RESUMEN
BACKGROUND: Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men worldwide, and its incidence has risen substantially in recent years. Therefore, there is an urgent need to identify novel biomarkers and precise therapeutic targets for managing PCa progression and recurrence. METHODS: We investigated the clinical significance of NCAPG2 in PCa by exploring public datasets and our tissue microarray. Receiver operating characteristic (ROC) curve and survival analyses were performed to evaluate the correlation between NCAPG2 and PCa progression. Cell proliferation, wound healing, transwell, flow cytometry, cell cycle, tumor sphere formation, immunofluorescence (IF), co-immunoprecipitation (co-IP), and chromatin immunoprecipitation (ChIP) assays were conducted to further elucidate the molecular mechanism of NCAPG2 in PCa. Subcutaneous and orthotopic xenograft models were applied to investigate the effects of NCAPG2 on PCa proliferation in vivo. Tandem mass tag (TMT) quantitative proteomics was utilized to detect proteomic changes under NCAPG2 overexpression. RESULTS: NCAPG2 was significantly upregulated in PCa, and its overexpression was associated with PCa progression and unfavorable prognosis. Knockdown of NCAPG2 inhibited the malignant behavior of PCa cells, whereas its overexpression promoted PCa aggressiveness. NCAPG2 depletion attenuated the development and growth of PCa in vivo. TMT quantitative proteomics analyses indicated that c-MYC activity was strongly correlated with NCAPG2 expression. The malignancy-promoting effect of NCAPG2 in PCa was mediated via c-MYC. NCAPG2 could directly bind to STAT3 and induce STAT3 occupancy on the MYC promoter, thus to transcriptionally activate c-MYC expression. Finally, we identified that NCAPG2 was positively correlated with cancer stem cell (CSC) markers and enhanced self-renewal capacity of PCa cells. CONCLUSIONS: NCAPG2 is highly expressed in PCa, and its level is significantly associated with PCa prognosis. NCAPG2 promotes PCa malignancy and drives cancer stemness via the STAT3/c-MYC signaling axis, highlighting its potential as a therapeutic target for PCa.
Asunto(s)
Proteínas Cromosómicas no Histona , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-myc , Humanos , Masculino , Línea Celular Tumoral , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteómica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismoRESUMEN
BACKGROUND: Circular RNAs (circRNAs) are known to play a crucial role in a variety of malignancies. However, the precise role of circRNAs in cervical squamous cell carcinoma (CSCC) remains largely unknown. METHODS: The expression of circ0001955 was determined by real-time quantitative PCR and fluorescence in situ hybridization. To examine the effects of circ0001955 on CSCC metastasis and growth, functional experiments were conducted in vitro and in vivo. Mechanistically, nucleocytoplasmic separation, dual luciferase reporter assay, RNA antisense purification experiments, and rescue experiments were performed to confirm the interaction between circ0001955, miR-188-3p, and NCAPG2 in CSCC. RESULTS: Here, we demonstrated that a circRNA derived from the CSNK1G1 gene (circ0001955) is significantly upregulated in CSCC. The overexpression of circ0001955 promotes tumor proliferation and metastasis, whereas the knockdown of circ0001955 exerts the opposite effects. Mechanistically, circ0001955 competitively binds miR-188-3p and prevents miR-188-3p from reducing the levels of NCAPG2, activating the AKT/mTOR signaling pathway to induce epithelial mesenchymal transformation. Notably, the application of an inhibitor of mTOR significantly antagonized circ0001955-mediated CSCC tumorigenesis. CONCLUSION: circ0001955 promotes CSCC tumorigenesis and metastasis via the miR-188-3p/NCAPG2 axis which would provide an opportunity to search new therapeutic targets for CSCC.
Asunto(s)
MicroARNs , Neoplasias del Cuello Uterino , Femenino , Humanos , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias del Cuello Uterino/genética , Hibridación Fluorescente in Situ , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Cromosómicas no Histona/metabolismoRESUMEN
Malignant melanoma is a highly aggressive cutaneous neoplasm with increasing incidence worldwide. Non-SMC condensin II complex subunit G2 (NCAPG2) exerts import biological function in the pathogenesis of several tumors. In this study, the functional roles of NCAPG2 knockdown in malignant melanoma were revealed in in vitro and in vivo experiments. In vitro study demonstrated that NCAPG2 depletion could inhibit proliferation and migration and promote apoptosis of malignant melanoma cells. Our in vivo date further confirmed that NCAPG2 knockdown attenuated tumor growth of malignant melanoma. Interestingly, NCAPG2 drove tumor development of malignant melanoma through activating the signal transducer and activator of transcription 3 (STAT3). In conclusion, this study elaborated the tumor-promoting effects of NCAPG2 on malignant melanoma, and NCAPG2 may be a potential therapeutic target for malignant melanoma therapy.
Asunto(s)
Proteínas Cromosómicas no Histona , Melanoma , Neoplasias Cutáneas , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Animales , Melanoma Cutáneo MalignoRESUMEN
NCAPG2 (non-SMC condensin II complex subunit G2), as an important factor in cell mitosis, has been the focus in the study of different cancers. However, the role of NCAPG2 in the malignancy of glioblastoma cells remains unknown. The findings from the present study demonstrated that NCAPG2 was significantly increased in human glioblastoma tissues and was associated with poor clinical outcome. Moreover, NCAPG2 could promote proliferation, migration, and invasion and regulate cell cycle in glioblastoma cells. Investigation of the molecular mechanism indicated that NCAPG2 regulated HBO1 phosphorylation and H4 histone acetylase activation, modulated the activation of Wnt/ß-catenin pathway, and the binding of MCM protein to chromatin to exert its role. Furthermore, knockdown of HBO1 was found to reverse the effect of NCAPG2 overexpression on cell proliferation, migration, invasion, and cell cycle. In addition, knockdown of NCAPG2 attenuated glioblastoma tumorigenesis in vivo. Taken together, the findings demonstrated that NCAPG2 facilitates the malignancy of glioblastoma cells and xenograft tumor growth via HBO1 activation by phosphorylation. These results improve our understanding of the mechanism underlying glioblastoma progression and may contribute to the identification of novel biomarkers and therapeutic targets for glioblastoma.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas Cromosómicas no Histona/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Histona Acetiltransferasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Neoplasias Encefálicas/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Invasividad Neoplásica , Fosforilación , Unión Proteica , Resultado del Tratamiento , Vía de Señalización WntRESUMEN
NCAPG2 is a component of the condensin II complex and contributes to chromosome segregation via microtubule-kinetochore attachment during mitosis. It is well known that NCAPG2 plays a critical role in cell mitosis; however, the role of altered NCAPG2 expression and its transcriptional regulatory function in cancer development remains mostly unknown. Here, for the first time we reported that NCAPG2 was evidently increased in non-small cell lung cancer tissues compared to adjacent normal lung tissues. Clinicopathological data analysis showed that NCAPG2 overexpression was significantly correlated with lymph node metastasis and pathologic-Tumour Nodes Metastasen stages, and was an independent prognostic factor in lung adenocarcinoma patients. Moreover, siRNA-mediated knockdown of NCAPG2 could inhibit tumour cell growth of lung adenocarcinoma cells (A549 and H1299) in vitro and could significantly lead to cell cycle arrest in the G2 phase. Furthermore, we found that NCAPG2 silencing significantly decreased the expression levels of G2/M phase cell cycle-related protein expressions (Cyclin B1, Cdc2) and increased the expression levels of p27 and p21 through Western blot analysis. Taken together, we demonstrated that increased NCAPG2 expression could regulate cell proliferation and identified as a poor prognostic biomarker in lung adenocarcinoma.
Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Proteínas Cromosómicas no Histona/genética , Fase G2 , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mitosis , Adenocarcinoma del Pulmón , Anciano , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Masculino , Análisis Multivariante , Pronóstico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/metabolismo , Análisis de Supervivencia , Regulación hacia Arriba/genética , Quinasa Tipo Polo 1RESUMEN
The Mitochondrial tRNALeu (MT-TL1) mutation, m.3243A>G constitutes the commonest identified mitochondrial genome mutation. Characteristically, giving rise to MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes), a phenotypic spectrum associated with this genetic variant is now apparent. We report on the first patient with infantile hemiparesis, without comorbid encephalopathy, attributed to this variant. This further expands the recognized disease spectrum and highlights the need to consider mitochondrial genomic mutations in cases of cryptogenic focal neurological deficit in infancy. The potential for genetic disease modifiers is additionally discussed.
Asunto(s)
Mitocondrias/genética , Mutación/genética , Enfermedades del Sistema Nervioso/genética , ARN de Transferencia de Leucina/genética , Preescolar , ADN Mitocondrial/genética , Exoma/genética , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Análisis de Secuencia de ADNRESUMEN
Among the three most prevalent cancers affecting the female reproductive system, ovarian cancer (OV) ranks as the second most frequently diagnosed. It is important to investigate the genomic complexity of OV to develop diagnostic and therapeutic strategies. Through the utilization of bioinformatics analysis, it was determined that RacGTPase Activating Protein 1 (RACGAP1) holds significant significance in the field of OV chemotherapeutics, an aspect that has not been thoroughly explored in prior investigations. In our study, a notable increase in RACGAP1 expression was detected in ovarian cancer, demonstrating a robust association with clinicopathological features and patient prognosis. In vivo and in vitro testing revealed that RACGAP1 acts synergistically with chemotherapeutics to enhance their effects on ovarian cancer. Furthermore, an interaction between RACGAP1 and the subunit G2 of the condensin II complex, known as non-SMC condensin II complex subunit G2 (NCAPG2), has been identified. Our findings may provide new insight for improving therapeutic strategies for OV.
RESUMEN
Objectives: Adrenocortical carcinoma (ACC), a rare and aggressive adrenal cortex cancer, poses significant challenges due to high mortality, poor prognosis, and early post-surgery recurrence. Variability in survival across ACC stages emphasizes the need to uncover its molecular underpinnings. Adrenocortical adenoma, a benign tumor, adds to diagnostic challenges, highlighting the necessity for molecular insights. The Non-SMC Associated Condensin Complex (NCAP) gene family, recognized for roles in chromosomal structure and cell cycle control. This study focuses on evaluating NCAP gene functions and importance in ACC through gene expression profiling to identify diagnostic and therapeutic targets. Methods: Microarray datasets from ACC patients, obtained from the Gene Expression Omnibus database, were normalized to eliminate batch effects. Differential expression analysis of NCAP family genes, facilitated by the GEPIA2 database, included survival and pathological stage evaluations. A Protein-Protein Interaction network was constructed using GeneMANIA, and additional insights were gained through Gene Ontology enrichment analysis, correlation analysis, and ROC curve analysis. Results: ACC samples exhibited elevated levels of NCAPG, NCAPG2, and NCAPH compared to normal and adenoma samples. Increased expression of these genes correlated with poor overall survival, particularly in advanced disease stages. The Protein-Protein Interaction network highlighted interactions with related proteins, and Gene Ontology enrichment analysis demonstrated their involvement in chromosomal structure and control. Differentially expressed NCAP genes showed positive associations, and ROC curve analysis indicated their high discriminatory power in identifying ACC from adenoma and normal samples. Conclusion: The study emphasizes the potential importance of NCAPG, NCAPG2, and NCAPH in ACC, suggesting roles in tumor aggressiveness and diagnostic relevance. These genes could serve as therapeutic targets and markers for ACC, but further exploration into their molecular activities and validation studies is imperative to fully harness their diagnostic and therapeutic potential, advancing precision medicine approaches against this rare but lethal malignancy.
RESUMEN
NCAPG2 has been reported to be associated with tumorigenesis in various types of cancer. However, data on the pathological mechanisms of NCAPG2 in pan-cancers remain lacking. Therefore, the study aimed to comprehensively elucidate the immune characteristics and prognostic of NCAPG2 in tumor microenvironments (TMEs). NCAPG2 was overexpressed in many tumor types, and this overexpression is related to poor clinical stages and prognosis. Furthermore, elevated NCAPG2 expression was strongly associated with TMEs. Moreover, gene set enrichment analysis was performed to investigate the pathways associated with NCAPG2, revealing its involvement in several immune-related pathways. Finally, we predicted the immunotherapeutic value and sensitivity to drugs based on NCAPG2 expression. Our study revealed that NCAPG2 could be utilized as an immune-related biomarker for both diagnosing and predicting the prognosis of multiple cancer types. Therefore, our findings suggest that targeting NCAPG2 in TMEs could be a promising therapeutic strategy.
RESUMEN
More recently, NCAPG2 has emerged as an intrinsically essential participant of the condensin II complex involved in the process of chromosome cohesion and stabilization in mitosis, and its position in particular tumours is now being highlighted. Simultaneously, the genetic properties of NCAPG2 hint that it might have enormous potential to interpret the malignant progression of tumors in a broader perspective, that is, in pan-cancer. Yet, at present, this recognition remains merely superficial and there is a lack of more detailed studies to explore the underlying pathogenesis. To meet this need, the current study was undertaken to comprehensively elucidate the potential functions of NCAPG2 in pan-cancer, based on a combination of existing databases like TCGA and GTEx. NCAPG2 was identified to be overexpressed in almost every tumor and to exhibit significant prognostic and diagnostic efficacy. Furthermore, the correlation between NCAPG2 and selected immune features, namely immune cell infiltration, immune checkpoint genes, TMB, MSI, etc. also indicates that NCAPG2 could potentially be applied in guidance of immunotherapy. Subsequently, in pancreatic cancer, this study further clarified the utility of NCAPG2 that downregulation of its expression could result in reduced proliferation, invasion and metastasis of pancreatic cancer cells, among such phenotypical changes, the epithelial-mesenchymal transition disruption could be at least one of the possible mechanisms raising or enhancing tumorigenesis. Taken above, NCAPG2, as a member of pan-oncogenes, would serve as a biomarker and potential therapeutic target for a range of malignancies, sharing new insights into precision medicine.
Asunto(s)
Neoplasias Pancreáticas , Humanos , Pronóstico , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Oncogenes , Carcinogénesis , Proteínas Cromosómicas no Histona , Neoplasias PancreáticasRESUMEN
Hepatocellular carcinoma (HCC) has a poor prognosis because of its limited drug responses in clinical trials. Therefore, it is crucial to clarify the molecular mechanisms of HCC progression to identify new diagnostic markers and therapeutic targets. Here, we report that brachyury, which regulates the gene encoding the non-SMC condensin II complex subunit G2 (NCAPG2), promotes tumorigenesis in HCC. Knockdown of brachyury led to inhibition of cancer progression in vitro and in vivo. Chromatin immunoprecipitation-sequencing data indicated that the oncogene NCAPG2 is a direct target of brachyury. Furthermore, NCAPG2 knockdown inhibited the proliferation and migration of HCC cells and attenuated brachyury-induced tumorigenesis. Overexpression and decreased DNA methylation of NCAPG2 were associated with a poor prognosis, and NCAPG2 was positively correlated with various immune cell infiltrates, cancer-associated fibroblasts, and immune checkpoint molecule expression levels in the tumor microenvironment. Moreover, the effectiveness of immune checkpoint blockade was decreased in the high NCAPG2 expression group. Together, these findings demonstrated a coregulatory effect of the brachyury/NCAPG2 axis during HCC progression.
RESUMEN
Erlotinib is a highly specific and reversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), but resistance inevitably develops as the disease progresses. Erlotinib resistance and cancer stem cells (CSCs) are poor factors hindering the prognosis of patients with lung adenocarcinoma (LUAD). Although studies have shown that erlotinib resistance and CSCs can jointly promote cancer development, the mechanism is currently unclear. Here, we investigated the potential biomarker and molecular mechanism of erlotinib resistance and cancer stemness in LUAD. An erlotinib resistance model based on four genes was constructed from The Cancer Genome Atlas (TCGA), the GEO database, the Cancer Cell Line Encyclopedia (CCLE), and the Genomics of Drug Sensitivity in Cancer (GDSC). Through multiple bioinformatic analyses, NCAPG2 was identified as a key gene for erlotinib resistance and stemness in LUAD. Further in vitro experiments demonstrated that NCAPG2 maintains stemness and contributes to erlotinib resistance in LUAD. In summary, NCAPG2 plays a vital role in stemness and erlotinib resistance in LUAD.
RESUMEN
Gliomas account for 75% of all primary malignant brain tumors in adults and are associated with high mortality. Mounting evidence has shown that NCAPG2 is differentially expressed in various cancers. However, the prognostic value and immune functions of NCAPG2 in low-grade glioma (LGG) remain unresolved. In the present study, we revealed that NCAPG2 was up-regulated in LGG, and its higher expression was associated with adverse clinical outcomes and poor clinical characteristics, including WHO grade, IDH mutation, 1p/19q codeletion, and primary therapy outcome. The results of the Cox regression analysis revealed that NCAPG2 was an independent factor for the prognosis of low-grade glioma. Meanwhile, we also established a nomogram based on NCAPG2 to predict the 1-, 3-, or 5-year survival in LGG patients. Furthermore, we found that Copy number variation (CNV) and DNA hypomethylation results in its overexpression in LGG. In addition, functional annotation confirmed that NCAPG2 was mainly involved in the immune regulation and WNT signaling pathways. Finally, we determined that increased expression of NCAPG2 was correlated with infiltration levels of various immune cells and immune checkpoint in LGG. Importantly, we found that NCAPG2 was highly expressed in glioma stem cells lines and knockdown of NCAPG2 significantly inhibited the self-renewal ability of GSC. This is the first study to identify NCAPG2 as a new potential prognostic biomarker and characterize the functional roles of NCAPG2 in the progression of LGG, and provides a novel potential diagnostic and therapeutic biomarker for LGG in the future.
RESUMEN
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. NCAPG2 (non-SMC condensin II complex subunit G2) has been shown to be upregulated in various human cancers. Nevertheless, the underlying biological function and potential mechanisms of NCAPG2 driving the progression of LUAD remain unclear. In this study, we investigated the role of NCAPG2 in LUAD and found that the expression of NCAPG2 in LUAD tissues was significantly higher than that of NCAPG2 expression in adjacent normal tissues. Kaplan-Meier survival analysis showed that patients with higher NCAPG2 expression correlated with unfavorable clinical outcomes. Receiver operating characteristic (ROC) curve analysis showed that the AUC value of NCAPG2 was 0.914. Correlation analysis showed that NCAPG2 expression was associated with immune infiltration in LUAD. Finally, we found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of NCAPG2 inhibited cell proliferation, cell migration, and cell invasion of LUAD in vitro. More importantly, we established the AL035458.2/hsa-miR-181a-5p axis as the most likely upstream ncRNA-related pathway of NCAPG2 in LUAD. In conclusion, our data demonstrated that ncRNA-mediated high expression of NCAPG2 was correlated with progression and immune infiltration, and could serve as a prognostic biomarker for LUAD.
RESUMEN
BACKGROUND: Non-small-cell lung carcinoma (NSCLC) seriously threatens the health of human beings. Aberrant expression of lncRNAs has been confirmed to be related with the progression of multiple malignant tumors, including NSCLC. LncRNA FGF12-AS2 has been considered to be upregulated in NSCLC. However, the mechanism by which FGF12-AS2 promotes the tumorigenesis of NSCLC remains elusive. METHODS: Gene and protein expressions in NSCLC cells were measured by q-PCR and western blot, respectively. CCK-8 and immunofluorescence staining were performed to detect the cell proliferation. Cell apoptosis was tested by flow cytometry. Transwell assay was used to detect the cell migration and invasion. Finally, the dual luciferase report assay was used to verify the relation among FGF12-AS2, miR-188-3p, and NCAPG2. RESULTS: Downregulation of FGF12-AS2 significantly inhibited the proliferation of NSCLC cells via inducing apoptosis. In addition, FGF12-AS2 silencing notably suppressed the migration and invasion of A549 cells. Meanwhile, FGF12-AS2 modulated the progression of NSCLC via regulation of miR-188-3p/NCAPG2 axis. Finally, knockdown of FGF12-AS2 inhibited the tumorigenesis of NSCLC via suppressing the EMT process of NSCLC. CONCLUSION: Downregulation of lncRNA FGF12-AS2 suppressed the tumorigenesis of NSCLC via sponging miR-188-3p. Thus, FGF12-AS2 may serve as a potential target for the treatment of NSCLC.
RESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is a highly fatal malignant cancer worldwide. Elucidating the underlying molecular mechanism of HCC progression is critical for the identification of new therapeutic targets for HCC. This study aimed to determine the role of Non-SMC condensin II complex subunit G2 (NCAPG2) in HCC proliferation and metastasis. METHODS: We detected NCAPG2 expression in tissues using immunohistochemistry, western blotting and real-time PCR. The effects of NCAPG2 on cell proliferation and metastasis were evaluated both in vitro and in vivo. Immunocytochemistry, enzyme linked immunosorbent assay, co-immunoprecipitation and luciferase reporter assay were performed to uncover the underlying mechanisms. FINDINGS: We found that NCAPG2 is frequently upregulated in HCC tumour tissues and predicts a poor prognosis. NCAPG2 overexpression promotes HCC proliferation, migration, and invasion through activating STAT3 and NF-κB signalling pathways. Moreover, NCAPG2 is a direct target of miR-188-3p. We demonstrated the existence of a positive feedback loop between NCAPG2 and p-STAT3 and a negative feedback loop between NCAPG2 and miR-188-3p. INTERPRETATION: Our study indicates that NCAPG2 overexpression could drive HCC proliferation and metastasis through activation of the STAT3 and NF-κB/miR-188-3p pathways. These findings may contribute to the identification of novel biomarkers and therapeutic targets for HCC. FUND: National Key Program for Science and Technology Research and Development (Grant No. 2016YFC0905902); the National Natural Scientific Foundation of China (Nos. 81772588, 81602058, 81773194); University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (Grant No. UNPYSCT-2016200); the Innovative Research Program for Graduate of Harbin Medical University (Grant Nos. YJSCX2017-38HYD, YJSCX2016-18HYD).
Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Cromosómicas no Histona/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Sitios de Unión , Biomarcadores de Tumor , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Ratones , Modelos Biológicos , Metástasis de la Neoplasia , Dinámica Poblacional , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Transducción de Señal , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Down syndrome (DS) is the most common aneuploidy in live-born individuals and it is well recognized with various phenotypic expressions. Although an extra chromosome 21 is the genetic cause for DS, specific phenotypic features may result from the duplication of smaller regions of the chromosome and more studies need to define genotypic and phenotypic correlations. CASE REPORT: We report on a 26 year old male with partial trisomy 21 presenting mild clinical symptoms relative to DS including borderline intellectual disability. In particular, the face and the presence of hypotonia and keratoconus were suggestive for the DS although the condition remained unnoticed until his adult age array comparative genomic hybridization (aCGH) revealed a 10.1 Mb duplication in 21q22.13q22.3 and a small deletion of 2.2 Mb on chromosomal band 7q36 arising from a paternal translocation t(7;21). The 21q duplication encompasses the gene DYRK1. CONCLUSION: Our data support the evidence of specific regions on distal 21q whose duplication results in phenotypes recalling the typical DS face. Although the duplication region contains DYRK1, which has previously been implicated in the causation of DS, our patient has a borderline IQ confirming that their duplication is not sufficient to cause the full DS phenotype.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 21/genética , Síndrome de Down/genética , Trisomía/genética , Adulto , Estudios de Asociación Genética/métodos , Humanos , Masculino , Translocación Genética/genéticaRESUMEN
7qter deletion syndrome includes prenatal and/or postnatal growth retardation, microcephaly, psychomotor delay or mental retardation and a characteristic dysmorphism. If clinical features are well described, the molecular mechanisms underlying the 7qter deletion syndrome remain unknown. Those deletions usually arise de novo. Here, we describe a young boy with an abnormal phenotype consistent with a 7qter deletion syndrome. High resolution genomic analysis (Affymetrix Human Genome Wide SNP 6.0) revealed a 7q36.3 deletion encompassing NCAPG2, ESYT2, WDR60 and VIPR2, inherited from his asymptomatic father and paternal grandfather. In addition, the patient also harbored a MCPH1 deletion inherited from his healthy mother. Combined NCAPG2 and MCPH1 deletions were correlated with low mRNA levels and protein expression in the patient. MCPH1 and NCAPG2 proteins interaction is known to control chromosome structure and we thus propose that double heterozygosity for null mutations of those two genes of the Condensin II system contribute to mental deficiency with severe microcephaly phenotype.