RESUMEN
Being heavily dependent to oil products (mainly gasoline and diesel), the French transport sector is the main emitter of Particulate Matter (PMs) whose critical levels induce harmful health effects for urban inhabitants. We selected three major French cities (Paris, Lyon, and Marseille) to investigate the relationship between the Coronavirus Disease 19 (COVID-19) outbreak and air pollution. Using Artificial Neural Networks (ANNs) experiments, we have determined the concentration of PM2.5 and PM10 linked to COVID-19-related deaths. Our focus is on the potential effects of Particulate Matter (PM) in spreading the epidemic. The underlying hypothesis is that a pre-determined particulate concentration can foster COVID-19 and make the respiratory system more susceptible to this infection. The empirical strategy used an innovative Machine Learning (ML) methodology. In particular, through the so-called cutting technique in ANNs, we found new threshold levels of PM2.5 and PM10 connected to COVID-19: 17.4 µg/m3 (PM2.5) and 29.6 µg/m3 (PM10) for Paris; 15.6 µg/m3 (PM2.5) and 20.6 µg/m3 (PM10) for Lyon; 14.3 µg/m3 (PM2.5) and 22.04 µg/m3 (PM10) for Marseille. Interestingly, all the threshold values identified by the ANNs are higher than the limits imposed by the European Parliament. Finally, a Causal Direction from Dependency (D2C) algorithm is applied to check the consistency of our findings.
RESUMEN
Background: The magnitude of short/medium-term air pollution exposure on atopic dermatitis (AD) flare has not been fully investigated. The aim of the study was to investigate the association of short/medium-term exposure to airborne pollution on AD flares in patients treated with dupilumab. Methods: Observational case-crossover study. Patients with moderate-to-severe AD under treatment with dupilumab were included. The exposure of interest was the mean concentrations of coarse and fine particulate matter (PM10, PM2.5), nitrogen dioxide, and oxides (NO2, NOx). Different intervals were considered at 1 to 60 days before the AD flare and control visit, defined as the visit with the highest Eczema Area and Severity Index scores >8 and ≤7, respectively. A conditional logistic regression analysis adjusted for systemic treatments was employed to estimate the incremental odds (%) of flare every 10 µg/m3 pollutant concentration. Results: Data on 169 of 528 patients with AD having 1130 follow-up visits and 5840 air pollutant concentration measurements were retrieved. The mean age was 41.4 ± 20.3 years; 94 (55%) men. The incremental odds curve indicated a significant positive trend of AD flare for all pollutants in all time windows. At 60 days, every 10 µg/m3 PM10, PM2.5, NOx, and NO2 increase concentration was associated with 82%, 67%, 28%, and 113% odds of flare, respectively. Conclusions: In patients treated with dupilumab, acute air pollution exposure is associated with an increased risk for AD flare with a dose-response relationship.
RESUMEN
The growing literature demonstrating air pollution associations on COVID-19 mortality contains studies predominantly examining long-term exposure, with few on short-term exposure, and rarely both together to estimate independent associations. Because mechanisms by which air pollution may impact COVID-19 mortality risk function over timescales ranging from years to days, and given correlation among exposure time windows, consideration of both short- and long-term exposure is of importance. We assessed the independent associations between COVID-19 mortality rates with short- and long-term air pollution exposure by modeling both concurrently. Using California death certificate data COVID-19-related deaths were identified, and decedent residential information used to assess short- (4-week mean) and long-term (6-year mean) exposure to particulate matter <2.5µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3). Negative binomial mixed models were fitted on weekly census tract COVID-19 mortality adjusting for potential confounders with random effects for county and census tract and an offset for population. Data were evaluated separately for two time periods March 16, 2020-October 18, 2020 and October 19, 2020-April 25, 2021, representing the Spring/Summer surges and Winter surge. Independent positive associations with COVID-19 mortality were observed for short- and long-term PM2.5 in both study periods, with strongest associations observed in the first study period: COVID-19 mortality rate ratio for a 2-µg/m3 increase in long-term PM2.5 was 1.13 (95%CI:1.09,1.17) and for a 4.7-µg/m3 increase in short-term PM2.5 was 1.05 (95%CI:1.02,1.08). Statistically significant positive associations were seen for both short- and long-term NO2 in study period 1, but short-term NO2 was not statistically significant in study period 2. Results for long-term O3 indicate positive associations, however, only marginal significance is achieved in study period 1. These findings support an adverse effect of long-term PM2.5 and NO2 exposure on COVID-19 mortality risk, independent of short-term exposure, and a possible independent effect of short-term PM2.5.
RESUMEN
Atopic eczema is a common and complex disease. Missing genetic hereditability and increasing prevalence in industrializing nations point toward an environmental driver. We investigated the temporal association of weather and pollution parameters with eczema severity. This cross-sectional clinical study was performed between May 2018 and March 2020 and is part of the Tower Hamlets Eczema Assessment. All participants had a diagnosis of eczema, lived in East London, were of Bangladeshi ethnicity, and were aged <31 years. The primary outcome was the probability of having an Eczema Area and Severity Index score > 10 after previous ambient exposure to commonly studied meteorological variables and pollutants. There were 430 participants in the groups with Eczema Area and Severity Index ≤ 10 and 149 in those with Eczema Area and Severity Index > 10. Using logistic generalized additive models and a model selection process, we found that tropospheric ozone averaged over the preceding 270 days was strongly associated with eczema severity alongside the exposure to fine particles with diameters of 2.5 µm or less (fine particulate matter) averaged over the preceding 120 days. In our models and analyses, fine particulate matter appeared to largely act in a supporting role to ozone. We show that long-term exposure to ground-level ozone at high levels has the strongest association with eczema severity.
RESUMEN
Ambient air pollution level not only causes respiratory diseases but also cardiovascular diseases, besides, increased visits to the emergency department for asthma, chronic obstructive pulmonary disease (COPD), bronchitis, allergic rhinitis, attention deficit hyperactivity disorder (ADHD) in children and premature deaths in infants. The occurrence of Coronavirus-19 (COVID-19) pandemic is both, a boon and bane. Despite the deplorable situation aroused by the pandemic, strict lockdown measures implemented to curb the drastic spread of the disease, also culminated into astonishing outcomes that were not prioritized. This article illustrates the effects of the ongoing pandemic on air pollution and provides recommendations aimed at limiting it.
RESUMEN
The influence of reduction in emissions on the inherent temporal characteristics of PM2.5 and NO2 concentration time series in six urban cities of India is assessed by computing the Hurst exponent using Detrended Fluctuation Analysis (DFA) during the lockdown period (March 24-April 20, 2020) and the corresponding period during the previous two years (i.e., 2018 and 2019). The analysis suggests the anticipated impact of confinement on the PM2.5 and NO2 concentration in urban cities, causing low concentrations. It is observed that the original PM2.5 and NO2 concentration time series is persistent but filtering the time series by fitting the autoregressive process of order 1 on the actual time series and subtracting it changes the persistence property significantly. It indicates the presence of linear correlations in the PM2.5 and NO2 concentrations. Hurst exponent of the PM2.5 and NO2 concentration during the lockdown period and previous two years shows that the inherent temporal characteristics of the short-term air pollutant concentrations (APCs) time series do not change even after withholding the emissions. The meteorological variations also do not change over the three time periods. The finding helps in developing the prediction models for future policy decisions to improve urban air quality across cities.
RESUMEN
Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.
RESUMEN
BACKGROUND: Asthma is a common pediatric chronic respiratory disease worldwide. Previous studies showed the prevalence of childhood asthma increased in developed countries as well as in Taiwan in the late 20th century. Recently, several reports from different parts of the world showed a reversed trend in this epidemic of childhood asthma prevalence. This study investigated the trend of childhood asthma through serial cross-section questionnaire surveys in the southern part of Taiwan, and identified associated factors related to this trend in elementary school children. METHODS: We used the Chinese version of the International Study of Asthma and Allergies in Childhood (ISAAC)29 questionnaire to assess the asthma status of elementary school students aged 6-12 years in Tainan city in 3 independent study periods, namely, 2008-2009, 2010-2012, and 2017-2018. We assessed the trend of "asthma" and "related respiratory symptoms" across 3 study periods. RESULTS: Of the 19,633 respondents, 17,545 (89.4%) completed the questionnaires. After adjustment for covariates, the prevalence of asthma and related respiratory symptoms was significantly lower in 2017-2018 than in the 2 earlier periods. Among the protective factors, the increasing rate of breastfeeding might be partly responsible for the observed reduced prevalence of current asthma and exercise-induced wheeze, but not physician-diagnosed asthma. The presence of pets in the house was the risk factor that correlated with the prevalence of nocturnal cough. Pearson correlation analysis showed a significant correlation of the prevalence of physician-diagnosed asthma, current asthma, and exercise-induced wheezing with the concentrations of air pollutant particles with aerodynamic diameter ≤10 µM (PM10) (r = 0.84, 0.77 and 0.81, respectively). CONCLUSION: The prevalence of asthma and related respiratory symptoms has declined in elementary school-age children in southern Taiwan. The increased prevalence of breastfeeding, decreased rate of the presence of pets in the house, and improvement in outdoor air pollution seem to be related to this decreasing trend of asthma in school children. Our findings will provide the scientific base to empower prevention policy to reverse the trend of childhood asthma prevalence. TRIAL REGISTRATION: N/A.
RESUMEN
Indoor environments contribute significantly to total human exposure to air pollutants, as people spend most of their time indoors. Household air pollution (HAP) resulting from cooking with polluting ("dirty") fuels, which include coal, kerosene, and biomass (wood, charcoal, crop residues, and animal manure) is a global environmental health problem. Indoor pollutants are gases, particulates, toxins, and microorganisms among others, that can have an impact especially on the health of children and adults through a combination of different mechanisms on oxidative stress and gene activation, epigenetic, cellular, and immunological systems. Air pollution is a major risk factor and contributor to morbidity and mortality from major chronic diseases. Children are significantly affected by the impact of the environment due to biological immaturity, prenatal and postnatal lung development. Poor air quality has been related to an increased prevalence of clinical manifestations of allergic asthma and rhinitis. Health professionals should increase their role in managing the exposure of children and adults to air pollution with better methods of care, prevention, and collective action. Interventions to reduce household pollutants may promote health and can be achieved with education, community, and health professional involvement.
RESUMEN
The complete lockdown due to COVID-19 pandemic has contributed to the improvement of air quality across the countries particularly in developing countries including India. This study aims to assess the air quality by monitoring major atmospheric pollutants such as AOD, CO, PM2.5, NO2, O3 and SO2 in 15 major cities of India using Air Quality Zonal Modeling. The study is based on two different data sources; (a) grid data (MODIS- Terra, MERRA-2, OMI and AIRS, Global Modeling and Assimilation Office, NASA) and (b) ground monitoring station data provided by Central Pollution Control Board (CPCB) / State Pollution Control Board (SPCB). The remotely sensed data demonstrated that the concentration of PM2.5 has declined by 14%, about 30% of NO2 in million-plus cities, 2.06% CO, SO2 within the range of 5 to 60%, whereas the concentration of O3 has increased by 1 to 3% in majority of cities compared with pre lockdown. On the other hand, CPCB/SPCB data showed more than 40% decrease in PM2.5 and 47% decrease in PM10 in north Indian cities, more than 35% decrease in NO2 in metropolitan cities, more than 85% decrease in SO2 in Chennai and Nagpur and more than 17% increase in O3 in five cities amid 43 days pandemic lockdown. The restrictions of anthropogenic activities have substantial effect on the emission of primary atmospheric pollutants.
RESUMEN
BACKGROUND: Atopic dermatitis (AD) is a chronic, inflammatory skin disorder characterised by intense itch and eczematous lesions. Rising prevalence of AD has been observed worldwide including in Asia. Understanding the risk factors associated with AD may explain its pathogenicity and identify new preventive strategies and treatments. However, AD-associated risk factors and comorbidities specific to Asia have not been systematically reviewed. METHODS: We performed a systematic review in accordance with the Preferred Reporting Item for Systematic Review and Meta-Analyses (PRISMA) guidelines and summarised epidemiological studies investigating personal, family, and environmental factors and comorbidities associated with AD in Asia. Significant factors were assessed if they can be altered through lifestyle practices and further classified into non-modifiable and modifiable factors. Meta-analysis using the random-effect model was also conducted to provide an overall estimate for several significant factors. RESULTS: We identified a total of 162 epidemiological studies conducted in Asia. Among non-modifiable factors, a family history of atopic diseases was the most reported, suggesting the involvement of genetics in AD pathogenesis. Among modifiable factors, the results of meta-analyses revealed maternal smoking as the strongest risk factor with a pooled odds ratio (OR) of 2.95 (95% CI, 2.43-3.60), followed by active smoking (pooled OR, 1.91, 95% CI, 1.41-2.59). CONCLUSION: While a family history may aid clinicians in identifying high-risk individuals, literature has long suggested the importance of gene-environment interaction. This review identified several modifiable factors including medical treatments, indoor and outdoor environmental exposure, and personal and family lifestyle specific to Asia. Based on the meta-analyses performed, prevention strategies against AD may start from changing personal and family lifestyle choices, especially smoking habits.
RESUMEN
In present study, the variation in concentration of key air pollutants such as PM 2.5, PM 10, NO 2, SO 2 and O 3 during the pre-lockdown and post-lockdown phase has been investigated. In addition, the monthly concentration of air pollutants in March, April and May of 2020 is also compared with that of 2019 to unfold the effect of restricted emissions under similar meteorological conditions. To evaluate the global impact of COVID-19 on the air quality, ground-based data from 162 monitoring stations from 12 cities across the globe are analysed for the first time. The concentration of PM 2.5, PM 10 and NO 2 were reduced by 20-34%, 24-47% and 32-64%, respectively, due to restriction on anthropogenic emission sources during lockdown. However, a lower reduction in SO 2 was observed due to functional power plants. O 3 concentration was found to be increased due to the declined emission of NO. Nevertheless, the achieved improvements were temporary as the pollution level has gone up again in cities where lockdown was lifted. The study might assist the environmentalist, government and policymakers to curb down the air pollution in future by implementing the strategic lockdowns at the pollution hotspots with minimal economic loss.
RESUMEN
The COVID-19 pandemic elicited a global response to limit associated mortality, with social distancing and lockdowns being imposed. In India, human activities were restricted from late March 2020. This 'anthropogenic emissions switch-off' presented an opportunity to investigate impacts of COVID-19 mitigation measures on ambient air quality in five Indian cities (Chennai, Delhi, Hyderabad, Kolkata, and Mumbai), using in-situ measurements from 2015 to 2020. For each year, we isolated, analysed and compared fine particulate matter (PM2.5) concentration data from 25 March to 11 May, to elucidate the effects of the lockdown. Like other global cities, we observed substantial reductions in PM2.5 concentrations, from 19 to 43% (Chennai), 41-53% (Delhi), 26-54% (Hyderabad), 24-36% (Kolkata), and 10-39% (Mumbai). Generally, cities with larger traffic volumes showed greater reductions. Aerosol loading decreased by 29% (Chennai), 11% (Delhi), 4% (Kolkata), and 1% (Mumbai) against 2019 data. Health and related economic impact assessments indicated 630 prevented premature deaths during lockdown across all five cities, valued at 0.69 billion USD. Improvements in air quality may be considered a temporary lockdown benefit as revitalising the economy could reverse this trend. Regulatory bodies must closely monitor air quality levels, which currently offer a baseline for future mitigation plans.
RESUMEN
Allergic rhinitis affects the quality of life of millions of people worldwide. Air pollution not only causes morbidity, but nearly 3 million people per year die from unhealthy indoor air exposure. Furthermore, allergic rhinitis and air pollution interact. This report summarizes the discussion of an International Expert Consensus on the management of allergic rhinitis aggravated by air pollution. The report begins with a review of indoor and outdoor air pollutants followed by epidemiologic evidence showing the impact of air pollution and climate change on the upper airway and allergic rhinitis. Mechanisms, particularly oxidative stress, potentially explaining the interactions between air pollution and allergic rhinitis are discussed. Treatment for the management of allergic rhinitis aggravated by air pollution primarily involves treating allergic rhinitis by guidelines and reducing exposure to pollutants. Fexofenadine a non-sedating oral antihistamine improves AR symptoms aggravated by air pollution. However, more efficacy studies on other pharmacological therapy of coexisting AR and air pollution are currently lacking.
RESUMEN
A negative correlation has consistently been reported between the change in flowering time and the change in leaf number at flowering in response to environmental stimuli, such as the application of exogenous compounds, cold temperature, day length and light quality treatments in Arabidopsis thaliana (Arabidopsis). However, we show here that the application of exogenous nitrogen dioxide (NO2) did not change the number of rosette leaves at flowering, but actually accelerated flowering in Arabidopsis. Furthermore, NO2 treatment was found to increase the rate of leaf appearance. Based on these results, reaching the maximum rosette leaf number earlier in response to NO2 treatment resulted in earlier flowering relative to controls.
Asunto(s)
Arabidopsis/fisiología , Flores/fisiología , Dióxido de Nitrógeno/farmacología , Hojas de la Planta/anatomía & histología , Arabidopsis/efectos de los fármacos , Biomasa , Ecotipo , Flores/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiologíaRESUMEN
Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an "integrator" of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are "functionally silent". Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.