Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421307

RESUMEN

Interactions between notochord and sclerotome are required for normal embryonic spine patterning, but whether the postnatal derivatives of these tissues also require interactions for postnatal intervertebral disc (IVD) growth and maintenance is less established. We report here the comparative analysis of four conditional knockout mice deficient for TonEBP, a transcription factor known to allow cells to adapt to changes in extracellular osmotic pressure, in specific compartments of the IVD. We show that TonEBP deletion in nucleus pulposus (NP) cells does not affect their survival or aggrecan expression, but promoted cell proliferation in the NP and in adjacent vertebral growth plates (GPs). In cartilage end plates/GPs, TonEBP deletion induced cell death, but also structural alterations in the adjacent NP cells and vertebral bodies. Embryonic or postnatal TonEBP loss generated similar IVD changes. In addition to demonstrating the requirement of TonEBP in the different compartments of the IVD, this comparative analysis uncovers the in vivo interdependency of the different IVD compartments during the growth of the postnatal IVD-vertebral units.


Asunto(s)
Disco Intervertebral , Factores de Transcripción NFATC , Animales , Ratones , Regulación de la Expresión Génica , Disco Intervertebral/metabolismo , Ratones Noqueados , Presión Osmótica , Factores de Transcripción/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo
2.
J Biol Chem ; 300(1): 105480, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992803

RESUMEN

The bone-derived hormone fibroblast growth factor-23 (FGF23) has recently received much attention due to its association with chronic kidney disease and cardiovascular disease progression. Extracellular sodium concentration ([Na+]) plays a significant role in bone metabolism. Hyponatremia (lower serum [Na+]) has recently been shown to be independently associated with FGF23 levels in patients with chronic systolic heart failure. However, nothing is known about the direct impact of [Na+] on FGF23 production. Here, we show that an elevated [Na+] (+20 mM) suppressed FGF23 formation, whereas low [Na+] (-20 mM) increased FGF23 synthesis in the osteoblast-like cell lines UMR-106 and MC3T3-E1. Similar bidirectional changes in FGF23 abundance were observed when osmolality was altered by mannitol but not by urea, suggesting a role of tonicity in FGF23 formation. Moreover, these changes in FGF23 were inversely proportional to the expression of NFAT5 (nuclear factor of activated T cells-5), a transcription factor responsible for tonicity-mediated cellular adaptations. Furthermore, arginine vasopressin, which is often responsible for hyponatremia, did not affect FGF23 production. Next, we performed a comprehensive and unbiased RNA-seq analysis of UMR-106 cells exposed to low versus high [Na+], which revealed several novel genes involved in cellular adaptation to altered tonicity. Additional analysis of cells with Crisp-Cas9-mediated NFAT5 deletion indicated that NFAT5 controls numerous genes associated with FGF23 synthesis, thereby confirming its role in [Na+]-mediated FGF23 regulation. In line with these in vitro observations, we found that hyponatremia patients have higher FGF23 levels. Our results suggest that [Na+] is a critical regulator of FGF23 synthesis.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Sodio , Humanos , Factor-23 de Crecimiento de Fibroblastos/genética , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Hiponatremia/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Sodio/metabolismo , Sodio/farmacología , Línea Celular Tumoral , Línea Celular , Animales , Ratones , Ratones Endogámicos C57BL , Arginina Vasopresina/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Ratas
3.
Artículo en Inglés | MEDLINE | ID: mdl-38946247

RESUMEN

Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia (Oreochromis mossambicus) possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species the myo-inositol biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the high importance of this pathway for hyper-osmotic (HO) stress tolerance. These abundance changes must be precluded by HO perception and signaling mechanism activation to regulate the expression of MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches the core binding sequence of the predominant mammalian HO response transcription factor, nuclear factor of activated T-cells (NFAT5). HO challenged OmB cells showed an increase in NFAT5 mRNA suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (p < 0.01). Moreover, expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter signal (p<0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance were observed in HO challenged NFAT5 knockout cells relative to control cells. Collectively, these multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to HO induced activation of the MIB pathway.

4.
J Cell Sci ; 135(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35635291

RESUMEN

NFAT5 is the only known mammalian tonicity-responsive transcription factor with an essential role in cellular adaptation to hypertonic stress. It is also implicated in diverse physiological and pathological processes. NFAT5 activity is tightly regulated by extracellular tonicity, but the underlying mechanisms remain elusive. Here, we demonstrate that NFAT5 enters the nucleus via the nuclear pore complex. We found that NFAT5 utilizes a unique nuclear localization signal (NFAT5-NLS) for nuclear import. siRNA screening revealed that only karyopherin ß1 (KPNB1), but not karyopherin α, is responsible for the nuclear import of NFAT5 via direct interaction with the NFAT5-NLS. Proteomics analysis and siRNA screening further revealed that nuclear export of NFAT5 under hypotonicity is driven by exportin-T (XPOT), where the process requires RuvB-like AAA-type ATPase 2 (RUVBL2) as an indispensable chaperone. Our findings have identified an unconventional tonicity-dependent nucleocytoplasmic trafficking pathway for NFAT5 that represents a critical step in orchestrating rapid cellular adaptation to change in extracellular tonicity. These findings offer an opportunity for the development of novel NFAT5 targeting strategies that are potentially useful for the treatment of diseases associated with NFAT5 dysregulation.


Asunto(s)
Núcleo Celular , Carioferinas , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , ADN Helicasas , Humanos , Carioferinas/metabolismo , Mamíferos/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
5.
Basic Res Cardiol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834767

RESUMEN

Nuclear factor of activated T cells 5 (NFAT5) is an osmosensitive transcription factor that is well-studied in renal but rarely explored in cardiac diseases. Although the association of Coxsackievirus B3 (CVB3) with viral myocarditis is well-established, the role of NFAT5 in this disease remains largely unexplored. Previous research has demonstrated that NFAT5 restricts CVB3 replication yet is susceptible to cleavage by CVB3 proteases. Using an inducible cardiac-specific Nfat5-knockout mouse model, we uncovered that NFAT5-deficiency exacerbates cardiac pathology, worsens cardiac function, elevates viral load, and reduces survival rates. RNA-seq analysis of CVB3-infected mouse hearts revealed the significant impact of NFAT5-deficiency on gene pathways associated with cytokine signaling and inflammation. Subsequent in vitro and in vivo investigation validated the disruption of the cytokine signaling pathway in response to CVB3 infection, evidenced by reduced expression of key cytokines such as interferon ß1 (IFNß1), C-X-C motif chemokine ligand 10 (CXCL10), interleukin 6 (IL6), among others. Furthermore, NFAT5-deficiency hindered the formation of stress granules, leading to a reduction of important stress granule components, including plakophilin-2, a pivotal protein within the intercalated disc, thereby impacting cardiomyocyte structure and function. These findings unveil a novel mechanism by which NFAT5 inhibits CVB3 replication and pathogenesis through the promotion of antiviral type I interferon signaling and the formation of cytoplasmic stress granules, collectively identifying NFAT5 as a new cardio protective protein.

6.
Trends Immunol ; 42(6): 469-479, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33962888

RESUMEN

The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings.


Asunto(s)
Microbiota , Sodio , Dieta , Sistema Inmunológico , Cloruro de Sodio Dietético
7.
Ann Hematol ; 103(2): 533-544, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37950051

RESUMEN

Chronic lymphocytic leukemia (CLL) mainly affects the health of older adults and is difficult to cure. Upstream stimulatory factor 2 (USF2) has been implicated in several diseases and conditions including cancers. However, the effect of USF2 on CLL has not been elucidated. To investigate the effect of USP2 on proliferation and autophagy of CLL, and to explore the underlying mechanism. The mRNA of USF2 and STIP1 homology and U-Box containing protein 1 (STUB1) was analyzed using qRT-PCR. Western blots were used to evaluate the expression level of USF2, LC3II, Beclin-1, P62, STUB1, and NFAT5. The cell proliferation was evaluated using CCK-8 and EdU assays. The cell apoptosis was evaluated using flow cytometry. Indirect fluorescent assay (IFA) was performed to analyze LC3 signal. Nuclear factor of activated T-cells 5 (NFAT5) ubiquitination was detected using immunoprecipitation (IP) assay. The CLL progression was evaluated in xenotransplantation model of nude mice. USF2 was highly expressed in CLL tissues and cell lines. USF2 knockdown suppressed the cell viability and EdU incorporation, while promoting cell apoptosis. Meanwhile, USF2 knockdown reduced the level of LC3II and Beclin-1, but increased P62, illustrating USF2 knockdown inhibiting autophagy. USF2 induced NFAT5 ubiquitination and promoted NFAT5 protein level via repressing STUB1. The downregulation of USF2 weakened CLL progression in xenotransplantation model of nude mice. CLL survival and autophagy was dependent on highly expressed USF2 which promoted the expression and ubiquitination of NFAT5 through inhibiting the transcription of STUB1, which makes USF2 a promising therapeutic candidate for CLL treatment.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Ratones , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Ratones Desnudos , Beclina-1/genética , Beclina-1/metabolismo , Ubiquitinación , Proliferación Celular/fisiología , Autofagia/genética
8.
Neurochem Res ; 49(5): 1212-1225, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381247

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons. LncRNA small nucleolar RNA host gene 14 (SNHG14) was found to promote neuron injury in PD. Here, we investigated the mechanisms of SNHG14 in PD process. In vivo or in vitro PD model was established by using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice or 1-methyl-4-phenylpyridinium (MPP +)-stimulated SK-N-SH cells. The expression of genes and proteins was measured by qRT-PCR and Western blot. In vitro assays were conducted using ELISA, CCK-8, colony formation, EdU, flow cytometry, and Western blot assays, respectively. The oxidative stress was evaluated by determining the production of superoxide dismutase (SOD) and malondialdehyde (MDA). The direct interactions between miR-375-3p and NFAT5 (Nuclear factor of activated T-cells 5) or SNHG14 was verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. SNHG14 and NFAT5 were elevated, while miR-375-3p was decreased in MPTP-mediated PD mouse model and MPP + -induced SK-N-SH cells. Knockdown of SNHG14 or NFAT5, or overexpression of miR-375-3p reversed MPP + -induced neuronal apoptosis, inflammation, and oxidative stress. Mechanistically, SNHG14 directly bound to miR-375, which targeted NFAT5. Inhibition of miR-375-3p abolished the inhibitory activity of SNHG14 knockdown on MPP + -evoked neuronal damage. Besides that, NFAT5 up-regulation counteracted the effects of miR-375-3p on MPP + -mediated neuronal damage. SNHG14 contributed to MPP + -induced neuronal injury by miR-375/NFAT5 axis, suggesting a new insight into the pathogenesis of PD.


Asunto(s)
Neuronas Dopaminérgicas , MicroARNs , Enfermedad de Parkinson , ARN Largo no Codificante , Animales , Ratones , 1-Metil-4-fenilpiridinio , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Exp Cell Res ; 425(2): 113510, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804532

RESUMEN

Preeclampsia (PE) is a common complication of pregnancy, usually accompanied by symptoms such as hypertension and proteinuria. It can induce severe conditions that may result in maternal and fetal morbidity and fatality. In this study, we use bioinformatics analysis to compare microRNA microassay in decidual stromal cells from PE patients and healthy donors. Our result indicated that placentas from PE patients had a higher CCL1/CXCL2 expression, compared with those from healthy donors. Bioinformatics analysis confirmed that decidual stromal cells derived from PE patients expressed significantly lower miR-455-3p than those derived from healthy donors. Transfection of miR-455-3p inhibitors enhanced the CCL2/CXCL8 expression in decidual stromal cells, and luciferase activity assay confirmed that nuclear factor of activated T cells 5 (NFAT5) mRNA was the direct target of miR-455-3p; NFAT5 also promoted cytokine secretion. In the flow cytometry study, higher M1 macrophage infiltration was observed in placentas from PE patients than in those from healthy donors. We also observed that condition medium (CM) derived from decidual stromal cells could significantly promote M1 polarization of macrophages after transfection with miR-455-3p inhibitor; further, transwell invasion assay confirmed that decidual stromal cells-CM educated macrophages suppressed trophoblast invasion. Taken together, our result demonstrates that downregulation of miR-455-3p in decidual stromal cells can promote macrophage polarization and suppress trophoblasts invasion.


Asunto(s)
MicroARNs , Preeclampsia , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Regulación hacia Abajo/genética , Placenta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Macrófagos/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética
10.
Hepatobiliary Pancreat Dis Int ; 23(5): 472-480, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38724321

RESUMEN

BACKGROUND: Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS: Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS: In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS: miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.


Asunto(s)
Antígenos CD19 , Linfocitos B Reguladores , Antígeno CD24 , Diferenciación Celular , Trasplante de Hígado , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/genética , Masculino , Antígeno CD24/metabolismo , Antígeno CD24/genética , Transducción de Señal , Rechazo de Injerto/inmunología , Rechazo de Injerto/genética , Femenino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Persona de Mediana Edad , Tolerancia Inmunológica , Células Cultivadas , Adulto , Fenotipo , Memoria Inmunológica
11.
Biochem Biophys Res Commun ; 669: 1-9, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37247516

RESUMEN

Hepatitis B virus (HBV) infection is a global health problem and lacks effective therapies in clinic. This study attempted to investigate the role of histone deacetylase 3 (HDAC3) in HBV replication. Cells were treated with 1.3 folds of HBV genome. The expression patterns of HDAC3, miR-29a-3p, and nuclear factor of activated T-cells 5 (NFAT5) in cells were determined by real-time quantitative polymerase chain reaction and Western blot analysis. HBV replication was assessed by measurements of HBV DNA, HBV RNA, hepatitis B surface antigen, and hepatitis B E antigen. After chromatin immunoprecipitation and RNA pull-down assays to testify gene interactions, rescue experiments and animal experiments were performed to assess the role of miR-29a-3p/NFAT5 in HBV replication and the role of HDAC3 in vivo. HDAC3 level was decreased by pHBV1.3 plasmid in a concentration-dependent manner. HDAC3 overexpression can inhibit HBV replication, which was neutralized by miR-29a-3p overexpression or NFAT5 downregulation. Mechanically, HDAC3 overexpression reduced the enrichment of histone 3 lysine 9 acetylation on the miR-29a-3p promoter to inhibit miR-29a-3p expression and then promote NFAT5 transcription. In vivo, HDAC3 restrained HBV replication through the miR-29a-3p/NFAT5 axis. Overall, HDAC3 downregulation was associated with HBV replication and HDAC3 overexpression inhibited HBV replication through H3K9ac/miR-29a-3p/NFAT5.


Asunto(s)
Hepatitis B , MicroARNs , Animales , Virus de la Hepatitis B/fisiología , Histonas/metabolismo , MicroARNs/metabolismo , Antígenos de Superficie de la Hepatitis B/genética , Hepatitis B/genética , Epigénesis Genética , Replicación Viral/genética
12.
Cancer Cell Int ; 23(1): 51, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934264

RESUMEN

BACKGROUND: Non-small cell lung cancer is a heterogeneous disease driven by extensive molecular alterations. Exosomes are small vesicles with diameters ranging from 30 to 150 nm released by various cell types and are important mediators of information transmission in tumor cells. Exosomes contain proteins, lipids, and various types of nucleic acids, including miRNAs and even DNA and RNA. MFI2 Antisense RNA 1 (MFI2-AS1) is a long noncoding RNA known to promote cell proliferation, metastasis and invasion in a variety of malignancies. METHODS: The relative expression of MFI2-AS1 in NSCLC tissues was examined using RNA fluorescence in situ hybridization (FISH) staining. Transwell migration and wound healing assays were used to analyze cell migration and invasion abilities. Tube formation is used to assess angiogenic capacity. CCK8 was used to assess cell proliferation ability. RNA immunoprecipitation (RIP) experiments confirmed that MFI2-AS1 acts as a competing endogenous RNA (ceRNA) for miR-107. Dual-luciferase reporter assays were used to identify potential binding between MFI2-miRNA and target mRNA. In vivo experiments were performed by injecting exosomes into subcutaneous tumors to establish animal models. RESULT: Exosomal MFI2-AS1 increases NFAT5 expression by sponging miR-107, which in turn activates the PI3K/AKT pathway. We found that the MFI2-AS1/miR-107/NFAT5 axis plays an important role in exosome-mediated NSCLC progression, is involved in pre-metastatic niche formation, and can be used as a blood-based biomarker for NSCLC metastasis. CONCLUSION: We demonstrate that MFI2-AS1 is upregulated in exosomes secreted by metastatic NSCLC cells and can be transferred to HUVECs, promoting angiogenesis and migration.

13.
Cerebrovasc Dis ; 52(3): 306-317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36122568

RESUMEN

INTRODUCTION: Ischemic stroke, an abrupt blockage of artery, accounting for the most cases of stroke, causes high neurological mortality across the world. Recent evidence has uncovered that circular RNAs (circRNAs) highly engage in ischemic stroke-related neuronal injury. This study concentrated on a novel circRNA hsa_circ_0000304 (termed as circCELF1), trying to unveil its role and underlying mechanism in ischemic stroke. METHODS: RT-qPCR and Western blot assays were conducted to detect the expression levels of RNA and protein, respectively. Functional analysis was performed to evaluate the influences of circCELF1 expression on astrocyte apoptosis and autophagy. Multiple mechanism assays were performed to probe the molecular mechanism underlying circCELF1 regulation. The oxygen-glucose deprivation/reoxygenation (OGD/R)-induced astrocytes model and transient middle cerebral artery occlusion (tMCAO) mouse model were constructed. RESULTS: circCELF1 was found to be upregulated in OGD/R-induced astrocytes, relative to normal astrocytes. circCELF1 knockdown repressed the apoptosis and autophagy of astrocytes. The in vivo study conducted with the tMCAO model also revealed that circCELF1 or NFAT5 deficiency contributed to the suppression of neural injury. Further, circCELF1 was uncovered to elevate NFAT5 expression via recruiting DDX54, functionally promoting astrocyte apoptosis and autophagy. CONCLUSION: circCELF1 recruits DDX54 to upregulate NFAT5, by which astrocyte apoptosis and autophagy are stimulated.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Astrocitos/metabolismo , Apoptosis , Accidente Cerebrovascular/genética , Oxígeno/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Glucosa/metabolismo , Autofagia , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(33): 20292-20297, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747529

RESUMEN

Nuclear Factor of Activated T cells 5 (NFAT5) is a transcription factor (TF) that mediates protection from adverse effects of hypertonicity by increasing transcription of genes, including those that lead to cellular accumulation of protective organic osmolytes. NFAT5 has three intrinsically ordered (ID) activation domains (ADs). Using the NFAT5 N-terminal domain (NTD), which contains AD1, as a model, we demonstrate by biophysical methods that the NTD senses osmolytes and hypertonicity, resulting in stabilization of its ID regions. In the presence of sufficient NaCl or osmolytes, trehalose and sorbitol, the NFAT5 NTD undergoes a disorder-to-order shift, adopting higher average secondary and tertiary structure. Thus, NFAT5 is activated by the stress that it protects against. In its salt and/or osmolyte-induced more ordered conformation, the NTD interacts with several proteins, including HMGI-C, which is known to protect against apoptosis. These findings raise the possibility that the increased intracellular ionic strength and elevated osmolytes caused by hypertonicity activate and stabilize NFAT5.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Factores de Transcripción/química , Escherichia coli/metabolismo , Presión Osmótica , Unión Proteica , Pliegue de Proteína , Cloruro de Sodio , Sorbitol , Factores de Transcripción/metabolismo , Trehalosa
15.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446230

RESUMEN

Dry eye inflammation is a key step in a vicious circle and needs to be better understood in order to break it. The goals of this work were to, first, characterize alarmins and cytokines released by ocular surface cells in the hyperosmolar context and, second, study the role of NFAT5 in this process. Finally, we studied the potential action of these alarmins in ocular surface epithelial cells and macrophages via RAGE pathways. HCE and WKD cell lines were cultured in a NaCl-hyperosmolar medium and the expression of alarmins (S100A4, S100A8, S100A9, and HMGB1), cytokines (IL6, IL8, TNFα, and MCP1), and NFAT5 were assessed using RT-qPCR, ELISA and multiplex, Western blot, immunofluorescence, and luciferase assays. In selected experiments, an inhibitor of RAGE (RAP) or NFAT5 siRNAs were added before the hyperosmolar stimulations. HCE and WKD cells or macrophages were treated with recombinant proteins of alarmins (with or without RAP) and analyzed for cytokine expression and chemotaxis, respectively. Hyperosmolarity induced epithelial cell inflammation depending on cell type. NFAT5, but not RAGE or alarmins, participated in triggering epithelial inflammation. Furthermore, the release of alarmins induced macrophage migration through RAGE. These in vitro results suggest that NFAT5 and RAGE have a role in dry eye inflammation.


Asunto(s)
Alarminas , Síndromes de Ojo Seco , Humanos , Inflamación , Citocinas/metabolismo , Síndromes de Ojo Seco/metabolismo , Macrófagos/metabolismo , Factores de Transcripción/metabolismo
16.
FASEB J ; 35(9): e21831, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34383982

RESUMEN

The nuclear factor of activated T-cells 5 (NFAT5) is a transcriptional regulator of macrophage activation and T-cell development, which controls stabilizing responses of cells to hypertonic and biomechanical stress. In this study, we detected NFAT5 in the media layer of arteries adjacent to human arteriosclerotic plaques and analyzed its role in vascular smooth muscle cells (VSMCs) known to contribute to arteriosclerosis through the uptake of lipids and transformation into foam cells. Exposure of both human and mouse VSMCs to cholesterol stimulated the nuclear translocation of NFAT5 and increased the expression of the ATP-binding cassette transporter Abca1, required to regulate cholesterol efflux from cells. Loss of Nfat5 promoted cholesterol accumulation in these cells and inhibited the expression of genes involved in the management of oxidative stress or lipid handling, such as Sod1, Plin2, Fabp3, and Ppard. The functional relevance of these observations was subsequently investigated in mice fed a high-fat diet upon induction of a smooth muscle cell-specific genetic ablation of Nfat5 (Nfat5(SMC)-/- ). Under these conditions, Nfat5(SMC)-/- but not Nfat5fl/fl mice developed small, focal lipid-rich lesions in the aorta after 14 and 25 weeks, which were formed by intracellular lipid droplets deposited in the sub-intimal VSMCs layer. While known for being activated by external stimuli, NFAT5 was found to mediate the expression of VSMC genes associated with the handling of lipids in response to a cholesterol-rich environment. Failure of this protective function may promote the formation of lipid-laden arterial VSMCs and pro-atherogenic vascular responses.


Asunto(s)
Aorta/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Anciano , Animales , Aterosclerosis/metabolismo , Células Cultivadas , Colesterol/metabolismo , Femenino , Células Espumosas/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Hipercolesterolemia/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Túnica Íntima/metabolismo
17.
Chem Biodivers ; 19(9): e202200447, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35924786

RESUMEN

Purple sweet potato is considered an abundant, inexpensive, and ideal source of anthocyanins. Purple sweet potato anthocyanins (PSPAs) have been shown to possess high antimutagenicity and antitumor effects due to the abundance of acylated anthocyanins. However, the effect and underlying mechanism of PSPA effects in acute lymphoblastic leukemia (ALL), especially T-cell acute lymphoblastic leukemia (T-ALL), remain unclear. In this study, the antileukemic effects of PSPAs and the underlying molecular mechanisms were evaluated by in vitro and in silico assays. PSPAs extracted from ten cultivars were analyzed and quantified. Anthocyanins from Nanzi 018, which showed the best antileukemic effect, were selected to analyze the underlying mechanism. First, the PSPAs potently reduced cell viability and induced apoptosis. Additionally, the PSPAs sharply increased intracellular Ca2+ levels, which resulted in calcium overload in T-ALL cells. Furthermore, on the basis of bioinformatics analyses, we focused on an osmotically regulated transcription factor, NFAT5. Molecular docking preliminarily indicated that PSPA molecules bound and interacted with the NFAT5 protein. Western blot analyses confirmed that PSPAs elicited calcium overload by nonosmotic regulation of NFAT5/S100A4-S100A9 pathway activation. Moreover, pretreatment with a NFAT5 inducer confirmed that PSPAs targeted NFAT5 and affected p38/NF-κB/Bcl-2/Caspase-3 axis activation. This study demonstrates that PSPAs exert their antileukemic effects through calcicoptosis induction by targeting NFAT5.


Asunto(s)
Ipomoea batatas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Antocianinas/metabolismo , Antocianinas/farmacología , Calcio/metabolismo , Caspasa 3/metabolismo , Humanos , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína de Unión al Calcio S100A4/metabolismo , Factores de Transcripción
18.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36430885

RESUMEN

Osmoregulation is essential for organisms to adapt to the exterior environment and plays an important role in embryonic organogenesis. Tubular organ formation usually involves a hyperosmotic lumen environment. The mechanisms of how the cells respond and regulate lumen formation remain largely unknown. Here, we reported that the nuclear factor of activated T cells-5 (NFAT5), the only transcription factor in the NFAT family involved in the cellular responses to hypertonic stress, regulated notochord lumen formation in chordate Ciona. Ciona NFAT5 (Ci-NFAT5) was expressed in notochord, and its expression level increased during notochord lumen formation and expansion. Knockout and expression of the dominant negative of NFAT5 in Ciona embryos resulted in the failure of notochord lumen expansion. We further demonstrated that the Ci-NFAT5 transferred from the cytoplasm into nuclei in HeLa cells under the hyperosmotic medium, indicating Ci-NFAT5 can respond the hypertonicity. To reveal the underly mechanisms, we predicted potential downstream genes of Ci-NFAT5 and further validated Ci-NFAT5-interacted genes by the luciferase assay. The results showed that Ci-NFAT5 promoted SLC26A6 expression. Furthermore, expression of a transport inactivity mutant of SLC26A6 (L421P) in notochord led to the failure of lumen expansion, phenocopying that of Ci-NFAT5 knockout. These results suggest that Ci-NFAT5 regulates notochord lumen expansion via the SLC26A6 axis. Taken together, our results reveal that the chordate NFAT5 responds to hypertonic stress and regulates lumen osmotic pressure via an ion channel pathway on luminal organ formation.


Asunto(s)
Cordados , Ciona , Animales , Humanos , Notocorda/metabolismo , Células HeLa , Linfocitos T , Núcleo Celular
19.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142220

RESUMEN

Hypoxia associated with inflammation are common hallmarks observed in several diseases, and it plays a major role in the expression of non-coding RNAs, including microRNAs (miRNAs). In addition, the miRNA target genes for hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T cells-5 (NFAT5) modulate the adaptation to hypoxia. The objective of the present study was to explore hypoxia-related miRNA target genes for HIF-1α and NFAT5, as well as miRNA-20a, miRNA-30e, and miRNA-93 expression in periodontitis versus healthy gingival tissues and gingival mesenchymal stem cells (GMSCs) cultured under hypoxic conditions. Thus, a case-control study was conducted, including healthy and periodontitis subjects. Clinical data and gingival tissue biopsies were collected to analyze the expression of miRNA-20a, miRNA-30e, miRNA-93, HIF-1α, and NFAT5 by qRT-PCR. Subsequently, GMSCs were isolated and cultured under hypoxic conditions (1% O2) to explore the expression of the HIF-1α, NFAT5, and miRNAs. The results showed a significant upregulation of miRNA-20a (p = 0.028), miRNA-30e (p = 0.035), and miRNA-93 (p = 0.026) in periodontitis tissues compared to healthy gingival biopsies. NFAT5 mRNA was downregulated in periodontitis tissues (p = 0.037), but HIF-1α was not affected (p = 0.60). Interestingly, hypoxic GMSCs upregulated the expression of miRNA-20a and HIF-1α, but they downregulated miRNA-93e. In addition, NFAT5 mRNA expression was not affected in hypoxic GMSCs. In conclusion, in periodontitis patients, the expression of miRNA-20a, miRNA-30e, and miRNA-93 increased, but a decreased expression of NFAT5 mRNA was detected. In addition, GMSCs under hypoxic conditions upregulate the HIF-1α and increase miRNA-20a (p = 0.049) expression. This study explores the role of inflammatory and hypoxia-related miRNAs and their target genes in periodontitis and GMSCs. It is crucial to determine the potential therapeutic target of these miRNAs and hypoxia during the periodontal immune-inflammatory response, which should be analyzed in greater depth in future studies.


Asunto(s)
Células Madre Mesenquimatosas , Periodontitis , Estudios de Casos y Controles , Hipoxia de la Célula , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Periodontitis/genética , ARN Mensajero/metabolismo
20.
J Cell Mol Med ; 25(11): 4922-4937, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33939247

RESUMEN

Long non-coding RNA (lncRNA) lnc-ISG20 has been found aberrantly up-regulated in the glomerular in the patients with diabetic nephropathy (DN). We aimed to elucidate the function and regulatory mechanism of lncRNA lnc-ISG20 on DN-induced renal fibrosis. Expression patterns of lnc-ISG20 in kidney tissues of DN patients were determined by RT-qPCR. Mouse models of DN were constructed, while MCs were cultured under normal glucose (NG)/high glucose (HG) conditions. The expression patterns of fibrosis marker proteins collagen IV, fibronectin and TGF-ß1 were measured with Western blot assay. In addition, the relationship among lnc-ISG20, miR-486-5p, NFAT5 and AKT were analysed using dual-luciferase reporter assay and RNA immunoprecipitation. The effect of lnc-ISG20 and miR-486/NFAT5/p-AKT axis on DN-associated renal fibrosis was also verified by means of rescue experiments. The expression levels of lnc-ISG20 were increased in DN patients, DN mouse kidney tissues and HG-treated MCs. Lnc-ISG20 silencing alleviated HG-induced fibrosis in MCs and delayed renal fibrosis in DN mice. Mechanistically, miR-486-5p was found to be a downstream miRNA of lnc-ISG20, while miR-486-5p inhibited the expression of NFAT5 by binding to its 3'UTR. NFAT5 overexpression aggravated HG-induced fibrosis by stimulating AKT phosphorylation. However, NFAT5 silencing reversed the promotion of in vitro and in vivo fibrosis caused by lnc-ISG20 overexpression. Our collective findings indicate that lnc-ISG20 promotes the renal fibrosis process in DN by activating AKT through the miR-486-5p/NFAT5 axis. High-expression levels of lnc-ISG20 may be a useful indicator for DN.


Asunto(s)
Nefropatías Diabéticas/complicaciones , Exorribonucleasas/genética , Fibrosis/patología , Enfermedades Renales/patología , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo , Animales , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fosforilación , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda