Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Environ Monit Assess ; 191(Suppl 1): 336, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222398

RESUMEN

Soil concentrations of 12 heavy metals that have been linked to various anthropogenic activities were measured in samples collected from the uppermost horizon in approximately 1000 wetlands across the conterminous US as part of the 2011 National Wetland Condition Assessment (NWCA). The heavy metals were silver (Ag), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), antimony (Sb), tin (Sn), vanadium (V), tungsten (W), and zinc (Zn). Using thresholds to distinguish natural background concentrations from human-mediated additions, we evaluated wetland soil heavy metal concentrations in the conterminous US and four regions using a Heavy Metal Index (HMI) that reflects human-mediated heavy metal loads based on the number of elements above expected background concentration. We also examined the individual elements to detect concentrations of heavy metals above expected background that frequently occur in wetland soils. Our data show that wetland soils of the conterminous US typically have low heavy metal loads, and that most of the measured elements occur nationally in concentrations below thresholds that relate to anthropogenic activities. However, we found that soil lead is more common in wetland soils than other measured elements, occurring nationally in 11.3% of the wetland area in concentrations above expected natural background (> 35 ppm). Our data show positive relationships between soil lead concentration and four individual landscape metrics: road density, percent impervious surface, housing unit density, and population density in a 1-km radius buffer area surrounding a site. These relationships, while evident on a national level, are strongest in the eastern US, where the highest road densities and greatest population densities occur. Because lead can be strongly bound to wetland soils in particular, maintenance of the good condition of our nation's wetlands is likely to minimize risk of lead mobilization.


Asunto(s)
Monitoreo del Ambiente/métodos , Actividades Humanas , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Humedales , Monitoreo del Ambiente/estadística & datos numéricos , Actividades Humanas/clasificación , Actividades Humanas/estadística & datos numéricos , Humanos , Factores de Riesgo , Estados Unidos
2.
Environ Monit Assess ; 191(Suppl 1): 329, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222449

RESUMEN

The National Wetland Condition Assessment (NWCA) is one of a series of probability-based National Aquatic Resource Surveys (NARS) conducted by the U.S. Environmental Protection Agency (USEPA) to provide a comprehensive assessment of the condition of the Nation's waters. Randomized design and standardized training and protocols allow USEPA to analyze data that are nationally consistent and regionally relevant. Each NARS assessment was preceded by careful consideration of key logistical elements that included pre-survey planning, training, sampling logistics, and laboratory analysis. Numerous state, tribal, and contractor crews were supported across the country for each assessment; sampling and sample analyses were tracked from initiation; laboratory analyses were completed at USEPA, state, regional, and contract laboratories; and the data analyses and reporting were completed by USEPA-led workgroups, states, and contractors. The complexity and difficulty of each step offered unique challenges and provided lessons learned for each of the NARS assessments. Major logistical elements for implementing large scale assessments that are constrained by sampling period and number and duration of visits are covered in this paper. These elements include sample transport, equipment and supplies, sampling and sample tracking, information management regional technical expertise, and a sound field training program. This paper describes how lessons from previous assessments were applied to the NWCA and how new challenges faced in the NWCA were addressed and carried forward into future surveys.


Asunto(s)
Conservación de los Recursos Hídricos/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Humedales , Conservación de los Recursos Hídricos/tendencias , Ecología , Monitoreo del Ambiente/normas , Humanos , Laboratorios/normas , Estados Unidos , United States Environmental Protection Agency/organización & administración , United States Environmental Protection Agency/normas , United States Environmental Protection Agency/estadística & datos numéricos
3.
Environ Monit Assess ; 191(Suppl 1): 344, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222487

RESUMEN

Nonnative plants are widely recognized as stressors to wetlands and other ecosystems. They may compete with native plant species or communities and alter ecosystem properties, which can affect ecological condition, posing challenges to resource managers. As part of the United States Environmental Protection Agency's National Wetland Condition Assessment (NWCA), we characterized the status of nonnative plants in wetlands across the conterminous United States (US). Our primary goals were to (1) document the composition of nonnative taxa at 1138 NWCA sites sampled in 2011 and (2) estimate the areal extent of wetland under stress from nonnative plants within the NWCA 2011 sampled population of ~ 25 million ha of wetland (represented by 967 sampled probability sites and the NWCA survey design). A total of 443 unique nonnative taxa were observed, encompassing a species pool adapted to diverse ecological conditions. For individual sites, the number of nonnative taxa ranged from 0 to 29, and total absolute cover of nonnatives ranged from 0 to 160%. We devised the nonnative plant indicator (NNPI) as a categorical indicator of stress (low to very high) from the collective set of nonnative plant taxa occurring at a particular location, based on a decision matrix of exceedance values for nonnative richness, relative frequency, and relative cover. Wetland area of the sampled population occurring in each NNPI category was estimated at the scale of the conterminous US and within five large ecoregions and four broad wetland types. Potential stress from nonnative plants, as indicated by the NNPI category, was low for approximately 61% (~ 15.3 million ha), moderate for about 20% (~ 5.2 million ha), high for about 10% (~ 2.48 million ha), and very high for about 9% (~ 2.2 million ha) of the wetland area in the entire sampled population. Percent of wetland area with high and very high NNPI varied by ecoregional subpopulations: greater within interior and western ecoregions (~ 29 to 87%) than within ecoregions in the eastern half of the nation (~ 11%). Among wetland type subpopulations, greater percent of wetland area with high and very high NNPI was observed for herbaceous vs. woody types and for inland vs. estuarine types. Estimates of wetland area by NNPI categories are expected to be useful to policy makers or resource managers for prioritizing management actions by identifying situations where stress from nonnative plants is most extensive. We also considered four exploratory analyses aimed at providing ecological information useful in interpreting NNPI extent results. We conducted three population-scale analyses examining ecoregional and wetland type population means for (1) the three NNPI metrics, (2) absolute cover of growth-habit groups of nonnative plants, and (3) metrics describing human-mediated disturbance. Finally, we examined ecological relationships with site-level NNPI status using a random forest (RF) analysis with NNPI as the response variable and predictor variables including ecoregion, wetland type, and a variety of characteristics describing natural vegetation structure, environment, and human-mediated disturbance.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente/estadística & datos numéricos , Plantas/clasificación , Humedales , Humanos , Especies Introducidas/estadística & datos numéricos , Desarrollo de la Planta , Medición de Riesgo , Estados Unidos , United States Environmental Protection Agency
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda