages and bone osteoclasts after silica inhalation in rats. METHODS: Wistar rats and NR8383 and RAW 264.7 cell lines were used in the present study. The receptor activator of nuclear factor kappa-B ligand (RANKL) and toll-like receptor 4 (TLR4) signaling pathways was measured in the lung tissue of rats or NR8383/RAW 264.7 cells exposed to silica. The microarchitecture of the trabecular bone in the tibia and femur was evaluated in silicotic rats. Furthermore, the roles of Ac-SDKP on silicotic rats, silica-treated NR8383/RAW 264.7 cells, and RANKL-induced osteoclast differentiation were studied. RESULTS: The data indicated that silica inhalation might activate the RANKL and TLR4 signaling pathways in lung macrophages, thus inducing the lung inflammatory and proteolytic phenotype of macrophages and osteoclasts in lung and bone. Ac-SDKP maintained the lung elastin level by inhibiting lung inflammation and macrophage activation via the RANKL and TLR4 signaling pathways. Ac-SDKP also attenuated the reduction in femoral bone mineral density in silicotic rats by inhibiting osteoclast differentiation via the RANKL signaling pathway. CONCLUSION: Our findings support the hypothesis that inhalation of crystalline silica induces activation of lung macrophages and bone osteoclasts via the RANKL and TLR4 signaling pathways. Ac-SDKP has the potential to stabilize lung homeostasis and bone metabolism.

15.
J Diabetes Investig ; 11(6): 1470-1481, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32472621

RESUMEN

AIMS/INTRODUCTION: To establish novel therapies to combat diabetic kidney disease, a human disease-relevant animal model is essential. However, a type 2 diabetic mouse model presenting progressive kidney fibrosis has not yet been established. Kidneys of streptozotocin-induced diabetic CD-1 mice showed severe fibrosis compared with other backgrounds of mice associated with the suppression of antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline. The BKS background (BKSdb / db ) is often utilized for diabetic kidney disease research; the kidney fibrosis in the BKSdb / db phenotype is minimal. MATERIALS AND METHODS: We generated CD-1db / db mice by backcrossing the db gene into the CD-1 background, and analyzed phenotypic differences compared with BKSdb / db and CD-1db / m mice. RESULTS: Male CD-1db / db mice appeared to have elevated blood glucose levels compared with those of BKSdb / db mice. Fasting insulin levels declined in CD-1db / db mice. Plasma cystatin C levels tended to be elevated in CD-1db / db mice from 16 to 24 weeks-of-age. Male CD-1db / db mice showed significantly progressive kidney and heart fibrosis from 16 to 24 weeks-of-age when compared with that of age-matched BKSdb / db mice. The gene expression profile showed fibrogenic program-associated genes in male CD-1db / db mice. Male CD-1db / db mice displayed significantly lower urine antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline when compared to that of BKSdb / db at 24 weeks-of-age. The gene expression of prolyl oligopeptidase, the enzyme essential for antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline production from thymosin ß4, was significantly lower in the CD-1 mice. Thymosin ß4 levels were also lower in CD-1 mice. CONCLUSIONS: These results suggest that CD-1db / db mice are a novel type 2 diabetic mouse model with progressive kidney and heart fibrosis.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Fibrosis/patología , Regulación de la Expresión Génica , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Progresión de la Enfermedad , Fibrosis/etiología , Fibrosis/metabolismo , Masculino , Ratones
16.
Front Pharmacol ; 11: 593, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435194

RESUMEN

N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous immunomodulatory peptide that is generated from thymosin ß4 (Tß4) through stepwise hydrolysis, involving meprin-α and prolyl endopeptidase (PREP). It is well acknowledged that AcSDKP exerts beneficial effects on multiple cardiovascular and renal diseases. However, the functional role of AcSDKP in inflammatory bowel disease (IBD) remains poorly understood. Here, we aimed to assess the content of AcSDKP in patients with IBD and investigate the impact of AcSDKP on intestinal inflammation in IBD. We found that in the inflamed mucosal specimens of patients with ulcerative colitis, the expression levels of Tß4 and meprin-α were decreased, while PREP was expressed at similar levels to non-inflamed mucosa. In vitro, AcSDKP inhibited the expression of proinflammatory factors in intestinal epithelial cells partially by reducing the activation of MEK-ERK signaling. In vivo studies showed that transgenic mice, with lower levels of AcSDKP, were more vulnerable to dextran sulfate sodium (DSS)-induced colitis and exhibited more severe intestinal inflammatory responses. On the other hand, exogenous AcSDKP infusion significantly attenuated the clinical symptoms and intestinal mucosal inflammation in DSS-induced mice. In conclusion, results from this study demonstrated the anti-inflammatory function of AcSDKP within the intestine and suggest that AcSDKP has a promising therapeutic potential for IBD treatment.

17.
Artículo en Zh | WPRIM | ID: wpr-986025

RESUMEN

Objective: To systematically study the anti-fibrotic effect of N-acetyl-seryl-as partyl-lysyl-proline (Ac-SDKP) on pulmonary fibrosis. Methods: In May 2021, a computer search was performed on CNKI, Wanfang Knowledge Service Platform, VIP.com, China Biomedical Literature Database, Pubmed, OVID and other databases. The retrieval time was from January 2008 to May 2021. Randomized controlled experiments on the inhibition of pulmonary fibrosis by Ac-SDKP were screened. The control group was the pulmonary fibrosis model group and the experimental group was the Ac-SDKP treatment group. The quality of the literature was assessed using the syrcle risk of bias assessment tool, and data were extracted. Data analysis was Performed using revman 5.4 software. Results: 18 papers were included, with a total of 428 animal models. The results of meta analysis showed that the contents of α-smooth muscle actin (α-SMA), type I collagen, type Ⅲ collagen, transforming growth factor-β (TGF-β) and Nodule area in the exPerimental group were lower than those in the control grouP. [SMD=-2.44, 95%CI (-3.71--1.17), P=0.000][SMD=-5.36, 95%CI (-7.13--3.59), P=0.000] [SMD=-3.07, 95%CI (-4.13--2.02), P<0.000][SMD=-2.88, 95%CI (-3.63--2.14), P=0.000] [SMD=-1.80, 95%CI (-2.42--1.18), P=0.000], the content of hydroxy proline in the experimental group was higher than that in the control group [SMD=7.62, 95%CI (4.90-10.33), P=0.000], all indexes included in the literature were statistically significant. Conclusion: Ac-SDKP has obvious inhibitory effect on the process of pulmonary fibrosis, and may become a new clinical drug for the treatment of pulmonary fibrosis.


Asunto(s)
Ratas , Animales , Fibrosis Pulmonar , Ratas Wistar , Fibrosis , Modelos Animales de Enfermedad , Prolina
19.
Artículo en Zh | WPRIM | ID: wpr-935752

RESUMEN

Objective: To study the effect of anti-fibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) on phosphorylated heat shock protein 27 (P-HSP27) and zinc finger family transcriptional repressor 1 (SNAI1) expression to explore the anti-silicosis fibrosis effect of Ac-SDKP. Methods: In December 2014, the rat silicosis animal model was prepared by one-time bronchial infusion of silicon dioxide (SiO(2)) dust. 80 SPF healthy adult Wistar rats were selected, and the rats were divided into 8 groups according to the random number table method, 10 in each group. Model control group for 4 weeks (feeding for 4 weeks) , model control group for 8 weeks (feeding for 8 weeks) : bronchial perfusion with normal saline 1.0 ml per animal. Silicosis model group for 4 weeks (feeding for 4 weeks) and silicosis model group for 8 weeks (feeding for 8 weeks) : bronchial perfusion of 50 mg/ml SiO(2) suspension 1.0 ml per animal. Ac-SDKP administration group for 4 weeks (feeding for 4 weeks) , Ac-SDKP administration group for 8 weeks (feeding for 8 weeks) : Ac-SDKP 800 μg·kg(-1)·d(-1) was administered by intraperitoneal pump. Ac-SDKP preventive treatment group: 48 h after Ac-SDKP 800 μg·kg(-1)·d(-1) administration, bronchial perfusion of SiO(2) suspension 1.0 ml per animal, raised for 8 weeks. Ac-SDKP anti-fibrosis treatment group: after bronchial perfusion of 1.0 ml of SiO(2) suspension for 4 weeks, Ac-SDKP 800 μg·kg(-1)·d(-1) was administered for 4 weeks. Western blotting was used to detect the expression of P-HSP27, SNAI1, α-smooth muscle actin (α-SMA) , and collage typeⅠ and Ⅲ in each group. The expression of P-HSP27 and SNAI1 was detected by immunohistochemistry, and the co-localized expression of P-HSP27 and α-SMA was detected by laser confocal microscopy. Results: Compared with the model control group, the expressions of P-HSP27, SNAI1, α-SMA, and collage typeⅠ and Ⅲ in the silicosis fibrosis area of the rats in the silicosis model group were enhanced, and the differences were statistically significant (P<0.05) . After Ac-SDKP intervention, compared with silicosis model group for 8 weeks, the expressions of P-HSP27, SNAI1 α-SMA, and collage typeⅠ and Ⅲ in the Ac-SDKP preventive and anti-fibrosis treatment groups were significantly decreased, and the differences were statistically significant (P<0.05) . However, the expressions of P-HSP27 SNAI1, and collage typeⅠ and Ⅲ between the Ac-SDKP administration group and the model control group did not change significantly, and the differences were not statistically significant (P>0.05) . Laser confocal results showed that the positive cells expressing P-HSP27 and α-SMA in the lung tissue of the silicosis model group were more than those in the model control group. Compared with the silicosis model group, the Ac-SDKP prevention and anti-fibrosis treatment groups expressing the positive cells of P-HSP27 and α-SMA decreased. Compared with the model control group for 8 weeks, there were some double-positive cells expressing P-HSP27 and α-SMA in the nodules of the silicosis model group for 8 weeks. Conclusion: Ac-SDKP may play an anti-silicic fibrosis effect by regulating the P-HSP27/SNAI1 pathway.


Asunto(s)
Animales , Ratas , Proteínas de Choque Térmico HSP27 , Oligopéptidos , Ratas Wistar , Dióxido de Silicio , Silicosis/metabolismo
20.
J Neurosurg ; 126(3): 782-795, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28245754

RESUMEN

OBJECTIVE The authors' previous studies have suggested that thymosin beta 4 (Tß4), a major actin-sequestering protein, improves functional recovery after neural injury. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an active peptide fragment of Tß4. Its effect as a treatment of traumatic brain injury (TBI) has not been investigated. Thus, this study was designed to determine whether AcSDKP treatment improves functional recovery in rats after TBI. METHODS Young adult male Wistar rats were randomly divided into the following groups: 1) sham group (no injury); 2) TBI + vehicle group (0.01 N acetic acid); and 3) TBI + AcSDKP (0.8 mg/kg/day). TBI was induced by controlled cortical impact over the left parietal cortex. AcSDKP or vehicle was administered subcutaneously starting 1 hour postinjury and continuously for 3 days using an osmotic minipump. Sensorimotor function and spatial learning were assessed using a modified Neurological Severity Score and Morris water maze tests, respectively. Some of the animals were euthanized 1 day after injury, and their brains were processed for measurement of fibrin accumulation and neuroinflammation signaling pathways. The remaining animals were euthanized 35 days after injury, and brain sections were processed for measurement of lesion volume, hippocampal cell loss, angiogenesis, neurogenesis, and dendritic spine remodeling. RESULTS Compared with vehicle treatment, AcSDKP treatment initiated 1 hour postinjury significantly improved sensorimotor functional recovery (Days 7-35, p < 0.05) and spatial learning (Days 33-35, p < 0.05), reduced cortical lesion volume, and hippocampal neuronal cell loss, reduced fibrin accumulation and activation of microglia/macrophages, enhanced angiogenesis and neurogenesis, and increased the number of dendritic spines in the injured brain (p < 0.05). AcSDKP treatment also significantly inhibited the transforming growth factor-ß1/nuclear factor-κB signaling pathway. CONCLUSIONS AcSDKP treatment initiated 1 hour postinjury provides neuroprotection and neurorestoration after TBI, indicating that this small tetrapeptide has promising therapeutic potential for treatment of TBI. Further investigation of the optimal dose and therapeutic window of AcSDKP treatment for TBI and the associated underlying mechanisms is therefore warranted.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Oligopéptidos/farmacología , Inductores de la Angiogénesis/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/psicología , Modelos Animales de Enfermedad , Bombas de Infusión , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Distribución Aleatoria , Ratas Wistar , Recuperación de la Función/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda