Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2311118120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695892

RESUMEN

The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.


Asunto(s)
Conducta Adictiva , Núcleo Accumbens , Animales , Humanos , Neuropéptido Y , Encéfalo , Obesidad , Dopamina , Etanol
2.
J Neurosci ; 44(34)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39025677

RESUMEN

Neuropeptide Y (NPY) increases resilience and buffers behavioral stress responses in male rats in part through decreasing the excitability of principal output neurons in the basolateral amygdala (BLA). Intra-BLA administration of NPY acutely increases social interaction (SI) through activation of either Y1 or Y5 receptors, whereas repeated NPY (rpNPY) injections (once daily for 5 d) produce persistent increases in SI through Y5 receptor-mediated neuroplasticity in the BLA. In this series of studies, we characterized the neural circuits from the BLA that underlie these behavioral responses to NPY. Using neuronal tract tracing, NPY Y1 and Y5 receptor immunoreactivity was identified on subpopulations of BLA neurons projecting to the bed nucleus of the stria terminalis (BNST) and the central nucleus of the amygdala (CeA). Inhibition of BLA→BNST, but not BLA→CeA, neurons using projection-restricted, cre-driven designer receptors exclusively activated by designer drug-Gi expression increased SI and prevented stress-induced decreases in SI produced by a 30 min restraint stress. This behavioral profile was similar to that seen after both acute and rpNPY injections into the BLA. Intracellular recordings of BLA→BNST neurons demonstrated NPY-mediated inhibition via suppression of H currents, as seen previously. Repeated intra-BLA injections of NPY, which are associated with the induction of BLA neuroplasticity, decreased the activity of BLA→BNST neurons and decreased their dendritic complexity. These results demonstrate that NPY modulates the activity of BNST-projecting BLA neurons, suggesting that this pathway contributes to the stress-buffering actions of NPY and provides a novel substrate for the proresilient effects of NPY.


Asunto(s)
Complejo Nuclear Basolateral , Neuropéptido Y , Receptores de Neuropéptido Y , Núcleos Septales , Estrés Psicológico , Animales , Masculino , Núcleos Septales/efectos de los fármacos , Núcleos Septales/metabolismo , Núcleos Septales/fisiología , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/metabolismo , Ratas , Estrés Psicológico/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Interacción Social/efectos de los fármacos , Ratas Sprague-Dawley , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología
3.
Proc Natl Acad Sci U S A ; 119(33): e2203632119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35951651

RESUMEN

Epilepsy is a common neurological disorder, which has been linked to mutations or deletions of RNA binding protein, fox-1 homolog (Caenorhabditis elegans) 3 (RBFOX3)/NeuN, a neuronal splicing regulator. However, the mechanism of seizure mediation by RBFOX3 remains unknown. Here, we show that mice with deletion of Rbfox3 in gamma-aminobutyric acid (GABA) ergic neurons exhibit spontaneous seizures and high premature mortality due to increased presynaptic release, postsynaptic potential, neuronal excitability, and synaptic transmission in hippocampal dentate gyrus granule cells (DGGCs). Attenuating early excitatory gamma-aminobutyric acid (GABA) action by administering bumetanide, an inhibitor of early GABA depolarization, rescued premature mortality. Rbfox3 deletion reduced hippocampal expression of vesicle-associated membrane protein 1 (VAMP1), a GABAergic neuron-specific presynaptic protein. Postnatal restoration of VAMP1 rescued premature mortality and neuronal excitability in DGGCs. Furthermore, Rbfox3 deletion in GABAergic neurons showed fewer neuropeptide Y (NPY)-expressing GABAergic neurons. In addition, deletion of Rbfox3 in NPY-expressing GABAergic neurons lowered intrinsic excitability and increased seizure susceptibility. Our results establish RBFOX3 as a critical regulator and possible treatment path for epilepsy.


Asunto(s)
Proteínas de Unión al ADN , Neuronas GABAérgicas , Proteínas del Tejido Nervioso , Neuropéptido Y , Convulsiones , Proteína 1 de Membrana Asociada a Vesículas , Animales , Bumetanida/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Giro Dentado/metabolismo , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/metabolismo , Eliminación de Gen , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Proteína 1 de Membrana Asociada a Vesículas/genética , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
J Neurosci ; 43(7): 1089-1110, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36599680

RESUMEN

Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons. However, how the antagonistic activities of these peptides modulate circuit plasticity remains unclear. Using behavioral, neuroanatomical, and activity analysis in adult zebrafish of both sexes, along with pharmacological interventions, we show that CART and NPY activities converge on a population of neurons in the dorsomedial telencephalon (Dm). Although CART facilitates glutamatergic neurotransmission at the Dm, NPY dampens the response to glutamate. In energy-rich states, CART enhances NMDA receptor (NMDAR) function by protein kinase A/protein kinase C (PKA/PKC)-mediated phosphorylation of the NR1 subunit of the NMDAR complex. Conversely, starvation triggers NPY-mediated reduction in phosphorylated NR1 via calcineurin activation and inhibition of cAMP production leading to reduced responsiveness to glutamate. Our data identify convergent integration of CART and NPY inputs by the Dm neurons to generate nutritional state-dependent circuit plasticity that is correlated with the behavioral switch induced by the opposing actions of satiety and hunger signals.SIGNIFICANCE STATEMENT Internal energy needs reconfigure neuronal circuits to adaptively regulate feeding behavior. Energy-state-dependent neuropeptide release can signal energy status to feeding-associated circuits and modulate circuit function. CART and NPY are major anorexic and orexic factors, respectively, but the intracellular signaling pathways used by these peptides to alter circuit function remain uncharacterized. We show that CART and NPY-expressing neurons from energy-state interoceptive areas project to a novel telencephalic region, Dm, in adult zebrafish. CART increases the excitability of Dm neurons, whereas NPY opposes CART activity. Antagonistic signaling by CART and NPY converge onto NMDA-receptor function to modulate glutamatergic neurotransmission. Thus, opposing activities of anorexic CART and orexic NPY reconfigure circuit function to generate flexibility in feeding behavior.


Asunto(s)
Neuropéptido Y , Neuropéptidos , Masculino , Animales , Femenino , Neuropéptido Y/metabolismo , Pez Cebra/metabolismo , Neuropéptidos/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Glutamatos
5.
J Cell Mol Med ; 28(15): e18582, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107876

RESUMEN

Catheter ablation (CA) is an essential method for the interventional treatment of atrial fibrillation (AF), and it is very important to reduce long-term recurrence after CA. The mechanism of recurrence after CA is still unclear. We established a long-term model of beagle canines after circumferential pulmonary vein ablation (CPVA). The transcriptome and proteome were obtained using high-throughput sequencing and TMT-tagged LC-MS/LC analysis, respectively. Differentially expressed genes and proteins were screened and enriched, and the effect of fibrosis was found and verified in tissues. A downregulated protein, neuropeptide Y (NPY), was selected for validation and the results suggest that NPY may play a role in the long-term reinduction of AF after CPVA. Then, the molecular mechanism of NPY was further investigated. The results showed that the atrial effective refractory period (AERP) was shortened and fibrosis was increased after CPVA. Atrial myocyte apoptosis was alleviated by NPY intervention, and Akt activation was inhibited in cardiac fibroblasts. These results suggest that long-term suppression of NPY after CPVA may lead to induction of AF through promoting cardiomyocyte apoptosis and activating the Akt pathway in cardiac fibroblasts, which may make AF more likely to reinduce.


Asunto(s)
Apoptosis , Fibrilación Atrial , Ablación por Catéter , Miocardio , Neuropéptido Y , Venas Pulmonares , Animales , Perros , Apoptosis/efectos de los fármacos , Fibrilación Atrial/metabolismo , Fibrilación Atrial/cirugía , Fibrilación Atrial/patología , Ablación por Catéter/métodos , Modelos Animales de Enfermedad , Fibrosis , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Multiómica , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Neuropéptido Y/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Venas Pulmonares/metabolismo , Venas Pulmonares/cirugía , Transcriptoma
6.
Mol Pain ; 20: 17448069241242982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38485252

RESUMEN

Itch is a somatosensory sensation to remove potential harmful stimulation with a scratching desire, which could be divided into mechanical and chemical itch according to diverse stimuli, such as wool fiber and insect biting. It has been reported that neuropeptide Y (NPY) neurons, a population of spinal inhibitory interneurons, could gate the transmission of mechanical itch, with no effect on chemical itch. In our study, we verified that chemogenetic activation of NPY neurons could inhibit the mechanical itch as well as the chemical itch, which also attenuated the alloknesis phenomenon in the chronic dry skin model. Afterwards, intrathecal administration of NPY1R agonist, [Leu31, Pro34]-NPY (LP-NPY), showed the similar inhibition effect on mechanical itch, chemical itch and alloknesis as chemo-activation of NPY neurons. Whereas, intrathecal administration of NPY1R antagonist BIBO 3304 enhanced mechanical itch and reversed the alloknesis phenomenon inhibited by LP-NPY treatment. Moreover, selectively knocking down NPY1R by intrathecal injection of Npy1r siRNA enhanced mechanical and chemical itch behavior as well. These results indicate that NPY neurons in spinal cord regulate mechanical and chemical itch, and alloknesis in dry skin model through NPY1 receptors.


Asunto(s)
Neuropéptido Y , Receptores de Neuropéptido Y , Animales , Prurito/inducido químicamente , Transducción de Señal , Médula Espinal
7.
Cell Tissue Res ; 397(2): 97-110, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38771348

RESUMEN

The saccus vasculosus is an organ present in gnathostome fishes, located ventral to the hypothalamus and posterior to the pituitary gland, whose structure is highly variable among species. In some fishes, this organ is well-developed; however, its physiological function is still under debate. Recently, it has been proposed that this organ is a seasonal regulator of reproduction. In the present work, we examined the histology, ultrastructure, and development of the saccus vasculosus in Cichlasoma dimerus. In addition, immunohistochemical studies of proteins related to reproductive function were performed. Finally, the potential response of this organ to different photoperiods was explored. C. dimerus presented a well-developed saccus vasculosus consisting of a highly folded epithelium, composed of coronet and supporting cells, closely associated with blood vessels, and a highly branched lumen connected to the third ventricle. Coronet cells showed all the major characteristics described in other fish species. In addition, some of the vesicles of the globules were positive for thyrotropin beta subunit, while luteinizing hormone beta subunit immunostaining was observed at the edge of the apical processes of some coronet cells. Furthermore, neuropeptide Y and gonadotropin inhibitory hormone innervation in the saccus vasculosus of C. dimerus were shown. Finally, animals exposed to the long photoperiod showed lower levels of thyrotropin beta and common alpha subunits expression in the saccus compared to those of animals exposed to short photoperiod. All these results support the hypothesis that the saccus vasculosus is involved in the regulation of reproductive function in fish.


Asunto(s)
Cíclidos , Fotoperiodo , Animales , Cíclidos/anatomía & histología , Hipófisis/metabolismo , Femenino , Masculino , Inmunohistoquímica , Reproducción/fisiología
8.
Behav Brain Funct ; 20(1): 6, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549164

RESUMEN

BACKGROUND: Spatial memory deficits and reduced neuronal survival contribute to cognitive decline seen in the aging process. Current treatments are limited, emphasizing the need for innovative therapeutic strategies. This research explored the combined effects of intranasally co-administered galanin receptor 2 (GALR2) and neuropeptide Y1 receptor (NPY1R) agonists, recognized for their neural benefits, on spatial memory, neuronal survival, and differentiation in adult rats. After intranasal co-delivery of the GALR2 agonist M1145 and a NPY1R agonist to adult rats, spatial memory was tested with the object-in-place task 3 weeks later. We examined neuronal survival and differentiation by assessing BrdU-IR profiles and doublecortin (DCX) labeled cells, respectively. We also used the GALR2 antagonist M871 to confirm GALR2's crucial role in promoting cell growth. RESULTS: Co-administration improved spatial memory and increased the survival rate of mature neurons. The positive effect of GALR2 in cell proliferation was confirmed by the nullifying effects of its antagonist. The treatment boosted DCX-labeled newborn neurons and altered dendritic morphology, increasing cells with mature dendrites. CONCLUSIONS: Our results show that intranasal co-delivery of GALR2 and NPY1R agonists improves spatial memory, boosts neuronal survival, and influences neuronal differentiation in adult rats. The significant role of GALR2 is emphasized, suggesting new potential therapeutic strategies for cognitive decline.


Asunto(s)
Disfunción Cognitiva , Receptor de Galanina Tipo 2 , Ratas , Animales , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/fisiología , Receptores de Neuropéptido Y , Galanina/farmacología , Neurogénesis , Cognición , Disfunción Cognitiva/tratamiento farmacológico
9.
Pharmacol Res ; 203: 107173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580186

RESUMEN

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.


Asunto(s)
Cnidarios , Péptidos , Receptores de Neuropéptido Y , Animales , Humanos , Ratones , Movimiento Celular/efectos de los fármacos , Quinasa 1 de Adhesión Focal/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ligandos , Simulación del Acoplamiento Molecular , Neovascularización Fisiológica/efectos de los fármacos , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Péptidos/farmacología , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , Receptores de Neuropéptido Y/efectos de los fármacos , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/efectos de los fármacos , Familia-src Quinasas/metabolismo , Pez Cebra , Cnidarios/química , Fosfoinositido Fosfolipasa C/efectos de los fármacos , Fosfoinositido Fosfolipasa C/metabolismo
10.
Diabetes Obes Metab ; 26(11): 4945-4957, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39192525

RESUMEN

AIM: To thoroughly investigate the impact of sustained neuropeptide Y4 receptor (NPY4R) activation in obesity-associated diabetes. METHODS: Initially, the prolonged pharmacodynamic profile of the enzymatically stable pancreatic polypeptide (PP) analogue, [P3]PP, was confirmed in normal mice up to 24 h after injection. Subsequent to this, [P3]PP was administered twice daily (25 nmol/kg) for 28 days to high-fat-fed mice with streptozotocin-induced insulin deficiency, known as HFF/STZ mice. RESULTS: Treatment with [P3]PP for 28 days reduced energy intake and was associated with notable weight loss. In addition, circulating glucose was returned to values of approximately 8 mmol/L in [P3]PP-treated mice, with significantly increased plasma insulin and decreased glucagon concentrations. Glucose tolerance and glucose-stimulated insulin secretion were improved in [P3]PP-treated HFF/STZ mice, with no obvious effect on peripheral insulin sensitivity. Benefits on insulin secretion were associated with elevated pancreatic insulin content as well as islet and beta-cell areas. Positive effects on islet architecture were linked to increased beta-cell proliferation and decreased apoptosis. Treatment intervention also decreased islet alpha-cell area, but pancreatic glucagon content remained unaffected. In addition, [P3]PP-treated HFF/STZ mice presented with reduced plasma alanine transaminase and aspartate transaminase levels, with no change in circulating amylase concentrations. In terms of plasma lipid profile, triglyceride and cholesterol levels were significantly decreased by [P3]PP treatment, when compared to saline controls. CONCLUSION: Collectively, these data highlight for the first time the potential of enzymatically stable PP analogues for the treatment of obesity and related diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulina , Obesidad , Polipéptido Pancreático , Pérdida de Peso , Animales , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Ratones , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Pérdida de Peso/efectos de los fármacos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Receptores de Neuropéptido Y/metabolismo , Resistencia a la Insulina , Apoptosis/efectos de los fármacos
11.
Anal Bioanal Chem ; 416(21): 4807-4818, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38914733

RESUMEN

The hormone Neuropeptide Y (NPY) plays critical roles in feeding, satiety, obesity, and weight control. However, its complex peptide structure has hindered the development of fast and biocompatible detection methods. Previous studies utilizing electrochemical techniques with carbon fiber microelectrodes (CFMEs) have targeted the oxidation of amino acid residues like tyrosine to measure peptides. Here, we employ the modified sawhorse waveform (MSW) to enable voltammetric identification of NPY through tyrosine oxidation. Use of MSW improves NPY detection sensitivity and selectivity by reducing interference from catecholamines like dopamine, serotonin, and others compared to the traditional triangle waveform. The technique utilizes a holding potential of -0.2 V and a switching potential of 1.2 V that effectively etches and renews the CFME surface to simultaneously detect NPY and other monoamines with a sensitivity of 5.8 ± 0.94 nA/µM (n = 5). Furthermore, we observed adsorption-controlled, subsecond NPY measurements with CFMEs and MSW. The effective identification of exogenously applied NPY in biological fluids demonstrates the feasibility of this methodology for in vivo and ex vivo studies. These results highlight the potential of MSW voltammetry to enable fast, biocompatible NPY quantification to further elucidate its physiological roles.


Asunto(s)
Técnicas Electroquímicas , Neuropéptido Y , Neuropéptido Y/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Microelectrodos , Humanos , Oxidación-Reducción , Fibra de Carbono/química , Tirosina/análisis , Tirosina/química , Animales
12.
Eur Spine J ; 33(6): 2213-2221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581434

RESUMEN

PURPOSE: Lumbar spinal stenosis (LSS) is common in our aging population resulting in pain and functional impairment. Recent advances in pain research have identified several single nucleotide polymorphisms (SNP) associated with inter-individual symptom and treatment response. The goal of the current study was to investigate the association of SNPs in Neuropeptide Y (NPY) and Catechol-O-methyltransferase (COMT) with pain, function, and treatment outcomes in Lumbar spinal stenosis (LSS) patients receiving non-surgical treatments. METHODS: An exploratory observational biomarker study was performed ancillary to a previously published clinical trial evaluating three different non-surgical treatments for LSS. Saliva samples were obtained for single nucleotide polymorphism genotyping and blood samples were collected for NPY protein. Data on pain and function collected as part of the clinical trial at baseline, 2 and 6 months were examined for association with known polymorphisms in NPY and COMT. RESULTS: Subjects with the NPY rs16147 TT genotype exhibited higher baseline symptom severity but also a higher likelihood of responding to non-surgical treatments. Subjects with the COMT rs4680 GG genotype also exhibited higher baseline symptom severity but did not demonstrate greater response to treatment. CONCLUSIONS: NPY rs16147 and COMT rs4680 are important potential biomarkers associated with pain and function. NPY genotype may be useful in predicting response to non-surgical treatments in older adults with LSS.


Asunto(s)
Catecol O-Metiltransferasa , Vértebras Lumbares , Neuropéptido Y , Polimorfismo de Nucleótido Simple , Estenosis Espinal , Humanos , Estenosis Espinal/genética , Femenino , Masculino , Anciano , Catecol O-Metiltransferasa/genética , Resultado del Tratamiento , Neuropéptido Y/genética , Persona de Mediana Edad , Dolor/genética , Dolor/etiología , Anciano de 80 o más Años
13.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39337521

RESUMEN

Metabotropic glutamate receptor 4 (mGluR4) is widely regarded as an umami receptor activated by L-glutamate to exert essential functions. Numerous studies have shown that umami receptors participate in food intake regulation. However, little is known about mGluR4's role in mediating food ingestion and its possible molecular mechanism. Mandarin fish, a typical carnivorous fish, is sensitive to umami substances and is a promising vertebrate model organism for studying the umami receptor. In this study, we identified the mGluR4 gene and conducted evolutionary analyses from diverse fish species with different feeding habits. mGluR4 of mandarin fish was cloned and functionally expressed to investigate the effects of L-glutamate on mGluR4. We further explored whether the signal pathway mGluR4-Ca2+-ERK1/2 participates in the process in mandarin fish brain cells. The results suggest that L-glutamate could regulate Neuropeptide Y (Npy) via the mGluR4-Ca2+-ERK1/2 signaling pathway in mandarin fish. Our findings unveil the role of mGluR4 in feeding decisions and its possible molecular mechanisms in carnivorous fishes.


Asunto(s)
Proteínas de Peces , Ácido Glutámico , Sistema de Señalización de MAP Quinasas , Neuropéptido Y , Receptores de Glutamato Metabotrópico , Animales , Secuencia de Aminoácidos , Calcio/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Peces/metabolismo , Peces/genética , Ácido Glutámico/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Perciformes/metabolismo , Perciformes/genética , Filogenia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética
14.
Trop Anim Health Prod ; 56(7): 239, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133441

RESUMEN

Genetic improvement of local rabbit breeds using modern approaches such as marker-assisted selection requires accurate and precise information about marker‒trait associations in animals with different genetic backgrounds. Therefore, this study was designed to estimate the association between two mutations located in the Neuropeptide Y (NPY, g.1778G > C) and Phosphoglycerate Mutase 2 (PGAM2, c.195 C > T) genes in New Zealand White (NZW), Baladi (BR), and V-line rabbits. The first mutation was genotyped using high-resolution melting, and the second mutation was genotyped using the PCR-RFLP method. The results revealed significant associations between the NPY mutation and body weight at 10 (V-line) and 12 weeks of age (NZW, BR, and V-line), body weight gain (BWG) from 10 to 12 weeks of age (BR), BWG from 6 to 12 weeks of age (NZW, BR, and V-line), average daily gain (NZW, BR, and V-line, and BR), growth rate (GR) from 8 to10 weeks (V-line), 10 to 12 weeks (BR), and GR from 6 to 12 weeks of age (BR, and V-line). The PGAM2 mutation was associated with body weight at 10 (V-line) and 12 (NZW, and V-line) weeks of age, with significant positive additive effects at 12 weeks of age in all breeds, and was associated with BWG from 8 to 10 and 10 to 12 in BR, and BWG from 6 to 12 weeks of age (NZW, and BR), and average daily gain (NZW, and BR), and was associated with GR form 8 to 10 weeks (BR), from10 to 12 weeks (BR, and V-line) and from 6 to 12 weeks (BR). The results highlighted the importance of the two mutations in growth development, and the possibility of considering them as candidate genes for late growth in rabbits.


Asunto(s)
Neuropéptido Y , Fosfoglicerato Mutasa , Polimorfismo de Nucleótido Simple , Animales , Conejos/crecimiento & desarrollo , Conejos/genética , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Masculino , Femenino , Genotipo , Peso Corporal/genética , Polimorfismo de Longitud del Fragmento de Restricción , Aumento de Peso/genética
15.
Proteomics ; 23(11): e2200378, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36638187

RESUMEN

Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Niemann-Pick Tipo C , Ratones , Animales , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/metabolismo , Proteómica/métodos , Proteínas
16.
J Anat ; 242(2): 235-244, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36073672

RESUMEN

Organotins such as tributyltin chloride (TBT), are highly diffused environmental pollutants, which act as metabolism disrupting chemicals, i.e. may interfere with fat tissue differentiation, as well as with neuroendocrine circuits, thus impairing the control of energetic balance. We have previously demonstrated that adult exposure to TBT altered the expression of neuropeptides in the hypothalamus. In this study, we orally administered daily a solution containing oil, or TBT (0.25, 2.5, or 25 µg/kg body weight/day) to pregnant females from gestational day 8 until birth, and to their pups from day 0 until post-natal day 21. Our results showed that TBT exposure of female mice during gestation and of pups during lactation permanently altered the feeding efficiency of pups of both sexes and subcutaneous fat distribution in adult males. In addition, the neuropeptide Y system was affected at the level of the paraventricular nucleus, with a decrease in immunoreactivity in both sexes (significant in females for all TBT doses and in males only for intermediate TBT doses), while no effect was observed in other hypothalamic areas (arcuate, ventromedial and dorsomedial nuclei). Metabolic syndrome, as well as obesity and diabetes, which are significant health issues, are considered multifactorial diseases and may be caused by exposure to metabolic disruptors, both in adults and during perinatal life. In addition, our work indicates that TBT doses defined as the tolerably daily intake had a profound and sex-specific long-term effect.


Asunto(s)
Neuropéptido Y , Núcleo Hipotalámico Paraventricular , Embarazo , Masculino , Ratones , Animales , Femenino , Núcleo Hipotalámico Paraventricular/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Hipotálamo/metabolismo , Conducta Alimentaria
17.
BMC Cancer ; 23(1): 494, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264315

RESUMEN

BACKGROUND: Neuropeptide Y (NPY) is an abundant neurohormone in human breast carcinomas that acts on a class of G-protein coupled receptors, of which NPY1R and NPY5R are the most highly expressed. This abundance is exploited for cancer imaging, but there is interest in pharmacological inhibition of the NPYRs to interrogate their functional relevance in breast cancer. We previously reported that NPY1R and NPY5R mRNA abundance is increased by hypoxia inducible factors, which sensitizes these receptors to NPY stimulation leading to enhanced migration and proliferation. METHODS/RESULTS: Here, we measured the effects of NPY1R and NPY5R antagonists in normoxia and hypoxia on migration, proliferation, invasion, and signaling in 2D and 3D models of breast cancer cell lines MDA-MB-231 and MCF7. Antagonizing NPY1R and/or NPY5R in hypoxia compared to normoxia more greatly reduced MAPK signaling, cell proliferation, cell migration and invasion, and spheroid growth and invasion. The estrogen receptor positive MCF7 cells were significantly less invasive in 3D spheres when NPY5R was specifically inhibited. There were some discrepancies in the responses of each cell line to the isoform-specific antagonists and oxygen availability, therefore further investigations are required to dissect the intricacies of NPYR signaling dynamics. In human breast tumor tissue, we show via immunofluorescence that NPY5R protein levels and colocalization with hypoxia correlate with advanced cancer, and NPY1R protein correlates with adverse outcomes. CONCLUSIONS: Antagonizing the NPYRs has been implicated as a treatment for a wide variety of diseases. Therefore, these antagonists may aid in the development of novel cancer therapeutics and patient-based treatment plans.


Asunto(s)
Neoplasias de la Mama , Receptores de Neuropéptido Y , Humanos , Femenino , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Proliferación Celular , Hipoxia
18.
Future Oncol ; 19(35): 2361-2367, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37965794

RESUMEN

Aim: Clinical utility of the dynamics of ctDNA is sparse. This study aimed at evaluating the prognostic impact of early ctDNA dynamics in patients with metastatic cancer treated with chemotherapy. Materials & methods: The ctDNA dynamics were evaluated in 595 patients with metastatic cancer using droplet digital PCR. Results: Patients with an increase in ctDNA after one treatment cycle (n = 73; 12.2%) had an overall survival of 5.6 months compared with 8.6 months in patients with stable or decreasing ctDNA (n = 328; 55.1%) and 21.0 months in patients with undetectable ctDNA (p < 0.001; hazard ratio: 0.47; 95% CI: 0.41-0.53). Conclusion: Early ctDNA dynamics hold important prognostic information and have great implications for evaluation with the perspective of a more individualized treatment strategy.


Asunto(s)
ADN Tumoral Circulante , Neoplasias Primarias Secundarias , Humanos , Pronóstico , ADN Tumoral Circulante/genética , Modelos de Riesgos Proporcionales , Biomarcadores de Tumor/genética
19.
Mol Ther ; 30(2): 881-897, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34628054

RESUMEN

Plasma levels of neuropeptide Y (NPY) are elevated in patients with acute myocardial infarction (AMI), but its role in AMI remains unclear, which was examined here in NPY wild-type/knockout (WT/KO) mice treated with/without exogenous NPY and its Y1 receptor antagonist (Y1Ra) BIBP 3226. We found that AMI mice lacking NPY developed more severe AMI than WT mice with worse cardiac dysfunction, progressive cardiac inflammation and fibrosis, and excessive apoptosis but impairing angiogenesis. All of these changes were reversed when the NPY KO mice were treated with exogenous NPY in a dose-dependent manner. Interestingly, treatment with NPY also dose dependently attenuated AMI in WT mice, which was blocked by BIBP 3226. Phenotypically, cardiac NPY was de novo expressed by infiltrating macrophages during the repairing or fibrosing process in heart-failure patients and AMI mice. Mechanistically, NPY was induced by transforming growth factor (TGF)-ß1 in bone marrow-derived macrophages and signaled through its Y1R to exert its pathophysiological activities by inhibiting p38/nuclear factor κB (NF-κB)-mediated M1 macrophage activation while promoting the reparative M2 phenotype in vivo and in vitro. In conclusion, NPY can attenuate AMI in mice. Inhibition of cardiac inflammation and fibrosis while enhancing angiogenesis but reducing apoptosis may be the underlying mechanisms through which NPY attenuates cardiac remodeling and deterioration of function following AMI.


Asunto(s)
Infarto del Miocardio , Neuropéptido Y , Animales , Humanos , Ratones , Ratones Noqueados , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Neuropéptido Y/sangre , Neuropéptido Y/genética , Remodelación Ventricular
20.
Cell Mol Biol Lett ; 28(1): 60, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501148

RESUMEN

BACKGROUND: Sebaceous glands (SGs) synthesize and secret sebum to protect and moisturize the dermal system via the complicated endocrine modulation. Dysfunction of SG are usually implicated in a number of dermal and inflammatory diseases. However, the molecular mechanism behind the differentiation, development and proliferation of SGs is far away to fully understand. METHODS: Herein, the rat volar and mammary tissues with abundant SGs from female SD rats with (post-natal day (PND)-35) and without puberty onset (PND-25) were arrested, and conducted RNA sequencing. The protein complex of Neuropeptide Y receptor Y2 (NPY2R)/NPY5R/Nuclear factor of activated T cells 1 (NFATc1) was performed by immunoprecipitation, mass spectrum and gel filtration. Genome-wide occupancy of NFATc1 was measured by chromatin immunoprecipitation sequencing. Target proteins' expression and localization was detected by western blot and immunofluorescence. RESULTS: NPY2R gene was significantly up-regulated in volar and mammary SGs of PND-25. A special protein complex of NPY2R/NPY5R/NFATc1 in PND-25. NFATc1 was dephosphorylated and activated, then localized into nucleus to exert as a transcription factor in volar SGs of PND-35. NFATc1 was especially binding at enhancer regions to facilitate the distal SG and sebum related genes' transcription. Dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) contributed to NFATc1 phosphorylation in PND-25, and inactivated of DYRK1A resulted in NFATc1 dephosphorylation and nuclear localization in PND-35. CONCLUSIONS: Our findings unmask the new role of NPY2R/NFATc1/DYRK1A in pubertal SG, and are of benefit to advanced understanding the molecular mechanism of SGs' function after puberty, and provide some theoretical basis for the treatment of acne vulgaris from the perspective of hormone regulation.


Asunto(s)
Acné Vulgar , Glándulas Sebáceas , Animales , Femenino , Ratas , Acné Vulgar/metabolismo , Factores de Transcripción NFI/metabolismo , Ratas Sprague-Dawley , Glándulas Sebáceas/metabolismo , Sebo/metabolismo , Quinasas DyrK
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda