Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Pollut ; 335: 122235, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37543073

RESUMEN

In the field of agriculture, nanopesticides have been developed as an alternative to the conventional pesticides, being more efficient for pest control. However, before their widespread application it is essential to evaluate their safe application and no environmental impacts. In this paper, we evaluated the toxicological effects of two kinds of atrazine nanoformulations (ATZ NPs) in different biological models (Raphidocelis subcapitata, Danio rerio, Lemna minor, Artemia salina, Lactuca sativa and Daphnia magna) and compared the results with nanoparticle stability over time and the presence of natural organic matter (NOM). The systems showed different characteristics for Zein (ATZ NPZ) (184 ± 2 nm with a PDI of 0.28 ± 0.04 and zeta potential of (30.4 ± 0.05 mV) and poly(epsilon-caprolactone (ATZ PCL) (192 ± 3 nm, polydispersity (PDI) of 0.28 ± 0.28 and zeta potential of -18.8 ± 1.2 mV) nanoparticles. The results showed that there is a correlation between nanoparticles stability and the presence of NOM in the medium and Environmental Concentrations (EC) values. The stability loss or an increase in nanoparticle size result in low toxicity for R. subcapitata and L. minor. For D. magna and D. rerio, the presence of NOM in the medium reduces the ecotoxic effects for ATZ NPZ nanoparticles, but not for ATZ NPs, showing that the nanoparticles characteristics and their interaction with NOM can modulate toxic effects. Nanoparticle stability throughout the evaluation must be considered and become an integral part of toxicity protocol guidelines for nanopesticides, to ensure test quality and authentic results regarding nanopesticide effects in target and non-target organisms.


Asunto(s)
Atrazina , Nanopartículas , Plaguicidas , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Atrazina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Plaguicidas/toxicidad , Pez Cebra , Daphnia
2.
Nanomaterials (Basel) ; 13(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242051

RESUMEN

Phytosynthesis of silver nanoparticles (Ag NPs) has been progressively acquiring attractiveness. In this study, the root of Zanthoxylum nitidum was used to synthesize Ag NPs, and its pre-emergence herbicidal activity was tested. The synthesized Ag NPs by the aqueous extract from Z. nitidum were characterized by visual inspection, ultraviolet-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The plant-mediated synthesis was completed within 180 min and the Ag NPs exhibited a characteristic peak at around 445 nm. The results of the DLS measurement showed that the average hydrodynamic diameter was 96 nm with a polydispersity index (PDI) of 0.232. XRD results indicated the crystalline nature of the phytogenic Ag NPs. A TEM analysis revealed that the nanoparticles were spherical with an average particle size of 17 nm. An EDX spectrum confirmed the presence of an elemental silver signal. Furthermore, the Ag NPs exhibited a herbicidal potential against the seed germination and seedling growth of Bidens Pilosa L. The present work indicates that Ag NPs synthesized by plant extract could have potential for the development of a new nanoherbicide for weed prevention and control.

3.
Sci Total Environ ; 871: 162094, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764548

RESUMEN

Nanopesticides, such as nanoencapsulated atrazine (nATZ), have been studied and developed as eco-friendly alternatives to control weeds in fields, requiring lower doses. This review contains a historical and systematic literature review about the toxicity of nATZ to non-target species. In addition, the study establishes protective concentrations for non-target organisms through a species sensitivity distribution (SSD) approach. Through the systematic search, we identified 3197 publications. Of these, 14 studies addressed "(nano)atrazine's toxicity to non-target organisms". Chronological and geographic data on the publication of articles, characterization of nATZ (type of nanocarrier, size, polydispersity index, zeta potential), experimental design (test species, exposure time, measurements, methodology, tested concentrations), and toxic effects are summarized and discussed. The data indicate that cell and algal models do not show sensitivity to nATZ, while many terrestrial and aquatic invertebrates, aquatic vertebrates, microorganisms, and plants have high sensitivity to nAZT. The SSD results indicated that D. similis is the most sensitive species to nATZ, followed by C. elegans, E. crypticus, and P. subcapitata. However, the limitations in terms of the number of species and endpoints available to elaborate the SSD reflect gaps in knowledge of the effects of nATZ on different ecosystems.


Asunto(s)
Atrazina , Contaminantes Químicos del Agua , Animales , Atrazina/toxicidad , Ecosistema , Caenorhabditis elegans , Plantas , Proyectos de Investigación , Contaminantes Químicos del Agua/toxicidad , Medición de Riesgo , Organismos Acuáticos
4.
Plants (Basel) ; 11(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36501405

RESUMEN

Nanoformulations have been used to improve the delivery of fertilizers, pesticides, and growth regulators, with a focus on more sustainable agriculture. Nanoherbicide research has focused on efficiency gains through targeted delivery and environmental risk reduction. However, research on the behavior and safety of the application of these formulations in cropping systems is still limited. Organic matter contained in cropping systems can change the dynamics of herbicide−soil interactions in the presence of nanoformulations. The aim of this study was to use classical protocols from regulatory studies to understand the retention and mobility dynamics of a metribuzin nanoformulation, compared to a conventional formulation. We used different soil systems and soil with added fresh organic material. The batch method was used for sorption−desorption studies and soil thin layer chromatography for mobility studies, both by radiometric techniques. Sorption parameters for both formulations showed that retention is a reversible process in all soil systems (H~1.0). In deep soil with added fresh organic material, nanoformulation was more sorbed (14.61 ± 1.41%) than commercial formulation (9.72 ± 1.81%) (p < 0.05). However, even with the presence of straw as a physical barrier, metribuzin in nano and conventional formulations was mobile in the soil, indicating that the straw can act as a barrier to reduce herbicide mobility but is not impeditive to herbicide availability in the soil. Our results suggest that environmental safety depends on organic material maintenance in the soil system. The availability can be essential for weed control, associated with nanoformulation efficiency, in relation to the conventional formulation.

5.
J Agric Food Chem ; 67(16): 4453-4462, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30933503

RESUMEN

Atrazine is one of the most used herbicides and has been associated with persistent surface and groundwater contamination, and novel formulations derived from nanotechnology can be a potential solution. We used poly(ε-caprolactone) nanoencapsulation of atrazine (NC+ATZ) to develop a highly effective herbicidal formulation. Detailed structural study of interaction between the formulation and Brassica juncea plants was carried out with evaluation of the foliar uptake of nanoatrazine and structural alterations induced in the leaves. Following postemergent treatment, NC+ATZ adhered to the leaf and penetrated mesophyll tissue mainly through the hydathode regions. NC+ATZ was transported directly through the vascular tissue of the leaves and into the cells where it degraded the chloroplasts resulting in herbicidal activity. Nanocarrier systems, such as the one used in this study, have great potential for agricultural applications in terms of maintenance of herbicidal activity at low concentrations and a substantial increase in the herbicidal efficacy.


Asunto(s)
Atrazina/química , Herbicidas/química , Planta de la Mostaza/efectos de los fármacos , Nanopartículas/química , Atrazina/metabolismo , Atrazina/farmacología , Composición de Medicamentos , Herbicidas/metabolismo , Herbicidas/farmacología , Planta de la Mostaza/metabolismo , Nanopartículas/metabolismo , Nanotecnología , Tamaño de la Partícula , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda