Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.101
Filtrar
Más filtros

Publication year range
1.
J Biol Chem ; 300(7): 107463, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876304

RESUMEN

Chemotherapeutic agents for treating colorectal cancer (CRC) primarily induce apoptosis in tumor cells. The ubiquitin-proteasome system is critical for apoptosis regulation. Deubiquitinating enzymes (DUBs) remove ubiquitin from substrates to reverse ubiquitination. Although over 100 DUB members have been discovered, the biological functions of only a small proportion of DUBs have been characterized. Here, we aimed to systematically identify the DUBs that contribute to the development of CRC. Among the DUBs, ubiquitin-specific protease 36 (USP36) is upregulated in CRC. We showed that the knockdown of USP36 induces intrinsic and extrinsic apoptosis. Through gene silencing and coimmunoprecipitation techniques, we identified survivin and cIAP1 as USP36 targets. Mechanistically, USP36 binds and removes lysine-11-linked ubiquitin chains from cIAP1 and lysine-48-linked ubiquitin chains from survivin to abolish protein degradation. Overexpression of USP36 disrupts the formation of the XIAP-second mitochondria-derived activator of caspase complex and promotes receptor-interacting protein kinase 1 ubiquitination, validating USP36 as an inhibitor to intrinsic and extrinsic apoptosis through deubiquitinating survivin and cIAP1. Therefore, our results suggest that USP36 is involved in CRC progression and is a potential therapeutic target.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Proteínas Inhibidoras de la Apoptosis , Survivin , Ubiquitina Tiolesterasa , Ubiquitinación , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Survivin/metabolismo , Survivin/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética
2.
J Cell Mol Med ; 28(15): e18583, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39123292

RESUMEN

In this study, we investigated whether the ability of aucubin to mitigate the pathology of GONFH involves suppression of TLR4/NF-κB signalling and promotion of macrophage polarization to an M2 phenotype. In necrotic bone tissues from GONFH patients, we compared levels of pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages as well as levels of TLR4/NF-κB signalling. In a rat model of GONFH, we examined the effects of aucubin on these parameters. We further explored its mechanism of action in a cell culture model of M1 macrophages. Necrotic bone tissues from GONFH patients contained a significantly increased macrophage M1/M2 ratio, and higher levels of TLR4, MYD88 and NF-κB p65 than bone tissues from patients with hip osteoarthritis. Treating GONFH rats with aucubin mitigated bone necrosis and demineralization as well as destruction of trabecular bone and marrow in a dose-dependent manner, based on micro-computed tomography. These therapeutic effects were associated with a decrease in the overall number of macrophages, decrease in the proportion of M1 macrophages, increase in the proportion of M2 macrophages, and downregulation of TLR4, MYD88 and NF-κB p65. These effects in vivo were confirmed by treating cultures of M1 macrophage-like cells with aucubin. Aucubin mitigates bone pathology in GONFH by suppressing TLR4/NF-κB signalling to shift macrophages from a pro- to anti-inflammatory phenotype.


Asunto(s)
Glucósidos Iridoides , Macrófagos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Fenotipo , Transducción de Señal , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Glucósidos Iridoides/farmacología , Transducción de Señal/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Ratas , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Glucocorticoides/farmacología , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Femenino , Ratas Sprague-Dawley , Persona de Mediana Edad , Modelos Animales de Enfermedad
3.
J Physiol ; 602(7): 1341-1369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38544414

RESUMEN

Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Receptores de IgG , Animales , Perfilación de la Expresión Génica , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Macrófagos , FN-kappa B/genética , FN-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Humanos , Ratas , Receptores de IgG/metabolismo
4.
J Biol Chem ; 299(6): 104758, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116706

RESUMEN

Microbial recognition is a key step in regulating the immune signaling pathways of multicellular organisms. Peptidoglycan, a component of the bacterial cell wall, exhibits immune stimulating activity in both plants and animals. Lysin motif domain (LysMD) family proteins are ancient peptidoglycan receptors that function in bacteriophage and plants. This report focuses on defining the role of LysMD-containing proteins in animals. Here, we characterize a novel transmembrane LysMD family protein. Loss-of-function mutations at the lysMD3/4 locus in Drosophila are associated with systemic innate immune activation following challenge, so we refer to this gene as immune active (ima). We show that Ima selectively binds peptidoglycan, is enriched in cell membranes, and is necessary to regulate terminal innate immune effectors through an NF-kB-dependent pathway. Hence, Ima fulfills the key criteria of a peptidoglycan pattern recognition receptor. The human Ima ortholog, hLysMD3, exhibits similar biochemical properties. Together, these findings establish LysMD3/4 as the founding member of a novel family of animal peptidoglycan recognition proteins.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de la Membrana , Peptidoglicano , Animales , Humanos , Pared Celular/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Inmunidad Innata , Peptidoglicano/metabolismo , Proteínas de la Membrana/metabolismo
5.
J Biol Chem ; 299(1): 102796, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528060

RESUMEN

Phosphorylation of Inhibitor of κB (IκB) proteins by IκB Kinase ß (IKKß) leads to IκB degradation and subsequent activation of nuclear factor κB transcription factors. Of particular interest is the IKKß-catalyzed phosphorylation of IκBα residues Ser32 and Ser36 within a conserved destruction box motif. To investigate the catalytic mechanism of IKKß, we performed pre-steady-state kinetic analysis of the phosphorylation of IκBα protein substrates catalyzed by constitutively active, human IKKß. Phosphorylation of full-length IκBα catalyzed by IKKß was characterized by a fast exponential phase followed by a slower linear phase. The maximum observed rate (kp) of IKKß-catalyzed phosphorylation of IκBα was 0.32 s-1 and the binding affinity of ATP for the IKKß•IκBα complex (Kd) was 12 µM. Substitution of either Ser32 or Ser36 with Ala, Asp, or Cys reduced the amplitude of the exponential phase by approximately 2-fold. Thus, the exponential phase was attributed to phosphorylation of IκBα at Ser32 and Ser36, whereas the slower linear phase was attributed to phosphorylation of other residues. Interestingly, the exponential rate of phosphorylation of the IκBα(S32D) phosphomimetic amino acid substitution mutant was nearly twice that of WT IκBα and 4-fold faster than any of the other IκBα amino acid substitution mutants, suggesting that phosphorylation of Ser32 increases the phosphorylation rate of Ser36. These conclusions were supported by parallel experiments using GST-IκBα(1-54) fusion protein substrates bearing the first 54 residues of IκBα. Our data suggest a model wherein, IKKß phosphorylates IκBα at Ser32 followed by Ser36 within a single binding event.


Asunto(s)
Quinasa I-kappa B , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Cinética , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
6.
FASEB J ; 37(2): e22714, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583692

RESUMEN

While it is well known that mechanical signals can either promote or disrupt intervertebral disc (IVD) homeostasis, the molecular mechanisms for transducing mechanical stimuli are not fully understood. The transient receptor potential vanilloid 4 (TRPV4) ion channel activated in isolated IVD cells initiates extracellular matrix (ECM) gene expression, while TRPV4 ablation reduces cytokine production in response to circumferential stretching. However, the role of TRPV4 on ECM maintenance during tissue-level mechanical loading remains unknown. Using an organ culture model, we modulated TRPV4 function over both short- (hours) and long-term (days) and evaluated the IVDs' response. Activating TRPV4 with the agonist GSK101 resulted in a Ca2+ flux propagating across the cells within the IVD. Nuclear factor (NF)-κB signaling in the IVD peaked at 6 h following TRPV4 activation that subsequently resulted in higher interleukin (IL)-6 production at 7 days. These cellular responses were concomitant with the accumulation of glycosaminoglycans and increased hydration in the nucleus pulposus that culminated in higher stiffness of the IVD. Sustained compressive loading of the IVD resulted in elevated NF-κB activity, IL-6 and vascular endothelial growth factor A (VEGFA) production, and degenerative changes to the ECM. TRPV4 inhibition using GSK205 during loading mitigated the changes in inflammatory cytokines, protected against IVD degeneration, but could not prevent ECM disorganization due to mechanical damage in the annulus fibrosus. These results indicate TRPV4 plays an important role in both short- and long-term adaptations of the IVD to mechanical loading. The modulation of TRPV4 may be a possible therapeutic for preventing load-induced IVD degeneration.


Asunto(s)
Antineoplásicos , Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Antineoplásicos/metabolismo
7.
Fish Shellfish Immunol ; 151: 109705, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885801

RESUMEN

DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.


Asunto(s)
Crassostrea , Metilación de ADN , Epigénesis Genética , FN-kappa B , Transducción de Señal , Vibrio alginolyticus , Animales , Crassostrea/genética , Crassostrea/inmunología , Crassostrea/microbiología , Vibrio alginolyticus/fisiología , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/inmunología , Transducción de Señal/genética , Inmunidad Innata/genética , Vibriosis/inmunología , Vibriosis/veterinaria , Vibriosis/genética
8.
J Periodontal Res ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742802

RESUMEN

AIMS: This study aimed to investigate the effects of Umbelliferone (UMB) on the inflammation underlying alveolar bone resorption in mouse periodontitis. METHODS: Male Swiss mice subjected to a ligature of molars were grouped as non-treated (NT), received UMB (15, 45, or 135 mg/kg) or saline daily for 7 days, respectively, and were compared with naïve mice as control. Gingival tissues were evaluated by myeloperoxidase (MPO) activity and interleukin-1ß level by ELISA. The bone resorption was directly assessed on the region between the cement-enamel junction and the alveolar bone crest. Microscopically, histomorphometry of the furcation region, immunofluorescence for nuclear factor-kappa B (NF-ĸB), and immunohistochemistry for tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were performed. Systemically, body mass variation and leukogram were analyzed. RESULTS: Periodontitis significantly increased MPO activity, interleukin-1ß level, and NF-ĸB+ immunofluorescence, and induced severe alveolar bone and furcation resorptions, besides increased TRAP+ and CTSK+ cells compared with naïve. UMB significantly prevented the inflammation by reducing MPO activity, interleukin-1ß level, and NF-ĸB+ intensity, besides reduction of resorption of alveolar bone and furcation area, and TRAP+ and CTSK+ cells compared with the NT group. Periodontitis or UMB treatment did not affect the animals systemically. CONCLUSION: UMB improved periodontitis by reducing inflammation and bone markers.

9.
Int Endod J ; 57(6): 759-768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436525

RESUMEN

AIM: Among numerous constituents of Panax ginseng, a constituent named Ginsenoside Rb1 (G-Rb1) has been studied to diminish inflammation associated with diseases. This study investigated the anti-inflammatory properties of G-Rb1 on human dental pulp cells (hDPCs) exposed to lipopolysaccharide (LPS) and aimed to determine the underlying molecular mechanisms. METHODOLOGY: The KEGG pathway analysis was performed after RNA sequencing in G-Rb1- and LPS-treated hDPCs. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used for the assessment of cell adhesion molecules and inflammatory cytokines. Statistical analysis was performed with one-way ANOVA and the Student-Newman-Keuls test. RESULTS: G-Rb1 did not exhibit any cytotoxicity within the range of concentrations tested. However, it affected the levels of TNF-α, IL-6 and IL-8, as these showed reduced levels with exposure to LPS. Additionally, less mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were shown. With the presence of G-Rb1, decreased levels of PI3K/Akt, phosphorylated IκBα and p65 were also observed. Furthermore, phosphorylated ERK and JNK by LPS were diminished within 15, 30 and 60 min of G-Rb1 exposure; however, the expression of non-phosphorylated ERK and JNK remained unchanged. CONCLUSIONS: G-Rb1 suppressed the LPS-induced increase of cell adhesion molecules and inflammatory cytokines, while also inhibiting PI3K/Akt, phosphorylation of NF-κB transcription factors, ERK and JNK of MAPK signalling in hDPCs.


Asunto(s)
Pulpa Dental , Ginsenósidos , Lipopolisacáridos , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Ginsenósidos/farmacología , Humanos , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Pulpa Dental/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , FN-kappa B/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Células Cultivadas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Citocinas/metabolismo , Western Blotting
10.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791489

RESUMEN

The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.


Asunto(s)
COVID-19 , Antígeno 96 de los Linfocitos , Multimerización de Proteína , SARS-CoV-2 , Receptor Toll-Like 4 , Humanos , Simulación por Computador , COVID-19/virología , Antígeno 96 de los Linfocitos/metabolismo , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/química , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Receptor Toll-Like 4/metabolismo
11.
Inflammopharmacology ; 32(2): 1225-1238, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411787

RESUMEN

The current work was designed to evaluate the anti-inflammatory and anti-arthritic potential of Coagulansin-A (Coag-A) using mouse macrophages and arthritic mice. In the LPS-induced RAW 264.7 cells, the effects of Coag-A on the release of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory cytokines were analyzed. In addition, the mediators involved in the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways were evaluated by the RT-qPCR and western blotting. Coag-A did not show significant cytotoxicity in the RAW 264.7 cells in the tested concentration range (1-100 µM). Coag-A significantly inhibited the production of NO, ROS, and key pro-inflammatory cytokines. The anti-inflammatory effects of Coag-A might be through inhibiting the NF-κB pathway and activating the Nrf2 pathway. In the arthritic mouse models, behavioral studies and radiological and histological analyses were performed. We found that the i.p. injection of Coag-A dose-dependently (1-10 mg/kg) reduced the Carrageenan-induced acute inflammation in the mice. In Complete Freund's Reagent-induced arthritic mouse model, Coag-A (10 mg/kg) showed significant anti-inflammatory and anti-arthritic effects in terms of the arthritic index, hematological parameters, and synovium inflammation. After the Coag-A treatment, the bone and tissue damage was ameliorated significantly in the arthritic mice. Moreover, immunohistochemistry of mouse paw tissues revealed a significant reduction in the expression of pro-inflammatory cytokines in the NF-κB pathway, confirming Coag-A's therapeutic potential and mechanism.


Asunto(s)
Factor 2 Relacionado con NF-E2 , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología
12.
Korean J Physiol Pharmacol ; 28(1): 11-19, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154960

RESUMEN

Acute kidney injury (AKI) is one of the major complications of sepsis. Aurantio-obtusin (AO) is an anthraquinone compound with antioxidant and anti-inflammatory activities. This study was developed to concentrate on the role and mechanism of AO in sepsis-induced AKI. Lipopolysaccharide (LPS)-stimulated human renal proximal tubular epithelial cells (HK-2) and BALB/c mice receiving cecal ligation and puncture (CLP) surgery were used to establish in vitro cell model and in vivo mouse model. HK-2 cell viability was measured using MTT assays. Histological alterations of mouse renal tissues were analyzed via hematoxylin and eosin staining. Renal function of mice was assessed by measuring the levels of serum creatinine (SCr) and blood urea nitrogen (BUN). The concentrations of pro-inflammatory cytokines in HK-2 cells and serum samples of mice were detected using corresponding ELISA kits. Protein levels of factors associated with nuclear factor kappa-B (NF-κB) pathway were measured in HK-2 cells and renal tissues by Western blotting. AO exerted no cytotoxic effect on HK-2 cells and AO dose-dependently rescued LPS-induced decrease in HK-2 cell viability. The concentrations of pro-inflammatory cytokines were increased in response to LPS or CLP treatment, and the alterations were reversed by AO treatment. For in vivo experiments, AO markedly ameliorated renal injury and reduced high levels of SCr and BUN in mice underwent CLP operation. In addition, AO administration inhibited the activation of NF-κB signaling pathway in vitro and in vivo. In conclusion, AO alleviates septic AKI by suppressing inflammatory responses through inhibiting the NF-κB pathway.

13.
J Biol Chem ; 298(12): 102638, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309088

RESUMEN

Inflammation contributes to the progression of retinal pathology caused by diabetes. Here, we investigated a role for the stress response protein regulated in development and DNA damage response 1 (REDD1) in the development of retinal inflammation. Increased REDD1 expression was observed in the retina of mice after 16-weeks of streptozotocin (STZ)-induced diabetes, and REDD1 was essential for diabetes-induced pro-inflammatory cytokine expression. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented increased pro-inflammatory cytokine expression in response to hyperglycemic conditions. REDD1 deletion promoted nuclear factor erythroid-2-related factor 2 (Nrf2) hyperactivation; however, Nrf2 was not required for reduced inflammatory cytokine expression in REDD1-deficient cells. Rather, REDD1 enhanced inflammatory cytokine expression by promoting activation of nuclear transcription factor κB (NF-κB). In WT cells exposed to tumor necrosis factor α (TNFα), inflammatory cytokine expression was increased in coordination with activating transcription factor 4 (ATF4)-dependent REDD1 expression and sustained activation of NF-κB. In both Müller cell cultures exposed to TNFα and in the retina of STZ-diabetic mice, REDD1 deletion promoted inhibitor of κB (IκB) expression and reduced NF-κB DNA-binding activity. We found that REDD1 acted upstream of IκB by enhancing both K63-ubiquitination and auto-phosphorylation of IκB kinase complex. In contrast with STZ-diabetic REDD1+/+ mice, IκB kinase complex autophosphorylation and macrophage infiltration were not observed in the retina of STZ-diabetic REDD1-/- mice. The findings provide new insight into how diabetes promotes retinal inflammation and support a model wherein REDD1 sustains activation of canonical NF-κB signaling.


Asunto(s)
Diabetes Mellitus Experimental , Retinitis , Factores de Transcripción , Animales , Humanos , Ratones , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Proteínas de Choque Térmico/metabolismo , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Retina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Retinitis/patología
14.
J Biol Chem ; 298(5): 101887, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367413

RESUMEN

Recent genome-wide association and transcriptome-wide association studies have identified an association between the PALMD locus, encoding palmdelphin, a protein involved in myoblast differentiation, and calcific aortic valve disease (CAVD). Nevertheless, the function and underlying mechanisms of PALMD in CAVD remain unclear. We herein investigated whether and how PALMD affects the pathogenesis of CAVD using clinical samples from CAVD patients and a human valve interstitial cell (hVIC) in vitro calcification model. We showed that PALMD was upregulated in calcified regions of human aortic valves and calcified hVICs. Furthermore, silencing of PALMD reduced hVIC in vitro calcification, osteogenic differentiation, and apoptosis, whereas overexpression of PALMD had the opposite effect. RNA-Seq of PALMD-depleted hVICs revealed that silencing of PALMD reduced glycolysis and nuclear factor-κB (NF-κB)-mediated inflammation in hVICs and attenuated tumor necrosis factor α-induced monocyte adhesion to hVICs. Having established the role of PALMD in hVIC glycolysis, we examined whether glycolysis itself could regulate hVIC osteogenic differentiation and inflammation. Intriguingly, the inhibition of PFKFB3-mediated glycolysis significantly attenuated osteogenic differentiation and inflammation of hVICs. However, silencing of PFKFB3 inhibited PALMD-induced hVIC inflammation, but not osteogenic differentiation. Finally, we showed that the overexpression of PALMD enhanced hVIC osteogenic differentiation and inflammation, as opposed to glycolysis, through the activation of NF-κB. The present study demonstrates that the genome-wide association- and transcriptome-wide association-identified CAVD risk gene PALMD may promote CAVD development through regulation of glycolysis and NF-κB-mediated inflammation. We propose that targeting PALMD-mediated glycolysis may represent a novel therapeutic strategy for treating CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis , Células Cultivadas , Estudio de Asociación del Genoma Completo , Glucólisis , Humanos , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Osteogénesis
15.
FASEB J ; 36(12): e22666, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36412933

RESUMEN

Skeletal muscle atrophy is a prevalent complication in multiple chronic diseases and disuse conditions. Fibroblast growth factor-inducible 14 (Fn14) is a member of the TNF receptor superfamily and a bona fide receptor of the TWEAK cytokine. Accumulating evidence suggests that Fn14 levels are increased in catabolic conditions as well as during exercise. However, the role of Fn14 in the regulation of skeletal muscle mass and function remains poorly understood. In this study, through the generation of novel skeletal muscle-specific Fn14-knockout mice, we have investigated the muscle role of Fn14 in the regulation of exercise capacity and denervation-induced muscle atrophy. Our results demonstrate that there was no difference in skeletal muscle mass between control and muscle-specific Fn14-knockout mice. Nevertheless, the deletion of Fn14 in skeletal muscle significantly improved exercise capacity and resistance to fatigue. This effect of Fn14 deletion is associated with an increased proportion of oxidative myofibers and higher capillaries number per myofiber in skeletal muscle. Furthermore, our results demonstrate that targeted deletion of Fn14 inhibits denervation-induced muscle atrophy in adult mice. Deletion of Fn14 reduced the expression of components of the ubiquitin-proteasome system and non-canonical NF-kappa B signaling in denervated skeletal muscle, as well as increased the phosphorylation of Akt kinase and FoxO3a transcription factor. Collectively, our results demonstrate that targeted inhibition of Fn14 improves exercise tolerance and inhibits denervation-induced muscle atrophy in adult mice.


Asunto(s)
Tolerancia al Ejercicio , Factores de Necrosis Tumoral , Ratones , Animales , Receptor de TWEAK/genética , Factores de Necrosis Tumoral/metabolismo , Atrofia Muscular/metabolismo , Ratones Noqueados
16.
Cell Commun Signal ; 21(1): 24, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717921

RESUMEN

Semaphorin7a (SEMA7A), a membrane-anchored member of the semaphorin protein family, could be involved in a diverse range of immune responses via its receptor integrin ß1. Recently, we reported that the SEMA7AR148W mutation (a gain-of-function mutation, Sema7aR145W in mice) is a risk factor for progressive familial intrahepatic cholestasis and nonalcoholic fatty liver disease via upregulated membrane localization. In this study, we demonstrated that integrin ß1 is a membrane receptor for nuclear factor NF-kappa-B p105 (NF-κB p105) and a critical mediator of inflammation. Integrin ß1 could interact with the C-terminal domain of NF-κB p105 to promote p50 generation and stimulate the NF-κB p50/p65 signalling pathway, upregulate TNF-α and IL-1ß levels, and subsequently render hepatocytes more susceptible to inflammation. The induction of integrin ß1 depends on elevated Sema7a membrane localization. Moreover, we revealed elevated levels of Sema7aWT (SEMA7AWT) in hepatocellular carcinoma (HCC) patients and an HCC mouse model. In line with our findings, the NF-κB p50/p65 pathway could also be activated by high Sema7a expression and repressed by integrin ß1 silencing. In conclusion, our findings suggest that the Sema7aR145W (SEMA7AR148W) mutation and high Sema7aWT (SEMA7AWT) expression both activate the NF-κB p50/p65 pathway via integrin ß1 and play a crucial role in inflammatory responses. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Semaforinas , Animales , Ratones , Inflamación , Integrina beta1/metabolismo , FN-kappa B/metabolismo , Semaforinas/genética
17.
Cell Commun Signal ; 21(1): 126, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268943

RESUMEN

BACKGROUND: Microglial cells play an important role in the immune system in the brain. Activated microglial cells are not only injurious but also neuroprotective. We confirmed marked lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression in microglial cells in pathological lesions in the neonatal hypoxic-ischemic encephalopathy (nHIE) model brain. LOX-1 is known to be an activator of cytokines and chemokines through intracellular pathways. Here, we investigated a novel role of LOX-1 and the molecular mechanism of LOX-1 gene transcription microglial cells under hypoxic and ischemic conditions. METHODS: We isolated primary rat microglial cells from 3-day-old rat brains and confirmed that the isolated cells showed more than 98% Iba-1 positivity with immunocytochemistry. We treated primary rat microglial cells with oxygen glucose deprivation (OGD) as an in vitro model of nHIE. Then, we evaluated the expression levels of LOX-1, cytokines and chemokines in cells treated with or without siRNA and inhibitors compared with those of cells that did not receive OGD-treatment. To confirm transcription factor binding to the OLR-1 gene promoter under the OGD conditions, we performed a luciferase reporter assay and chromatin immunoprecipitation assay. In addition, we analyzed reactive oxygen species and cell viability. RESULTS: We found that defects in oxygen and nutrition induced LOX-1 expression and led to the production of inflammatory mediators, such as the cytokines IL-1ß, IL-6 and TNF-α; the chemokines CCL2, CCL5 and CCL3; and reactive oxygen/nitrogen species. Then, the LOX-1 signal transduction pathway was blocked by inhibitors, LOX-1 siRNA, the p38-MAPK inhibitor SB203580 and the NF-κB inhibitor BAY11-7082 suppressed the production of inflammatory mediators. We found that NF-κB and HIF-1α bind to the promoter region of the OLR-1 gene. Based on the results of the luciferase reporter assay, NF-κB has strong transcriptional activity. Moreover, we demonstrated that LOX-1 in microglial cells was autonomously overexpressed by positive feedback of the intracellular LOX-1 pathway. CONCLUSION: The hypoxic/ischemic conditions of microglial cells induced LOX-1 expression and activated the immune system. LOX-1 and its related molecules or chemicals may be major therapeutic candidates. Video abstract.


Asunto(s)
Hipoxia-Isquemia Encefálica , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Microglía/metabolismo , Hipoxia/metabolismo , Citocinas/metabolismo , Oxígeno/metabolismo , Quimiocinas/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo
18.
Pharmacol Res ; 187: 106593, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496136

RESUMEN

Increased angiogenesis in the liver plays a critical role in the progression of hepatocellular carcinoma (HCC). However, the molecular mechanism underlying increased angiogenesis in HCC is not well understood. Current study was designed to identify the potential angiogenic effect of RNA-binding motif 4 (RBM4)through a small-scale overexpression screening, followed by comparison of the expression level of RBM4 in cancer and adjacent tissues in multiple malignancies to explore the relationship between RBM4 and CD31 protein expression level and related clinical indicators, and understand the role of RBM4 in the hepatocellular carcinoma. To understand the specific mechanism of RBM4 in detail, transcriptome sequencing, mass spectrometry and multiple molecular cytological studies were performed. These cellular level results were verified by experiments in animal models of nude mice. The increased expression of RBM4 in cancer tissues, suggested its use as a prognostic biomarker. The RBM4 expression was found to be strongly correlated with tumor microvessel density. Mechanistically, RBM4 mediated its effects via interaction with HNRNP-M through the latter's WDR15 domain, which then stabilized RelA/p65 mRNA. Consequently, RBM4 induced the activation of the NF-kB signaling pathway, upregulating the expression of proangiogenic factor VEGF-A. The results confirmed the mechanism by which RBM4 promotes angiogenesis in hepatocellular carcinoma suggesting RBM4 as a crucial promoter of angiogenesis in HCC, helping understand regulation of NF-kB signaling in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Neoplasias Hepáticas/metabolismo , Ratones Desnudos , Neovascularización Patológica/metabolismo , FN-kappa B/metabolismo , Motivos de Unión al ARN , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Mol Biol Rep ; 50(8): 6505-6516, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37329479

RESUMEN

BACKGROUNDS: Cerebral ischemia-reperfusion leads to brain tissue injury. Inflammation and apoptosis play pivotal roles in the pathology. OBJECTIVE: α-Pinene is an organic compound of many aromatic plants and is known as a potent agent to possess antioxidant, and anti-inflammatory properties. Here, we sought to identify the anti-inflammatory and anti-apoptosis mechanism by which α-Pinene improves brain ischemia injury. RESULTS: Male Wistar rats underwent MCAO surgery for 1 h and different doses of alpha-pinene (25, 50, and 100 mg/kg) were intraperitoneally injected immediately after reperfusion to test this hypothesis. IV, NDS, gene and protein expression of inducible nitric oxide synthase (iNOS), cyclogenase-2 (COX-2), nuclear factor kappa B (NF-κB) p65, and caspase-3 were assessed 24 h after reperfusion. Results demonstrated that NF-κB p65, iNOS, and COX-2 gene and protein expression increased in the hippocampus, cortex, and striatum after 24 h of reperfusion, and alpha-pinene significantly inhibited NF-kB p65, iNOS, and COX-2 expression. Also, alpha-pinene significantly reduced the ischemia/reperfusion-induced caspase-3 activation in CA1 area of hippocampus. CONCLUSION: Results showed that alpha-pinene protects the cerebral against ischemic damage caused by MCAO, and this effect may be through the regulating iNOS -NF-kappa B- COX-2 and caspase-3 inflammatory and apoptotic pathways.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , FN-kappa B/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Wistar , Isquemia Encefálica/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Óxido Nítrico/metabolismo
20.
Exp Cell Res ; 417(1): 113214, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594953

RESUMEN

Pancreatic adenocarcinoma is a highly lethal malignant gastrointestinal tumor. Sparstolonin B is an isocoumarin whose anticancer activity has recently received increasing attention. This study aimed to investigate Sparstolonin B's potential antitumor effect on pancreatic adenocarcinoma. The effect of Sparstolonin B on pancreatic cancer target genes and molecular mechanism was predicted via network pharmacology; Sparstolonin B significantly decreased Panc-1 and SW1990 cell viability and effectively suppressed the proliferation, migration, and invasion of pancreatic cancer cells as shown by CCK-8, colony formation, and Transwell assays. Flow cytometry showed that it induced cell cycle arrest and apoptosis. Sparstolonin B also upregulated Bax levels but decreased those of MMP2 and Bcl-2, downregulated IκBα expression, and upregulated p65 and IκBα phosphorylation; however, it had no effect on total NF-κB p65 levels. The NF-κB pathway inhibitor QNZ reversed these effects. The treatment group (26 µmol/L) had reduced graft volume and weight and fewer Ki-67-positive cells than the control group. Therefore, Sparstolonin B can inhibit the growth and induce the apoptosis of pancreatic cancer cells via the NF-κB signaling pathway and may be a potential novel drug for pancreatic cancer treatment.


Asunto(s)
Adenocarcinoma , Compuestos Heterocíclicos de 4 o más Anillos , FN-kappa B , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Proteínas I-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda