Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.396
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(18): e2307633121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648471

RESUMEN

Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.

2.
Proc Natl Acad Sci U S A ; 120(41): e2305327120, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788308

RESUMEN

Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers. This occurred when increasing CQD diameter to decrease the bandgap below 1.1 eV. Here, we develop a rectifying junction among InAs CQD layers, where we use molecular surface modifiers to tune the energy levels of InAs CQDs electrostatically. Previously developed bifunctional dithiol ligands, established for II-VI and IV-VI CQDs, exhibit slow reaction kinetics with III-V surfaces, causing the exchange to fail. We study carboxylate and thiolate binding groups, united with electron-donating free end groups, that shift upward the valence bandedge of InAs CQDs, producing valence band energies as shallow as 4.8 eV. Photophysical studies combined with density functional theory show that carboxylate-based passivants participate in strong bidentate bridging with both In and As on the CQD surface. The tuned CQD layer incorporated into a photodiode structure achieves improved performance with EQE (external quantum efficiency) of 35% (>1 µm) and dark current density < 400 nA cm-2, a >25% increase in EQE and >90% reduced dark current density compared to the reference device. This work represents an advance over previous III-V CQD short-wavelength IR photodetectors (EQE < 5%, dark current > 10,000 nA cm-2).

3.
Nano Lett ; 24(20): 6010-6016, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739874

RESUMEN

Planar double heterostructures were initially investigated and have been successfully applied in III-V semiconductor lasers due to their excellent roles in confining both the photons and carriers. Here, we design and fabricate a (PEA)2Csn-1PbnX3n+1 (quasi-2D)/CsPbBr3 QD/quasi-2D double-heterostructure sandwiched in a 3/2 λ DBR microcavity, and then demonstrate a single-mode pure-green lasing with a threshold of 53.7 µJ/cm2 under nanosecond-pulsed optical pumping. The thresholds of these heterostructure devices decrease statistically by about 50% compared to the control group with no energy donor layers, PMMA/QD/PMMA in an identical microcavity. We show that there is efficient energy transfer from the barrier regions of the quasi-2D phases to the QD layer by transient absorption and luminescence lifetime spectra and that such energy transfer leads to marked threshold reduction. This work indicates that the double-heterostructure configurations should play a significant role in the future perovskite electrically pumped laser.

4.
Nano Lett ; 24(40): 12676-12683, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39321410

RESUMEN

Perovskite nanocrystals (PNCs) are attractive emissive materials for developing compact lasers. However, manipulation of PNC laser directionality has been difficult, which limits their usage in photonic devices that require on-demand tunability. Here we demonstrate PNC metasurface lasers with engineered emission angles. We fabricated millimeter-scale CsPbBr3 PNC metasurfaces using an all-solution-processing technique based on soft nanoimprinting lithography. By designing band-edge photonic modes at the high-symmetry X point of the reciprocal lattice, we achieved four linearly polarized lasing beams along a polar angle of ∼30° under optical pumping. The device architecture further allows tuning of the lasing emission angles to 0° and ∼50°, respectively, by adjusting the PNC thickness to shift other high-symmetry points (Γ and M) to the PNC emission wavelength range. Our laser design strategies offer prospects for applications in directional optical antennas and detectors, 3D laser projection displays, and multichannel visible light communication.

5.
Nano Lett ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608158

RESUMEN

Transferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering. Once coupled to a read-out circuit, the Joule effect aggregates the particles, leading to a poorly defined optical edge and large dark current. Here, we demonstrate that CdS shells bring the expected thermal stability (no redshift upon annealing, reduced tendency to form amalgams, and preservation of photoconduction after an atomic layer deposition process). The electronic structure of these confined particles is unveiled using k.p self-consistent simulations showing a significant exciton binding energy of ∼200 meV. After shelling, the material displays a p-type behavior that favors the generation of photoconductive gain. The latter is then used to increase the external quantum efficiency of an infrared imager, which now reaches 40% while presenting long-term stability.

6.
Nano Lett ; 24(15): 4512-4520, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579125

RESUMEN

Perovskite nanocrystals are advantageous for interfacial passivation of perovskite solar cells (PSCs), but the insulating long alkyl chain surface ligands impede the charge transfer, while the conventional ligand exchange would possibly introduce surface defects to the nanocrystals. In this work, we reported novel in situ modification of CsPbBr3 nanocrystals using a short chain conjugated molecule 2-methoxyphenylethylammonium iodide (2-MeO-PEAI) for interfacial passivation of PSCs. Transmission electron microscopy studies with atomic resolution unveil the transformation from cubic CsPbBr3 to Ruddlesden-Popper phase (RPP) nanocrystals due to halogen exchange. Synergic passivation by the RPP nanocrystals and 2-MeO-PEA+ has led to suppressed interface defects and enhanced charge carrier transport. Consequently, PSCs with in situ modified RPP nanocrystals achieved a champion power conversion efficiency of 24.39%, along with an improvement in stability. This work brings insights into the microstructural evolution of perovskite nanocrystals, providing a novel and feasible approach for interfacial passivation of PSCs.

7.
Nano Lett ; 24(2): 549-556, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174901

RESUMEN

Rhombic dodecahedral nanocrystals have been considered particularly difficult to synthesize because they are enclosed by {110}, a low-index facet with the greatest surface energy. Recently, we demonstrated the use of seed-mediated growth for the facile and robust synthesis of Au rhombic dodecahedral nanocrystals (AuRD). While the unique shape and surface structure of AuRD are desirable for potential applications in plasmonics and catalysis, respectively, their high surface energy makes them highly susceptible to thermal degradation. Here we demonstrate that it is feasible to greatly improve the thermal stability with some sacrifice to the plasmonic properties of the original AuRD by coating their surface with an ultrathin shell made of Pt. Our in situ electron microscopy analysis indicates that the ultrathin Pt coating can increase the thermal stability from 60 up to 450 °C, a trend that is also supported by the results from a computational study.

8.
Nano Lett ; 24(9): 2719-2726, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377427

RESUMEN

Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core-shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.

9.
Nano Lett ; 24(9): 2712-2718, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407061

RESUMEN

Colloidal semiconductor nanocrystals are promising candidates for quantum light sources, yet their application has been impeded by photoluminescence instability due to blinking and spectral diffusion. This study introduces a new category of cube-shaped CdSe/CdS core/shell nanocrystals with exceptionally stable photoluminescence characteristics. Under continuous excitation, the emissive quantum state remained consistent without alterations of the charge state for 4000 s, and the average photon energy variation stayed within the bounds of spectral resolution throughout this extended duration. Systematic examination of single-nanocrystal photoluminescence, upon variation of the core and shell dimensions, revealed that a thicker CdS shell and increased core edge length significantly curtail spectral diffusion, considering that the nanocrystals possess well-controlled CdSe-CdS and facet-ligand interfaces. This study advances the optimization of colloidal semiconductor nanocrystals as high-performance quantum light sources.

10.
Nano Lett ; 24(22): 6601-6609, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787739

RESUMEN

Lead-halide perovskite nanocrystals (NCs) are promising for fabricating deep-blue (<460 nm) light-emitting diodes (LEDs), but their development is plagued by low electroluminescent performance and lead toxicity. Herein, the synthesis of 12 kinds of highly luminescent and eco-friendly deep-blue europium (Eu2+)-doped alkali-metal halides (AX:Eu2+; A = Na+, K+, Rb+, Cs+; X = Cl-, Br-, I-) NCs is reported. Through adjustment of the coordination environment, efficient deep-blue emission from Eu-5d → Eu-4f transitions is realized. The representative CsBr:Eu2+ NCs exhibit a high photoluminescence quantum yield of 91.1% at 441 nm with a color coordinate at (0.158, 0.023) matching with the Rec. 2020 blue specification. Electrically driven deep-blue LEDs from CsBr:Eu2+ NCs are demonstrated, achieving a record external quantum efficiency of 3.15% and half-lifetime of ∼1 h, surpassing the reported metal-halide deep-blue NCs-based LEDs. Importantly, large-area LEDs with an emitting area of 12.25 cm2 are realized with uniform emission, representing a milestone toward commercial display applications.

11.
Nano Lett ; 24(18): 5631-5638, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669049

RESUMEN

Perovskite light-emitting diodes (PeLEDs) based on CsPb(Br/I)3 nanocrystals (NCs) usually suffer from severe spectral instability under operating voltage due to the poor-quality PeNCs. Herein, zeolite was utilized to prepare high-quality CsPb(Br/I)3 NCs via promoting the homogeneous nucleation and growth and suppressing the Ostwald ripening of PeNCs. In addition, the decomposed zeolite interacted strongly with PeNCs through Pb-O bonds and hydrogen bonds, which inhibited the formation of defects and suppressed halide ion migration, leading to an improved photoluminescence quantum yield (PLQY) and enhanced stability of PeNCs. Moreover, the strong binding affinity of decomposed zeolite to PeNCs contributed to the formation of homogeneous perovskite films with high PLQY. As a result, pure-red PeLEDs with Commission International de I'Eclairage (CIE) coordinates of (0.705, 0.291) were fabricated, approaching the Rec. 2020 red primary color. The devices achieved a peak external quantum efficiency of 23.0% and outstanding spectral stability.

12.
Nano Lett ; 24(39): 12045-12053, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39311748

RESUMEN

Mixed halide perovskites exhibit promising optoelectronic properties for next-generation light-emitting diodes due to their tunable emission wavelength that covers the entire visible light spectrum. However, these materials suffer from severe phase segregation under continuous illumination, making long-term stability for pure red emission a significant challenge. In this study, we present a comprehensive analysis of the role of halide oxidation in unbalanced ion migration (I/Br) within CsPbI2Br nanocrystals and thin films. We also introduce a new approach using cyclic olefin copolymer (COC) to encapsulate CsPbI2Br perovskite nanocrystals (PNCs), effectively suppressing ion migration by increasing the corresponding activation energy. Compared with that of unencapsulated samples, we observe a substantial reduction in phase separation under intense illumination in PNCs with a COC coating. Our findings show that COC enhances phase stability by passivating uncoordinated surface defects (Pb2+ and I-), increasing the formation energy of halide vacancies, improving the charge carrier lifetime, and reducing the nonradiative recombination density.

13.
Nano Lett ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400074

RESUMEN

Colloidal semiconductor nanocrystals have long been considered a promising source of time-correlated and entangled photons via the cascaded emission of multiexcitonic states. The spectroscopy of such cascaded emission, however, is hindered by efficient nonradiative Auger-Meitner decay, rendering multiexcitonic states nonemissive. Here we present room-temperature heralded spectroscopy of three-photon cascades from triexcitons in giant CsPbBr3 nanocrystals. We show that this system exhibits second- and third-order correlation function values, g(2)(0) and g(3)(0,0), close to unity, identifying very weak binding of both biexcitons and triexcitons. Combining fluorescence lifetime analysis, photon statistics, and spectroscopy, we can readily identify emission from higher multiexcitonic states. We use this to verify emission from a single emitter despite high emission quantum yields of multiply excited states and comparable emission lifetimes of singly and multiply excited states. Finally, we present potential pathways toward control of the photon number statistics of multiexcitonic emission cascades.

14.
Nano Lett ; 24(23): 6897-6905, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38805366

RESUMEN

Aluminum nanocrystals created by catalyst-driven colloidal synthesis support excellent plasmonic properties, due to their high level of elemental purity, monocrystallinity, and controlled size and shape. Reduction in the rate of nanocrystal growth enables the synthesis of highly anisotropic Al nanowires, nanobars, and singly twinned "nanomoustaches". Electron energy loss spectroscopy was used to study the plasmonic properties of these nanocrystals, spanning the broad energy range needed to map their plasmonic modes. The coupling between these nanocrystals and other plasmonic metal nanostructures, specifically Ag nanocubes and Au films of controlled nanoscale thickness, was investigated. Al nanocrystals show excellent long-term stability under atmospheric conditions, providing a practical alternative to coinage metal-based nanowires in assembled nanoscale devices.

15.
Nano Lett ; 24(23): 6981-6989, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814739

RESUMEN

In this study, we conducted a high-pressure investigation of Cu2-xSe nanostructures with pyramid- and plate-like morphologies, created through cation exchange from zinc-blende CdSe nanocrystals and wurtzite CdSe nanoplatelets respectively. Using a diamond anvil cell setup at the APS synchrotron, we observed the phase transitions in the Cu2-xSe nanostructures up to 40 GPa, identifying a novel CsCl-type lattice with Pm3̅m symmetry above 4 GPa. This CsCl-type structure, previously unreported in copper selenides, was partially retained after decompression. Our results indicate that the initial crystalline structure of CdSe does not affect the stability of Cu2-xSe nanostructures formed via cation exchange. Both morphologies of Cu2-xSe sintered under compression, potentially contributing to the stabilization of the high-pressure phase through interfacial defects. These findings are significant for discovering new phases with potential applications in future technologies.

16.
Nano Lett ; 24(14): 4265-4271, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557055

RESUMEN

Understanding the interplay between bright and dark exciton states is crucial for deciphering the luminescence properties of low-dimensional materials. The origin of the outstanding brightness of lead halide perovskites remains elusive. Here, we analyze temperature-dependent time-resolved photoluminescence to investigate the population mixing between bright and dark exciton sublevels in individual CsPbBr3 nanocrystals in the intermediate confinement regime. We extract bright and dark exciton decay rates and show quantitatively that the decay dynamics can only be reproduced with second-order phonon transitions. Furthermore, we find that any exciton sublevel ordering is compatible with the most likely population transfer mechanism. The remarkable brightness of lead halide perovskite nanocrystals rather stems from a reduced asymmetry between bright-to-dark and dark-to-bright conversion originating from the peculiar second-order phonon-assisted transitions that freeze bright-dark conversion at low temperatures together with the very fast radiative recombination and favorable degeneracy of the bright exciton state.

17.
Nano Lett ; 24(3): 905-913, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38197790

RESUMEN

Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization.

18.
Nano Lett ; 24(5): 1710-1716, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266494

RESUMEN

The facet chemistry of halide perovskite nanocrystals plays a key role in designing nanoscale epitaxial heterostructures. However, despite significant successes achieved in designing these nanocrystals, their heterostructures with several leading transition metals could not be established yet. Herein, the possible heterostructures of metals beyond transition metals are explored and the epitaxial combinations of soft CsPbBr3 nanocrystals with the post-transition metal Bi(0) are reported. These heterostructures are built with interfacing facets having hexagonal atomic configurations of both the rhombicuboctahedron CsPbBr3 and octahedral Bi(0). A high reaction temperature and the presence of alkylamine kept Bi(III) in reduced form and helped in sustaining these CsPbBr3-Bi(0) heteronanocrystals. Since understanding of and synthesis optimization of metal-halide perovskite heterostructures are limited, this finding adds a new fundamental insight in designing ionic and nonionic materials heterojunctions. Furthermore, oxidation and sulfidation of Bi(0) are studied, and the possible oxide/sulfide heterostructures with CsPbBr3 are discussed.

19.
Nano Lett ; 24(32): 9898-9905, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39007697

RESUMEN

The technology of combining multiple emission centers to exploit white-light-emitting (WLE) materials by taking advantage of porous metal-organic frameworks (MOFs) is mature, but preparing undoped WLE MOFs remains a challenge. Herein, a pressure-treated strategy is reported to achieve efficient white photoluminescence (PL) in undoped [Zn(Tdc)(py)]n nanocrystals (NCs) at ambient conditions, where the Commission International del'Eclairage coordinates and color temperature reach (0.31, 0.37) and 6560 K, respectively. The initial [Zn(Tdc)(py)]n NCs exhibit weak-blue PL consisting of localized excited (LE) and planarized intramolecular charge transfer (PLICT) states. After pressure treatment, the emission contributions of LE and PLICT states are balanced by increasing the planarization of subunits, thereby producing white PL. Meanwhile, the reduction of nonradiative decay triggered by the planarized structure results in 5-fold PL enhancement. Phosphor-converted light-emitting diodes based on pressure-treated samples show favorable white-light characteristics. The finding provides a new platform for the development of undoped WLE MOFs.

20.
Nano Lett ; 24(31): 9683-9690, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052088

RESUMEN

I-III-VI type semiconductor nanocrystals (NCs) have attracted considerable attention due to their environmental friendly nature and large-scale tunable emission. Herein, we report the successful synthesis of full-spectrum (470 to 614 nm) Ag-In-Ga-Zn-S (AIGZS) NCs by precisely regulating the In/Ga ratios using a facile one-pot method. Intriguingly, the photoluminescence (PL) peak width exhibits a continuous narrowing trend with extended reaction time, ultimately reaching a full width at half-maximum (fwhm) of 34 nm for green AIGZS NCs. Furthermore, the exciton relaxation dynamics of AIGZS NCs were systematically investigated using time-resolved photoluminescence and femtosecond transient absorption spectroscopy. Remarkably, we successfully fabricated blue, green, and red quantum-dot light-emitting diodes (QLEDs), forecasting the potential of AIGZS NCs with high color purity for applications in full-spectrum QLEDs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda