Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Bacteriol ; 206(5): e0004824, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712944

RESUMEN

Whole genome sequencing has revealed that the genome of Staphylococcus aureus possesses an uncharacterized 5-gene operon (SAOUHSC_00088-00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus as ssc for staphylococcal surface carbohydrate. We found that the ssc genes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed in Escherichia coli and extracted by heat treatment. Ssc was also conjugated to AcrA from Campylobacter jejuni in E. coli using protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting of N-acetylgalactosamine. We further demonstrated that the expression of the ssc genes in S. aureus affected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCE: Surface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens. Staphylococcus aureus produces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide in S. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.


Asunto(s)
Acetilgalactosamina , Polisacáridos Bacterianos , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Acetilgalactosamina/metabolismo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/química , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo
2.
Mar Drugs ; 22(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38535445

RESUMEN

Sulfation is gaining increased interest due to the role of sulfate in the bioactivity of many polysaccharides of marine origin. Hence, sulfatases, enzymes that control the degree of sulfation, are being more extensively researched. In this work, a novel sulfatase (SulA1) encoded by the gene sulA1 was characterized. The sulA1-gene is located upstream of a chondroitin lyase encoding gene in the genome of the marine Arthrobacter strain (MAT3885). The sulfatase was produced in Escherichia coli. Based on the primary sequence, the enzyme is classified under sulfatase family 1 and the two catalytic residues typical of the sulfatase 1 family-Cys57 (post-translationally modified to formyl glycine for function) and His190-were conserved. The enzyme showed increased activity, but not improved stability, in the presence of Ca2+, and conserved residues for Ca2+ binding were identified (Asp17, Asp18, Asp277, and Asn278) in a structural model of the enzyme. The temperature and pH activity profiles (screened using p-nitrocatechol sulfate) were narrow, with an activity optimum at 40-50 °C and a pH optimum at pH 5.5. The Tm was significantly higher (67 °C) than the activity optimum. Desulfation activity was not detected on polymeric substrates, but was found on GalNAc4S, which is a sulfated monomer in the repeated disaccharide unit (GlcA-GalNAc4S) of, e.g., chondroitin sulfate A. The position of the sulA1 gene upstream of a chondroitin lyase gene and combined with the activity on GalNAc4S suggests that there is an involvement of the enzyme in the chondroitin-degrading cascade reaction, which specifically removes sulfate from monomeric GalNAc4S from chondroitin sulfate degradation products.


Asunto(s)
Arthrobacter , Sulfatos , Acetilgalactosamina , Sulfatasas , Escherichia coli , Galactosamina , Condroitín Liasas , Clonación Molecular
3.
Glycobiology ; 32(7): 556-579, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35312770

RESUMEN

In humans, the UDP-N-α-D galactosamine:polypeptide N-acetylgalactosaminyltransferases family (ppGalNAc-Ts, GalNAc-Ts or GALNTs) comprises 20 isoenzymes. They are responsible for the initial synthesis of α-GalNAc1,3-O-Ser/Thr, or Tn antigen, at initiation of mucin type O-linked glycosylation. This structure is normally extended by the further sequential action of glycosytransferases to build more complex linear or branched O-linked structures, but in cancers it is frequently left unelaborated, and its presence is often associated with poor patient prognosis. Altered levels of GALNT expression or distribution have also been extensively reported in a wide range of cancers. These changes would be predicted to result in marked alterations in GalNAc O-linked glycosylation, including altered levels of site specific O-linked glycosylation and changes in the glycan structures formed, including, potentially, exposure of truncated O-glycans such as Tn antigen. Many reports have demonstrated that altered levels of specific GALNTs have prognostic significance in cancers, or shown that they are associated with changes in cell behaviour, including proliferation, migration, invasion or growth and metastasis in animal models. We have previously reviewed how deregulation of GALNTs in several epithelial cancers is a feature of different stages metastasis. Here we consider evidence that changes in GALNT expression, and therefore consequent alterations in GalNAc O-linked glycosylation, may directly influence molecules implicated in aspects of epithelial-mesenchymal transition (EMT), a fundamental aspect of cancer metastasis, during which epithelial cancer cells lose their cell-cell junctions, apical-basal polarity and adhesive interactions with basement membrane and become mesenchymal, with a spindle-shaped morphology and increased migratory capacity.


Asunto(s)
N-Acetilgalactosaminiltransferasas , Neoplasias , Animales , Transición Epitelial-Mesenquimal , Glicosilación , Humanos , Mucinas/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Neoplasias/genética
4.
Ann Hum Genet ; 86(6): 361-368, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36000290

RESUMEN

Mucopolysaccharidosis type IVA (MPS IVA; Morquio syndrome type A) is an autosomal recessive disorder caused by defects in the lysosomal hydrolase N-acetylgalactosamine-6-sulfatase (GALNS) gene, leading to progressive systemic skeletal dysplasia. Early diagnosis and early intervention with enzyme replacement therapy are crucial for improving outcomes in these patients. However, a relatively high number of patients are genetically undiagnosed due to high allelic heterogeneity and the absence of robust functional evidence for most variants of the GALNS gene. Herein, we report a novel intronic variant identified with RNA analysis and an allele dropout (ADO) event caused by a common benign variant in the primer-binding site in a Korean boy with MPS IVA. A 28-month-old boy presented with pectus carinatum, kyphoscoliosis, and joint hypermobility with multiple skeletal dysplasia involving the vertebrae and hip joint. Total urinary glycosaminoglycans were elevated with a predominant keratan sulfate fraction, and GALNS (EC 3.1.6.4) activity was significantly decreased in leukocytes. Sanger sequencing was performed; however, only one heterozygous intronic variant with uncertain clinical significance, c.566+3A > T (p.(?)), was identified. As the patient exhibited clinical and biochemical features of MPS IVA, we conducted whole genome sequencing (WGS) of the patient and his family to clarify the molecular diagnosis. WGS revealed a compound heterozygous genotype, c.1019G > A (p.(Gly340Asp)) and c.566+3A > T (p.(?)), in the GALNS gene. On mRNA sequencing, c.566+3A > T, was confirmed to cause exon 5 skipping and a premature stop codon. With subsequent investigation, we discovered that the variant, c.1019G > A, was undetected on initial sequencing because of ADO due to a common benign variant (rs3859024:G > C) at the primer annealing location. We present a novel intronic variant with a splicing defect in the GALNS gene and suggest that clinicians review primer sequences in cases not diagnosed on Sanger sequencing before progressing to diagnostic steps such as WGS.


Asunto(s)
Condroitinsulfatasas , Mucopolisacaridosis IV , Preescolar , Humanos , Masculino , Acetilgalactosamina , Condroitinsulfatasas/genética , Codón sin Sentido , Glicosaminoglicanos , Sulfato de Queratano , Mucopolisacaridosis IV/genética , Mucopolisacaridosis IV/diagnóstico
5.
Neurochem Res ; 47(11): 3355-3368, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35962937

RESUMEN

Protein glycosylation plays a crucial role in central nervous system, and abnormal glycosylation has major implications for human diseases. This study aims to evaluate an etiological implication of the variation in glycosylation for Parkinson's disease (PD), a neurodegenerative disorder. Based on a PD mouse model constructed by the intraperitoneal injection with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine, glycosylation variation was accessed using biotinylated lectin of dolichos biflorus agglutinin (DBA) specific for the exposed N-acetylgalactosamine linked to glycoprotein. Consequently, a glycoprotein with a significantly reduced N-acetylgalactosamination was identified as ADP/ATP translocase 1 (ANT1) by lectin affinity chromatography coupled with MALDI-TOF MS/MS (mass spectrometry), and confirmed by the analysis of dual co-immunofluorescence and Western blot. A tissue-specific distribution of de-N-acetylgalactosaminated ANT1 was found to be correlated with high risk of PD. At cellular level, an obvious co-aggregation between ANT1 and DBA was only found in the MPP+-induced PD-like cell model using dual co-immunofluorescence. Thus, we found that ANT1 was a potential glycoprotein with terminal N-acetylgalactosamine moiety, and the variation of glycosylation in ANT1 was associated with PD. This investigation provides an innovative insight in protein glycosylation with PD pathogenesis.


Asunto(s)
Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Acetilgalactosamina , Translocador 1 del Nucleótido Adenina , Adenosina Difosfato/metabolismo , Animales , Glicoproteínas/metabolismo , Ratones , Translocasas Mitocondriales de ADP y ATP/metabolismo , Enfermedad de Parkinson/metabolismo , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682920

RESUMEN

In recent years, mesoporous silica particles have been revealed as promising drug delivery systems combining high drug loading capacity, excellent biocompatibility, and easy and affordable synthetic and post-synthetic procedures. In fact, the straightforward functionalization approaches of these particles allow their conjugation with targeting moieties in order to surpass one of the major challenges in drug administration, the absence of targeting ability of free drugs that reduces their therapeutic efficacy and causes undesired side effects. In this context, the main goal of this work was to develop a new targeted mesoporous silica nanoparticle formulation with the capability to specifically and efficiently deliver an anticancer drug to hepatocellular carcinoma (HCC) cells. To this purpose, and as proof of concept, we developed redox-responsive mesoporous silica nanoparticles functionalized with the targeting ligand triantennary N-acetylgalactosamine (GalNAc) cluster, which has high affinity to asialoglycoprotein receptors overexpressed in HCC cells, and loaded them with epirubicin, an anthracycline drug. The produced nanocarrier exhibits suitable physicochemical properties for drug delivery, high drug loading capacity, high biocompatibility, and targeting ability to HCC cells, revealing its biopharmaceutical potential as a targeted drug carrier for therapeutic applications in liver diseases.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Receptor de Asialoglicoproteína , Carcinoma Hepatocelular/tratamiento farmacológico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Porosidad , Dióxido de Silicio/química
7.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361933

RESUMEN

The enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) was originally identified as a lysosomal enzyme which was deficient in Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy Syndrome). The newly directed attention to the impact of ARSB in human pathobiology indicates a broader, more pervasive effect, encompassing roles as a tumor suppressor, transcriptional mediator, redox switch, and regulator of intracellular and extracellular-cell signaling. By controlling the degradation of chondroitin 4-sulfate and dermatan sulfate by removal or failure to remove the 4-sulfate residue at the non-reducing end of the sulfated glycosaminoglycan chain, ARSB modifies the binding or release of critical molecules into the cell milieu. These molecules, such as galectin-3 and SHP-2, in turn, influence crucial cellular processes and events which determine cell fate. Identification of ARSB at the cell membrane and in the nucleus expands perception of the potential impact of decline in ARSB activity. The regulation of availability of sulfate from chondroitin 4-sulfate and dermatan sulfate may also affect sulfate assimilation and production of vital molecules, including glutathione and cysteine. Increased attention to ARSB in mammalian cells may help to integrate and deepen our understanding of diverse biological phenomenon and to approach human diseases with new insights.


Asunto(s)
Mucopolisacaridosis VI , N-Acetilgalactosamina-4-Sulfatasa , Humanos , Sulfatos de Condroitina/metabolismo , Dermatán Sulfato , Mucopolisacaridosis VI/genética , Mucopolisacaridosis VI/metabolismo , N-Acetilgalactosamina-4-Sulfatasa/genética , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , Sulfatos
8.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35887043

RESUMEN

Galactose and N-acetyl-D-galactosamine-inhibitable lectin of Entamoeba histolytica have roles in the pathogenicity of intestinal amoebiasis. Igl1, the intermediate subunit lectin-1 of E. histolytica, has been shown to have both hemolytic and cytotoxic activities that reside in the C-terminus of the protein. To identify the amino acid regions responsible for these activities, recombinant proteins were prepared and used in hemolytic and cytotoxic assays. The results revealed that Igl1 has multiple domains with hemolytic and cytotoxic activities and that amino acids 787-846, 968-1028 and 1029-1088 are involved in these activities. The hemolytic activities of the fragments were partly inhibited by mannose, galactose and N-acetylgalactosamine, and glucose showed lower or negligible inhibitory effects for the activities. This is the first report of a protozoan protein with hemolytic and cytotoxic activities in multiple domains.


Asunto(s)
Entamoeba histolytica , Galactosa , Lectinas , Proteínas Protozoarias , Acetilgalactosamina/metabolismo , Citotoxinas/metabolismo , Entamoeba histolytica/metabolismo , Entamoeba histolytica/patogenicidad , Galactosa/metabolismo , Hemólisis/fisiología , Humanos , Lectinas/metabolismo , Proteínas Protozoarias/metabolismo
9.
Molecules ; 27(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745067

RESUMEN

The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3'-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3'-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through various biophysical techniques such as circular dichroism, nuclear magnetic resonance, polyacrylamide electrophoresis and denaturation curves. Binding experiments to ASGPR show that the size and the relative position of the therapeutic cargo are critical for the binding of these nanostructures. The biological properties of the resulting parallel G-quadruplex were evaluated demonstrating the absence of the toxicity in cell lines. The internalization preferences of GalNAc-quadruplexes to hepatic cells were also demonstrated as well as the enhancement of the luciferase inhibition using the luciferase assay in HepG2 cell lines versus HeLa cells. All together, we demonstrate that tetramerization of G-rich oligonucleotide is a novel and simple route to obtain the beneficial effects of multivalent N-acetylgalactosamine functionalization.


Asunto(s)
Acetilgalactosamina , G-Cuádruplex , Acetilgalactosamina/química , Receptor de Asialoglicoproteína/metabolismo , Células HeLa , Hepatocitos , Humanos , Oligonucleótidos/metabolismo
10.
Hum Mutat ; 42(11): 1384-1398, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34387910

RESUMEN

Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. We collected, analyzed, and uniformly summarized all published GALNS gene variants, thus updating the previous mutation review (published in 2014). In addition, new variants were communicated by seven reference laboratories in Europe, the Middle East, Latin America, Asia, and the United States. All data were analyzed to determine common alleles, geographic distribution, level of homozygosity, and genotype-phenotype correlation. Moreover, variants were classified according to their pathogenicity as suggested by ACMG. Including those previously published, we assembled 446 unique variants, among which 68 were novel, from 1190 subjects (including newborn screening positive subjects). Variants' distribution was missense (65.0%), followed by nonsense (8.1%), splicing (7.2%), small frameshift deletions(del)/insertions(ins) (7.0%), intronic (4.0%), and large del/ins and complex rearrangements (3.8%). Half (50.4%) of the subjects were homozygous, 37.1% were compound heterozygous, and 10.7% had only one variant detected. The novel variants underwent in silico analysis to evaluate their pathogenicity. All variants were submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) to make them publicly available. Mutation updates are essential for the correct molecular diagnoses, genetic counseling, prenatal and preimplantation diagnosis, and disease management.


Asunto(s)
Condroitinsulfatasas/genética , Mucopolisacaridosis IV/genética , Mutación , Estudios de Asociación Genética , Humanos
11.
Glycobiology ; 31(7): 859-872, 2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-33403396

RESUMEN

N-glycosylated proteins produced in human embryonic kidney 293 (HEK 293) cells often carry terminal N-acetylgalactosamine (GalNAc) and only low levels of sialylation. On therapeutic proteins, such N-glycans often trigger rapid clearance from the patient's bloodstream via efficient binding to asialoglycoprotein receptor (ASGP-R) and mannose receptor (MR). This currently limits the use of HEK 293 cells for therapeutic protein production. To eliminate terminal GalNAc, we knocked-out GalNAc transferases B4GALNT3 and B4GALNT4 by CRISPR/Cas9 in FreeStyle 293-F cells. The resulting cell line produced a coagulation factor VII-albumin fusion protein without GalNAc but with increased sialylation. This glyco-engineered protein bound less efficiently to both the ASGP-R and MR in vitro and it showed improved recovery, terminal half-life and area under the curve in pharmacokinetic rat experiments. By overexpressing sialyltransferases ST6GAL1 and ST3GAL6 in B4GALNT3 and B4GALNT4 knock-out cells, we further increased factor VII-albumin sialylation; for ST6GAL1 even to the level of human plasma-derived factor VII. Simultaneous knock-out of B4GALNT3 and B4GALNT4 and overexpression of ST6GAL1 further lowered factor VII-albumin binding to ASGP-R and MR. This novel glyco-engineered cell line is well-suited for the production of factor VII-albumin and presumably other therapeutic proteins with fully human N-glycosylation and superior pharmacokinetic properties.


Asunto(s)
Glicoproteínas , Sialiltransferasas , Animales , Técnicas de Inactivación de Genes , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Glicoproteínas/farmacocinética , Glicosilación , Células HEK293 , Humanos , Ratas , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
12.
Anal Bioanal Chem ; 413(29): 7229-7240, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34327564

RESUMEN

Negative ion collision-induced dissociation (CID) of underivatized N-glycans has proved to be a simple, yet powerful method for their structural determination. Recently, we have identified a series of such structures with GalNAc rather than the more common galactose capping the antennae of hybrid and complex glycans. As part of a series of publications describing the negative ion fragmentation of different types of N-glycan, this paper describes their CID spectra and estimated nitrogen cross sections recorded by travelling wave ion mobility mass spectrometry (TWIMS). Most of the glycans were derived from the recombinant glycoproteins gp120 and gp41 from the human immunodeficiency virus (HIV), recombinantly derived from human embryonic kidney (HEK 293T) cells. Twenty-six GalNAc-capped hybrid and complex N-glycans were identified by a combination of TWIMS, negative ion CID, and exoglycosidase digestions. They were present as the neutral glycans and their sulfated and α2→3-linked sialylated analogues. Overall, negative ion fragmentation of glycans generates fingerprints that reveal their structural identity.


Asunto(s)
Glicoproteínas/química , Espectrometría de Movilidad Iónica/métodos , Polisacáridos/análisis , Polisacáridos/química , Acetilgalactosamina/química , Glicoproteínas/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Humanos , Nitrógeno/química , Multimerización de Proteína , Proteínas Recombinantes/genética , Espectrometría de Masa por Ionización de Electrospray
13.
Chem Biodivers ; 18(2): e2000827, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33410600

RESUMEN

Vicia palaestina Boiss. is an annual herb that grows in dry areas of eastern Mediterranean countries. It belongs to section Cracca subgenus Vicilla, which is characterized by having a high content in the non-protein amino acid canavanine. The seeds from some of these vetches are also rich in lectins. The purification and characterization of a single-chain lectin from the seeds of V. palaestina is described here. This lectin was the most abundant protein in albumin extracts. It has affinity for the glycoconjugate N-acetylgalactosamine and inhibits proliferation of the cancerous Caco-2 and THP-1 cell lines. In addition to their high nutritional value, the seeds from V. palaestina represent a source of lectins with health promoting and pharmacological potential because of their antiproliferative activity.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Lectinas/química , Lectinas/farmacología , Vicia/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Células CACO-2 , Humanos , Lectinas/aislamiento & purificación , Neoplasias/tratamiento farmacológico , Semillas/química , Células THP-1
14.
J Liposome Res ; 31(1): 79-89, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31691619

RESUMEN

In this study, we describe a novel synthesis of galactosylated lipids by lipase catalysis. Lactitol (Lac), galactose (Gal), or N-acetyl galactosamine (GalNAc) was coupled with cholesterol (CHS) as target head groups by enzyme-catalyzed regioselective esterification to produce three kinds of lipids: CHS-1-Gal, CHS-6-Gal, or CHS-6-GalNAc1. The biological effects of galactosylated lipids carrying different constitutional isomers of the pendent sugar species were investigated. LP-1-Gal (liposomes containing 5.0 molar% of CHS-1-Gal) showed strong binding to tetrameric lectins of Ricinus communis agglutinin (RCA120) in vitro, while LP-6-Gal (liposomes containing 5.0 molar% of CHS-6-Gal) and LP-6-GalNAc (liposomes containing 5.0 molar% of CHS-6-GalNAc) did not. After intravenous injection, LP-6-GalNAc, LP-1-Gal and LP-6-Gal rapidly disappeared from the blood and accumulated rapidly in liver (up to 74.88 ± 4.11%, 58.67 ± 5.75%, and 47.66 ± 4.56% of injected dose/g organ within 4 h, respectively). This is significantly higher than the uptake of unmodified liposomes (Unmod-LP) (18.67 ± 6.07%). Pre-injection of asialofetuin significantly inhibits liver uptake of Gal-liposomes (P < 0.01), with the degree of inhibition appearing in the following order: LP-6-GalNAc (73.29%) > LP-1-Gal (67.06%) > LP-6-Gal (53.61%). More importantly, LP-6-GalNAc was preferentially taken up by hepatocytes and the uptake ratio by parenchymal cells (PC) and nonparenchymal cells (NPC) (PC/NPC ratio) was 11.03 higher than LP-1-Gal (7.32), LP-6-Gal (5.83) and Unmod-LP (2.39). We suggest that liposomes containing the novel galactosylated lipid CHS-6-GalNAc have potential as drug delivery carriers for hepatocyte-selective targeting.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Galactosamina/metabolismo , Galactosa/metabolismo , Hepatocitos/metabolismo , Animales , Receptor de Asialoglicoproteína/química , Femenino , Galactosamina/química , Galactosa/química , Hepatocitos/química , Liposomas/química , Liposomas/metabolismo , Ratones , Ratones Endogámicos , Estructura Molecular , Tamaño de la Partícula , Estereoisomerismo
15.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948256

RESUMEN

Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is a rare, autosomal recessive genetic disease, mainly affecting the pediatric age group. The disease is due to pathogenic variants of the ARSB gene, coding for the lysosomal hydrolase N-acetylgalactosamine 4-sulfatase (arylsulfatase B, ASB). The enzyme deficit causes a pathological accumulation of the undegraded glycosaminoglycans dermatan-sulphate and chondroitin-sulphate, natural substrates of ASB activity. Intracellular and extracellular deposits progressively take to a pathological scenario, often severe, involving most organ-systems and generally starting from the osteoarticular apparatus. Neurocognitive and behavioral abilities, commonly described as maintained, have been actually investigated by few studies. The disease, first described in 1963, has a reported prevalence between 0.36 and 1.3 per 100,000 live births across the continents. With this paper, we wish to contribute an updated overview of the disease from the clinical, diagnostic, and therapeutic sides. The numerous in vitro and in vivo preclinical studies conducted in the last 10-15 years to dissect the disease pathogenesis, the efficacy of the available therapeutic treatment (enzyme replacement therapy), as well as new therapies under study are here described. This review also highlights the need to identify new disease biomarkers, potentially speeding up the diagnostic process and the monitoring of therapeutic efficacy.


Asunto(s)
Mucopolisacaridosis VI/genética , Mucopolisacaridosis VI/fisiopatología , Sulfatos de Condroitina/uso terapéutico , Terapia de Reemplazo Enzimático , Glicosaminoglicanos/uso terapéutico , Humanos , Mucopolisacaridosis VI/terapia , N-Acetilgalactosamina-4-Sulfatasa/genética
16.
J Biol Chem ; 294(13): 5038-5049, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30728244

RESUMEN

Glycosylphosphatidylinositols (GPIs) are linked to many cell-surface proteins, anchor these proteins in the membrane, and are well characterized. However, GPIs that exist in the free form on the mammalian cell surface remain largely unexplored. To investigate free GPIs in cultured cell lines and mouse tissues, here we used the T5-4E10 mAb (T5 mAb), which recognizes unlinked GPIs having an N-acetylgalactosamine (GalNAc) side chain linked to the first mannose at the nonreducing terminus. We detected free GPIs bearing the GalNAc side chain on the surface of Neuro2a and CHO, but not of HEK293, K562, and C2C12 cells. Furthermore, free GPIs were present in mouse pons, medulla oblongata, spinal cord, testis, epididymis, and kidney. Using a panel of Chinese hamster ovary cells defective in both GPI-transamidase and GPI remodeling pathway, we demonstrate that free GPIs follow the same structural remodeling pathway during passage from the endoplasmic reticulum to the plasma membrane as do protein-linked GPI. Specifically, free GPIs underwent post-GPI attachment to protein 1 (PGAP1)-mediated inositol deacylation, PGAP5-mediated removal of the ethanolamine phosphate from the second mannose, and PGAP3- and PGAP2-mediated fatty acid remodeling. Moreover, T5 mAb recognized free GPIs even if the inositol-linked acyl chain or ethanolamine-phosphate side chain linked to the second mannose is not removed. In contrast, addition of a fourth mannose by phosphatidylinositol glycan anchor biosynthesis class Z (PIGZ) inhibited T5 mAb-mediated detection of free GPIs. Our results indicate that free GPIs are normal components of the plasma membrane in some tissues and further characterize free GPIs in mammalian cells.


Asunto(s)
Membrana Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Animales , Células CHO , Línea Celular , Membrana Celular/química , Cricetulus , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Glicosilfosfatidilinositoles/análisis , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
17.
J Biol Chem ; 294(44): 16400-16415, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31530641

RESUMEN

α-Linked GalNAc (α-GalNAc) is most notably found at the nonreducing terminus of the blood type-determining A-antigen and as the initial point of attachment to the peptide backbone in mucin-type O-glycans. However, despite their ubiquity in saccharolytic microbe-rich environments such as the human gut, relatively few α-N-acetylgalactosaminidases are known. Here, to discover and characterize novel microbial enzymes that hydrolyze α-GalNAc, we screened small-insert libraries containing metagenomic DNA from the human gut microbiome. Using a simple fluorogenic glycoside substrate, we identified and characterized a glycoside hydrolase 109 (GH109) that is active on blood type A-antigen, along with a new subfamily of glycoside hydrolase 31 (GH31) that specifically cleaves the initial α-GalNAc from mucin-type O-glycans. This represents a new activity in this GH family and a potentially useful new enzyme class for analysis or modification of O-glycans on protein or cell surfaces.


Asunto(s)
Glicósido Hidrolasas/síntesis química , alfa-N-Acetilgalactosaminidasa/metabolismo , Microbioma Gastrointestinal/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Glicósidos/metabolismo , Glicosilación , Hexosaminidasas/metabolismo , Humanos , Mucinas/metabolismo , Péptidos/metabolismo , Polisacáridos/química , Proteínas/metabolismo , Especificidad por Sustrato , alfa-N-Acetilgalactosaminidasa/genética
18.
Glycobiology ; 30(7): 433-445, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-31897472

RESUMEN

Morquio syndrome type A, also known as MPS IVA, is a rare autosomal recessive disorder caused by deficiency of N-acetylgalactosamine-6-sulfatase, a lysosomal hydrolase critical in the degradation of keratan sulfate (KS) and chondroitin sulfate (CS). The CS that accumulates in MPS IVA patients has a disease-specific nonreducing end (NRE) terminating with N-acetyl-D-galactosamine 6-sulfate, which can be specifically quantified after enzymatic depolymerization of CS polysaccharide chains. The abundance of N-acetyl-D-galactosamine 6-sulfate over other possible NRE structures is diagnostic for MPS IVA. Here, we describe an assay for the liberation and measurement of N-acetyl-D-galactosamine 6-sulfate and explore its application to MPS IVA patient samples in pilot studies examining disease detection, effects of age and treatment with enzyme-replacement therapy. This assay complements the existing urinary KS assay by quantifying CS-derived substrates, which represent a distinct biochemical aspect of MPS IVA. A more complete understanding of the disease could help to more definitively detect disease across age ranges and more completely measure the pharmacodynamic efficacy of therapies. Larger studies will be needed to clarify the potential value of this CS-derived substrate to manage disease in MPS IVA patients.


Asunto(s)
Sulfatos de Condroitina/metabolismo , Mucopolisacaridosis IV/metabolismo , Adulto , Células Cultivadas , Niño , Sulfatos de Condroitina/química , Sulfatos de Condroitina/orina , Condroitinsulfatasas/metabolismo , Terapia de Reemplazo Enzimático , Humanos , Mucopolisacaridosis IV/terapia , Mucopolisacaridosis IV/orina
19.
Mar Drugs ; 18(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138151

RESUMEN

Seaweed lectins, especially high-mannose-specific lectins from red algae, have been identified as potential antiviral agents that are capable of blocking the replication of various enveloped viruses like influenza virus, herpes virus, and HIV-1 in vitro. Their antiviral activity depends on the recognition of glycoprotein receptors on the surface of sensitive host cells-in particular, hemagglutinin for influenza virus or gp120 for HIV-1, which in turn triggers fusion events, allowing the entry of the viral genome into the cells and its subsequent replication. The diversity of glycans present on the S-glycoproteins forming the spikes covering the SARS-CoV-2 envelope, essentially complex type N-glycans and high-mannose type N-glycans, suggests that high-mannose-specific seaweed lectins are particularly well adapted as glycan probes for coronaviruses. This review presents a detailed study of the carbohydrate-binding specificity of high-mannose-specific seaweed lectins, demonstrating their potential to be used as specific glycan probes for coronaviruses, as well as the biomedical interest for both the detection and immobilization of SARS-CoV-2 to avoid shedding of the virus into the environment. The use of these seaweed lectins as replication blockers for SARS-CoV-2 is also discussed.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , Lectinas/química , Manosa/química , Neumonía Viral/virología , Polisacáridos/química , Algas Marinas/química , COVID-19 , Infecciones por Coronavirus/diagnóstico , Pandemias , Neumonía Viral/diagnóstico , SARS-CoV-2
20.
J Biol Chem ; 293(27): 10620-10629, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29764936

RESUMEN

The bacterial lung pathogen Streptococcus pneumoniae has a unique nutritional requirement for exogenous choline and attaches phosphorylcholine (P-Cho) residues to the GalpNAc moieties of its teichoic acids (TAs) in its cell wall. Two phosphorylcholine transferases, LicD1 and LicD2, mediate the attachment of P-Cho to the O-6 positions of the two GalpNAc residues present in each repeating unit of pneumococcal TAs (pnTAs), of which only LicD1 has been determined to be essential. At the molecular level, the specificity of the P-Cho attachment to pnTAs by LicD1 and LicD2 remains still elusive. Here, using detailed structural analyses of pnTAs from a LicD2-deficient strain, we confirmed the specificity in the attachment of P-Cho residues to pnTA. LicD1 solely transfers P-Cho to α-d-GalpNAc moieties, whereas LicD2 attaches P-Cho to ß-d-GalpNAc. Further, we investigated the role of the pneumococcal phosphorylcholine esterase (Pce) in the modification of the P-Cho substitution pattern of pnTAs. To clarify the specificity of Pce-mediated P-Cho hydrolysis, we evaluated different concentrations and pH conditions for the treatment of pneumococcal lipoteichoic acid with purified Pce. We show that Pce can hydrolyze both P-Cho residues of the terminal repeat of the pnTA chain and almost all P-Cho residues bound to ß-d-GalpNAc in vitro However, hydrolysis in vivo was restricted to the terminal repeat. In summary, our findings indicate that LicD1 and LicD2 specifically transfer P-Cho to α-d-GalpNAc and ß-d-GalpNAc moieties, respectively, and that Pce removes distinct P-Cho substituents from pnTAs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lipopolisacáridos/química , Fosforilcolina/química , Receptores de Superficie Celular/metabolismo , Streptococcus pneumoniae/enzimología , Ácidos Teicoicos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Lipopolisacáridos/metabolismo , Mutación , Fosforilcolina/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Ácidos Teicoicos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda