Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell ; 177(7): 1933-1947.e25, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31160049

RESUMEN

Heterotrimetic G proteins consist of four subfamilies (Gs, Gi/o, Gq/11, and G12/13) that mediate signaling via G-protein-coupled receptors (GPCRs), principally by receptors binding Gα C termini. G-protein-coupling profiles govern GPCR-induced cellular responses, yet receptor sequence selectivity determinants remain elusive. Here, we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique Gα subunit C termini. For each receptor, we probed chimeric Gα subunit activation via a transforming growth factor-α (TGF-α) shedding response in HEK293 cells lacking endogenous Gq/11 and G12/13 proteins, and complemented G-protein-coupling profiles through a NanoBiT-G-protein dissociation assay. Interrogation of the dataset identified sequence-based coupling specificity features, inside and outside the transmembrane domain, which we used to develop a coupling predictor that outperforms previous methods. We used the predictor to engineer designer GPCRs selectively coupled to G12. This dataset of fine-tuned signaling mechanisms for diverse GPCRs is a valuable resource for research in GPCR signaling.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Femenino , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/genética , Humanos , Masculino , Células PC-3 , Receptores Acoplados a Proteínas G/genética
2.
Mol Cell ; 81(15): 3205-3215.e5, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34314699

RESUMEN

The ß3-adrenergic receptor (ß3AR) is predominantly expressed in adipose tissue and urinary bladder and has emerged as an attractive drug target for the treatment of type 2 diabetes, obesity, and overactive bladder (OAB). Here, we report the cryogenic electron microscopy structure of the ß3AR-Gs signaling complex with the selective agonist mirabegron, a first-in-class drug for OAB. Comparison of this structure with the previously reported ß1AR and ß2AR structures reveals a receptor activation mechanism upon mirabegron binding to the orthosteric site. Notably, the narrower exosite in ß3AR creates a perpendicular pocket for mirabegron. Mutational analyses suggest that a combination of both the exosite shape and the amino-acid-residue substitutions defines the drug selectivity of the ßAR agonists. Our findings provide a molecular basis for ßAR subtype selectivity, allowing the design of more-selective agents with fewer adverse effects.


Asunto(s)
Acetanilidas/química , Agonistas de Receptores Adrenérgicos beta 3/química , Receptores Adrenérgicos beta 3/química , Receptores Adrenérgicos beta 3/metabolismo , Tiazoles/química , Acetanilidas/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/metabolismo , Animales , Sitios de Unión , Microscopía por Crioelectrón , Perros , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Receptores Adrenérgicos beta 3/genética , Tiazoles/metabolismo
3.
J Biol Chem ; 300(5): 107277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588804

RESUMEN

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.


Asunto(s)
Hidrolasas de Éster Carboxílico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteína Fosfatasa 2 , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Fosforilación , Luciferasas/metabolismo , Luciferasas/genética , Unión Proteica , Células HEK293
4.
J Biol Chem ; 299(11): 105286, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742925

RESUMEN

The twin arginine translocation (Tat) pathway transports folded protein across the cytoplasmic membrane in bacteria, archaea, and across the thylakoid membrane in plants as well as the inner membrane in some mitochondria. In plant chloroplasts, the Tat pathway utilizes the protonmotive force (PMF) to drive protein translocation. However, in bacteria, it has been shown that Tat transport depends only on the transmembrane electrical potential (Δψ) component of PMF in vitro. To investigate the comprehensive PMF requirement in Escherichia coli, we have developed the first real-time assay to monitor Tat transport utilizing the NanoLuc Binary Technology in E. coli spheroplasts. This luminescence assay allows for continuous monitoring of Tat transport with high-resolution, making it possible to observe subtle changes in transport in response to different treatments. By applying the NanoLuc assay, we report that, under acidic conditions (pH = 6.3), ΔpH, in addition to Δψ, contributes energetically to Tat transport in vivo in E. coli spheroplasts. These results provide novel insight into the mechanism of energy utilization by the Tat pathway.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Sistema de Translocación de Arginina Gemela , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/fisiología , Fuerza Protón-Motriz , Mediciones Luminiscentes , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/métodos , Metabolismo Energético , Esferoplastos/efectos de los fármacos , Esferoplastos/metabolismo , Ionóforos/farmacología
5.
J Biol Chem ; 299(9): 105107, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517699

RESUMEN

Protein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay. Owing to their smaller size, epitope tags may exhibit a diminished susceptibility to instigate such perturbations. However, while they have been widely used for detecting or manipulating proteins in vitro, epitope tags lack the in vivo traceability and functionality needed for intracellular biosensors. Herein, we develop NbV5, an intracellular nanobody binding the V5-tag, which is suitable for use in cellular assays commonly used to study PPIs such as BRET, NanoBiT, and Tango. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling, specifically by replacing larger functional moieties attached to the protein interactors, such as fluorescent or luminescent proteins (∼30 kDa), by the significantly smaller V5-tag peptide (1.4 kDa), and for microscopy imaging which is successfully detected by NbV5-based biosensors. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs.

6.
Biochem Biophys Res Commun ; 719: 150103, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761636

RESUMEN

The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood. Here, we developed a NanoLuc Binary Technology (NanoBiT)-based in vitro PKR dimerization assay to assess the impact of ssRNAs on PKR dimerization. Our findings demonstrate that, akin to double-stranded polyinosinic:polycytidylic acid (polyIC), an encephalomyocarditis virus (EMCV) RNA, as well as NanoLuc luciferase (Nluc) mRNA, can induce PKR dimerization. Conversely, homopolymeric RNA lacking secondary structure fails to promote PKR dimerization, underscoring the significance of secondary structure in this process. Furthermore, adenovirus VA RNA 1, another ssRNA, impedes PKR dimerization by competing with Nluc mRNA. Additionally, we observed structured ssRNAs capable of forming G-quadruplexes induce PKR dimerization. Collectively, our results indicate that ssRNAs have the ability to either induce or inhibit PKR dimerization, thus representing potential targets for the development of antiviral and anti-inflammatory agents.


Asunto(s)
Virus de la Encefalomiocarditis , Multimerización de Proteína , ARN Bicatenario , ARN Viral , eIF-2 Quinasa , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/química , Humanos , ARN Viral/metabolismo , ARN Viral/genética , ARN Viral/química , Virus de la Encefalomiocarditis/genética , ARN Bicatenario/metabolismo , ARN Bicatenario/química , Poli I-C/farmacología , Conformación de Ácido Nucleico
7.
Microbiology (Reading) ; 170(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847798

RESUMEN

Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Luciferasas/metabolismo , Luciferasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Transporte de Proteínas , Amilasas/metabolismo , Glutaminasa/metabolismo
8.
Biochem Biophys Res Commun ; 734: 150470, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39083973

RESUMEN

Protein-protein interactions (PPIs) play fundamental roles in many biological processes including the functioning of glycosylation machineries present in the endoplasmic reticulum (ER) and Golgi apparatus of mammalian cells. For the last couple of years, we have been successfully employing the most advanced version of the split luciferase complementation assay, termed NanoBiT, to demonstrate PPIs between solute carrier 35 (SLC35) family members with nucleotide sugar transporting activity and functionally related glycosyltransferases. NanoBiT has several unmatched advantages as compared with other strategies for studying PPIs. Firstly, the tendency of the free luciferase fragments to spontaneously associate is strongly reduced. As a consequence, the fragments of the reconstituted luciferase may dissociate upon the disruption of the PPI of interest. Secondly, the recombinant fusion proteins are expressed at low (near-endogenous) levels. Both of these features significantly minimize the possibility of obtaining false positive results. In this study we pushed the boundaries of this already powerful technique even further by coupling it with bioluminescence imaging of PPIs. Specifically, we visualized homo- and heterologous complexes formed by MGAT1 and MGAT2 glycosylation enzymes tagged with NanoBiT fragments and demonstrated ER-to-Golgi transitions between enzyme homo- and heteromers.

9.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338806

RESUMEN

Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study. To address this challenge, we harnessed innovative luciferase technologies to create and validate a NanoBiT split-luciferase biosensor system in which Merlin is cloned between two split components (LgBiT and SmBiT) of NanoLuc luciferase. This system enables precise quantification of Merlin's conformation and activity both in vitro and within living cells. This biosensor significantly enhances the study of Merlin's molecular functions, serving as a potent tool for exploring its contributions to CIP and tumorigenesis.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Neurofibromina 2 , Humanos , Transformación Celular Neoplásica , Genes Supresores de Tumor , Luciferasas , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Técnicas Biosensibles/métodos
10.
Cell Commun Signal ; 21(1): 136, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316874

RESUMEN

The dimerization of RAF kinases represents a key event in their activation cycle and in RAS/ERK pathway activation. Genetic, biochemical and structural approaches provided key insights into this process defining RAF signaling output and the clinical efficacy of RAF inhibitors (RAFi). However, methods reporting the dynamics of RAF dimerization in living cells and in real time are still in their infancy. Recently, split luciferase systems have been developed for the detection of protein-protein-interactions (PPIs), incl. proof-of-concept studies demonstrating the heterodimerization of the BRAF and RAF1 isoforms. Due to their small size, the Nanoluc luciferase moieties LgBiT and SmBiT, which reconstitute a light emitting holoenzyme upon fusion partner promoted interaction, appear as well-suited to study RAF dimerization. Here, we provide an extensive analysis of the suitability of the Nanoluc system to study the homo- and heterodimerization of BRAF, RAF1 and the related KSR1 pseudokinase. We show that KRASG12V promotes the homo- and heterodimerization of BRAF, while considerable KSR1 homo- and KSR1/BRAF heterodimerization already occurs in the absence of this active GTPase and requires a salt bridge between the CC-SAM domain of KSR1 and the BRAF-specific region. We demonstrate that loss-of-function mutations impairing key steps of the RAF activation cycle can be used as calibrators to gauge the dynamics of heterodimerization. This approach identified the RAS-binding domains and the C-terminal 14-3-3 binding motifs as particularly critical for the reconstitution of RAF mediated LgBiT/SmBiT reconstitution, while the dimer interface was less important for dimerization but essential for downstream signaling. We show for the first time that BRAFV600E, the most common BRAF oncoprotein whose dimerization status is controversially portrayed in the literature, forms homodimers in living cells more efficiently than its wildtype counterpart. Of note, Nanoluc activity reconstituted by BRAFV600E homodimers is highly sensitive to the paradox-breaking RAFi PLX8394, indicating a dynamic and specific PPI. We report the effects of eleven ERK pathway inhibitors on RAF dimerization, incl. third-generation compounds that are less-defined in terms of their dimer promoting abilities. We identify Naporafenib as a potent and long-lasting dimerizer and show that the split Nanoluc approach discriminates between type I, I1/2 and II RAFi. Video Abstract.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Dimerización , Luciferasas
11.
J Cell Sci ; 133(12)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32409563

RESUMEN

Ubiquitylation is a reversible post-translational protein modification that regulates a multitude of cellular processes. Detection of ubiquitylated proteins is often challenging because of their low abundance. Here, we present NUbiCA, a sensitive protein-fragment complementation assay to facilitate the monitoring of ubiquitylation events in cultured cells and model organisms. Using yeast as a model system, we demonstrate that NUbiCA enables accurate monitoring of mono- and polyubiquitylation of proteins expressed at endogenous levels. We also show that it can be applied to decipher the topology of ubiquitin conjugates. Moreover, we assembled a genome-wide collection of yeast strains ready to investigate the ubiquitylation of proteins with this new assay. This resource will facilitate the analysis of local or transient ubiquitylation events that are difficult to detect with current methods.


Asunto(s)
Procesamiento Proteico-Postraduccional , Ubiquitina , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
12.
Arch Toxicol ; 96(3): 877-897, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35072756

RESUMEN

New synthetic opioids (NSOs) are one of the fastest growing groups of new psychoactive substances. Amid this dynamic landscape, insight into the pharmacology of NSOs is important to estimate the harm potential of newly emerging drugs. In this work, we determined the µ-opioid receptor (MOR) affinity and activation potential of seven poorly characterized non-fentanyl NSOs (N-ethyl-U-47700, 3,4-difluoro-U-47700, U-47931E/bromadoline, 2,4-difluoro-U-48800, U-62066/spiradoline, 2F-viminol, ketobemidone) and a panel of nine reference opioids. MOR affinity was determined via [3H]-DAMGO binding in rat brain tissue homogenates, and was found to correlate well with different functional parameters. MOR activation potential was studied at different levels of receptor signaling using three distinct assays (NanoBiT® MOR-ß-arrestin2/mini-Gαi and AequoScreen®). The most active compounds were ketobemidone (EC50 32.8-528 nM; Emax 105-271%, relative to hydromorphone) and N-ethyl-U-47700 (EC50 241-767 nM; Emax 139-247%). The same opioids showed the strongest MOR affinity. As most of the other NSOs only weakly activated MOR in the three assays (EC50 values in the high nM-µM range), they likely do not pose a high overdose risk. 2F-viminol (EC50 2.2-4.5 µM; Emax 21.2-61.5%) and U-47931E/bromadoline (EC50 0.55-2.9 µM; Emax 52.8-85.9%) were partial agonists compared to hydromorphone, and maximum receptor activation was not reached for 2,4-difluoro-U-48800 (EC50 > 22 µM). We further highlight the importance of considering specific assay characteristics upon interpretation of potencies, efficacies and biased agonism. As absolute values may greatly differ between assays with varying experimental set-ups, a comparison of functional parameters to those of well-characterized reference agonists is considered the most informative.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides mu/agonistas , Animales , Células HEK293 , Humanos , Hidromorfona/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
13.
J Biol Chem ; 295(26): 8759-8774, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32381507

RESUMEN

The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1-10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/ß-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.


Asunto(s)
Receptores Frizzled/metabolismo , Vía de Señalización Wnt , Proteína Wnt3A/metabolismo , Animales , Receptores Frizzled/análisis , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Microscopía Confocal/métodos , Mapas de Interacción de Proteínas , Transporte de Proteínas , Proteína Wnt3A/análisis , Xenopus
14.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801503

RESUMEN

Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Inhibidores Enzimáticos/farmacología , Fragmentos de Péptidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas de Unión al GTP rap/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Humanos , Prenilación de Proteína , Especificidad por Sustrato , Xantinas/farmacología , Proteínas de Unión al GTP rap/química , Proteínas de Unión al GTP rap/genética
15.
J Biol Chem ; 294(45): 16587-16603, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31467080

RESUMEN

Membrane proteins can associate into larger complexes. Examples include receptor tyrosine complexes, ion channels, transporters, and G protein-coupled receptors (GPCRs). For the latter, there is abundant evidence indicating that GPCRs assemble into complexes, through both homo- and heterodimerization. However, the tools for studying and disrupting these complexes, GPCR or otherwise, are limited. Here, we have developed stabilized interference peptides for this purpose. We have previously reported that tetrahydrocannabinol-mediated cognitive impairment arises from homo- or heterooligomerization between the GPCRs cannabinoid receptor type 1 (CB1R) and 5-hydroxytryptamine 2A (5-HT2AR) receptors. Here, to disrupt this interaction through targeting CB1-5-HT2A receptor heteromers in HEK293 cells and using an array of biochemical techniques, including calcium and cAMP measurements, bimolecular fluorescence complementation assays, and CD-based helicity assessments, we developed a NanoLuc binary technology (NanoBiT)-based reporter assay to screen a small library of aryl-carbon-stapled transmembrane-mimicking peptides produced by solid-phase peptide synthesis. We found that these stapling peptides have increased α-helicity and improved proteolytic resistance without any loss of disrupting activity in vitro, suggesting that this approach may also have utility in vivo In summary, our results provide proof of concept for using NanoBiT to study membrane protein complexes and for stabilizing disrupting peptides to target such membrane complexes through hydrocarbon-mediated stapling. We propose that these peptides could be developed to target previously undruggable GPCR heteromers.


Asunto(s)
Péptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , AMP Cíclico/metabolismo , Dimerización , Células HEK293 , Humanos , Nanotecnología , Péptidos/síntesis química , Péptidos/química , Dominios y Motivos de Interacción de Proteínas , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB1/metabolismo , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/metabolismo , Receptores Acoplados a Proteínas G/química
16.
Anal Biochem ; 593: 113599, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32004544

RESUMEN

Split luciferase complementation assay is one of the approaches enabling identification and analysis of protein-protein interactions in vivo. The NanoBiT technology is the most recent improvement of this strategy. Nucleotide sugar transporters and glycosyltransferases of the Golgi apparatus are the key players in glycosylation. Here we demonstrate the applicability of the NanoBiT system for studying homooligomerization of these proteins. We also report and discuss a novel heterologous interaction between UDP-galactose transporter and beta-1,4-galactosyltransferase 1.


Asunto(s)
Mediciones Luminiscentes/métodos , Proteínas de Transporte de Monosacáridos/metabolismo , N-Acetil-Lactosamina Sintasa/metabolismo , Nanotecnología/métodos , Secuencia de Aminoácidos , Animales , Transporte Biológico , Células CHO , Cricetulus , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Unión Proteica
17.
FASEB J ; 33(3): 3841-3850, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30521377

RESUMEN

Equilibrative nucleoside transporters (ENTs) translocate nucleosides and nucleobases across plasma membranes, as well as a variety of anti-cancer, -viral, and -parasite nucleoside analogs. They are also key members of the purinome complex and regulate the protective and anti-inflammatory effects of adenosine. Despite their important role, little is known about the mechanisms involved in their regulation. We conducted membrane yeast 2-hybrid and coimmunoprecipitation studies and identified, for the first time to our knowledge, the existence of protein-protein interactions between human ENT1 and ENT2 (hENT1 and hENT2) proteins in human cells and the formation of hetero- and homo-oligomers at the plasma membrane and the submembrane region. The use of NanoLuc Binary Technology allowed us to analyze changes in the oligomeric status of hENT1 and hENT2 and how they rapidly modify the uptake profile for nucleosides and nucleobases and allow cells to respond promptly to external signals or changes in the extracellular environment. These changes in hENTs oligomerization are triggered by PKC activation and subsequent action of protein phosphatase 1.-Grañe-Boladeras, N., Williams, D., Tarmakova, Z., Stevanovic, K., Villani, L. A., Mehrabi, P., Siu, K. W. M., Pastor-Anglada, M., Coe, I. R. Oligomerization of equilibrative nucleoside transporters: a novel regulatory and functional mechanism involving PKC and PP1.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Multimerización de Proteína , Células HEK293 , Humanos , Unión Proteica , Proteína Quinasa C/metabolismo , Proteína Fosfatasa 1/metabolismo
18.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070068

RESUMEN

Sox9 is a master transcription factor for chondrogenesis, which is essential for chondrocyte proliferation, differentiation, and maintenance. Sox9 activity is regulated by multiple layers, including post-translational modifications, such as SUMOylation. A detection method for visualizing the SUMOylation in live cells is required to fully understand the role of Sox9 SUMOylation. In this study, we generated a quantitative reporter for Sox9 SUMOylation that is based on the NanoBiT system. The simultaneous expression of Sox9 and SUMO1 constructs that are conjugated with NanoBiT fragments in HEK293T cells induced luciferase activity in SUMOylation target residue of Sox9-dependent manner. Furthermore, the reporter signal could be detected from both cell lysates and live cells. The signal level of our reporter responded to the co-expression of SUMOylation or deSUMOylation enzymes by several fold, showing dynamic potency of the reporter. The reporter was active in multiple cell types, including ATDC5 cells, which have chondrogenic potential. Finally, using this reporter, we revealed a extracellular signal conditions that can increase the amount of SUMOylated Sox9. In summary, we generated a novel reporter that was capable of quantitatively visualizing the Sox9-SUMOylation level in live cells. This reporter will be useful for understanding the dynamism of Sox9 regulation during chondrogenesis.


Asunto(s)
Condrogénesis/genética , Factor de Transcripción SOX9/genética , Proteína SUMO-1/genética , Sumoilación/genética , Animales , Diferenciación Celular/genética , Condrocitos/metabolismo , Regulación de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética
19.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824188

RESUMEN

Reporter genes are used to visualize intracellular biological phenomena, including viral infection. Here we demonstrate bioluminescent imaging of viral infection using the NanoBiT system in combination with intraperitoneal injection of a furimazine analogue, hydrofurimazine. This recently developed substrate has enhanced aqueous solubility allowing delivery of higher doses for in vivo imaging. The small high-affinity peptide tag (HiBiT), which is only 11 amino-acids in length, was engineered into a clinically used oncolytic adenovirus, and the complementary large protein (LgBiT) was constitutively expressed in tumor cells. Infection of the LgBiT expressing cells with the HiBiT oncolytic virus will reconstitute NanoLuc in the cytosol of the cell, providing strong bioluminescence upon treatment with substrate. This new bioluminescent system served as an early stage quantitative viral transduction reporter in vitro and also in vivo in mice, for longitudinal monitoring of oncolytic viral persistence in infected tumor cells. This platform provides novel opportunities for studying the biology of viruses in animal models.


Asunto(s)
Furanos/farmacocinética , Imidazoles/farmacocinética , Sustancias Luminiscentes/farmacocinética , Proteínas Luminiscentes/genética , Imagen Óptica/métodos , Pirazinas/farmacocinética , Virosis/diagnóstico por imagen , Adenoviridae/genética , Animales , Línea Celular Tumoral , Furanos/administración & dosificación , Células HEK293 , Humanos , Imidazoles/administración & dosificación , Inyecciones Intraperitoneales , Sustancias Luminiscentes/administración & dosificación , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oligopéptidos/genética , Oligopéptidos/metabolismo , Virus Oncolíticos/genética , Pirazinas/administración & dosificación , Proteínas Recombinantes/genética
20.
J Biol Chem ; 293(23): 8750-8760, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29674345

RESUMEN

Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases.


Asunto(s)
NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Animales , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Hemo/química , Hemo/metabolismo , Humanos , Modelos Moleculares , NADPH Oxidasa 4/química , NADPH Oxidasas/química , Dominios Proteicos , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda