Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54.044
Filtrar
Más filtros

Publication year range
1.
Annu Rev Immunol ; 36: 783-812, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29677475

RESUMEN

The nervous system regulates immunity and inflammation. The molecular detection of pathogen fragments, cytokines, and other immune molecules by sensory neurons generates immunoregulatory responses through efferent autonomic neuron signaling. The functional organization of this neural control is based on principles of reflex regulation. Reflexes involving the vagus nerve and other nerves have been therapeutically explored in models of inflammatory and autoimmune conditions, and recently in clinical settings. The brain integrates neuro-immune communication, and brain function is altered in diseases characterized by peripheral immune dysregulation and inflammation. Here we review the anatomical and molecular basis of the neural interface with immunity, focusing on peripheral neural control of immune functions and the role of the brain in the model of the immunological homunculus. Clinical advances stemming from this knowledge within the framework of bioelectronic medicine are also briefly outlined.


Asunto(s)
Neuroinmunomodulación , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Humanos , Inmunidad , Sistema Nervioso/anatomía & histología , Sistema Nervioso/inmunología , Sistema Nervioso/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso , Neuroinmunomodulación/genética , Neuroinmunomodulación/inmunología , Transducción de Señal , Investigación Biomédica Traslacional
2.
Cell ; 187(2): 464-480.e10, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242088

RESUMEN

Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto , Humanos , Predisposición Genética a la Enfermedad , Glaucoma de Ángulo Abierto/genética , Población Negra/genética , Polimorfismo de Nucleótido Simple/genética
3.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38134932

RESUMEN

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Asunto(s)
Dermatitis Atópica , Inmunidad Innata , Pulmón , Células Receptoras Sensoriales , Animales , Humanos , Ratones , Citocinas , Dermatitis Atópica/inmunología , Inflamación , Pulmón/inmunología , Linfocitos , Células Receptoras Sensoriales/enzimología
4.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37848036

RESUMEN

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , Virosis
5.
Cell ; 184(24): 5854-5868.e20, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34822783

RESUMEN

Jellyfish are radially symmetric organisms without a brain that arose more than 500 million years ago. They achieve organismal behaviors through coordinated interactions between autonomously functioning body parts. Jellyfish neurons have been studied electrophysiologically, but not at the systems level. We introduce Clytia hemisphaerica as a transparent, genetically tractable jellyfish model for systems and evolutionary neuroscience. We generate stable F1 transgenic lines for cell-type-specific conditional ablation and whole-organism GCaMP imaging. Using these tools and computational analyses, we find that an apparently diffuse network of RFamide-expressing umbrellar neurons is functionally subdivided into a series of spatially localized subassemblies whose synchronous activation controls directional food transfer from the tentacles to the mouth. These data reveal an unanticipated degree of structured neural organization in this species. Clytia affords a platform for systems-level studies of neural function, behavior, and evolution within a clade of marine organisms with growing ecological and economic importance.


Asunto(s)
Evolución Biológica , Hidrozoos/genética , Modelos Animales , Neurociencias , Animales , Animales Modificados Genéticamente , Conducta Animal , Conducta Alimentaria , Marcación de Gen , Hidrozoos/fisiología , Modelos Biológicos , Red Nerviosa/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo
6.
Cell ; 184(16): 4299-4314.e12, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297923

RESUMEN

Retinal ganglion cells (RGCs) are the sole output neurons that transmit visual information from the retina to the brain. Diverse insults and pathological states cause degeneration of RGC somas and axons leading to irreversible vision loss. A fundamental question is whether manipulation of a key regulator of RGC survival can protect RGCs from diverse insults and pathological states, and ultimately preserve vision. Here, we report that CaMKII-CREB signaling is compromised after excitotoxic injury to RGC somas or optic nerve injury to RGC axons, and reactivation of this pathway robustly protects RGCs from both injuries. CaMKII activity also promotes RGC survival in the normal retina. Further, reactivation of CaMKII protects RGCs in two glaucoma models where RGCs degenerate from elevated intraocular pressure or genetic deficiency. Last, CaMKII reactivation protects long-distance RGC axon projections in vivo and preserves visual function, from the retina to the visual cortex, and visually guided behavior.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Citoprotección , Células Ganglionares de la Retina/patología , Visión Ocular , Animales , Axones/efectos de los fármacos , Axones/patología , Encéfalo/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Glaucoma/genética , Glaucoma/patología , Ratones Endogámicos C57BL , Neurotoxinas/toxicidad , Traumatismos del Nervio Óptico/patología , Transducción de Señal
7.
Cell ; 182(3): 578-593.e19, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32679029

RESUMEN

Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.


Asunto(s)
Nervio Accesorio/fisiología , Folículo Piloso/citología , Cabello/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Norepinefrina/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Células Madre/fisiología , Nervio Accesorio/citología , Animales , Ciclo Celular/genética , Frío , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Cabello/citología , Cabello/fisiología , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Piloerección , RNA-Seq , Receptores Adrenérgicos beta 2/deficiencia , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Nicho de Células Madre , Células Madre/citología , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Sinapsis/fisiología
8.
Cell ; 181(3): 574-589.e14, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259485

RESUMEN

Sensory neurons initiate defensive reflexes that ensure airway integrity. Dysfunction of laryngeal neurons is life-threatening, causing pulmonary aspiration, dysphagia, and choking, yet relevant sensory pathways remain poorly understood. Here, we discover rare throat-innervating neurons (∼100 neurons/mouse) that guard the airways against assault. We used genetic tools that broadly cover a vagal/glossopharyngeal sensory neuron atlas to map, ablate, and control specific afferent populations. Optogenetic activation of vagal P2RY1 neurons evokes a coordinated airway defense program-apnea, vocal fold adduction, swallowing, and expiratory reflexes. Ablation of vagal P2RY1 neurons eliminates protective responses to laryngeal water and acid challenge. Anatomical mapping revealed numerous laryngeal terminal types, with P2RY1 neurons forming corpuscular endings that appose laryngeal taste buds. Epithelial cells are primary airway sentinels that communicate with second-order P2RY1 neurons through ATP. These findings provide mechanistic insights into airway defense and a general molecular/genetic roadmap for internal organ sensation by the vagus nerve.


Asunto(s)
Nervio Glosofaríngeo/fisiología , Faringe/inervación , Nervio Vago/fisiología , Vías Aferentes , Animales , Femenino , Regulación de la Expresión Génica/genética , Nervio Glosofaríngeo/metabolismo , Laringe/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Células Receptoras Sensoriales/metabolismo , Nervio Vago/metabolismo
9.
Cell ; 179(5): 1129-1143.e23, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730854

RESUMEN

Energy homeostasis requires precise measurement of the quantity and quality of ingested food. The vagus nerve innervates the gut and can detect diverse interoceptive cues, but the identity of the key sensory neurons and corresponding signals that regulate food intake remains unknown. Here, we use an approach for target-specific, single-cell RNA sequencing to generate a map of the vagal cell types that innervate the gastrointestinal tract. We show that unique molecular markers identify vagal neurons with distinct innervation patterns, sensory endings, and function. Surprisingly, we find that food intake is most sensitive to stimulation of mechanoreceptors in the intestine, whereas nutrient-activated mucosal afferents have no effect. Peripheral manipulations combined with central recordings reveal that intestinal mechanoreceptors, but not other cell types, potently and durably inhibit hunger-promoting AgRP neurons in the hypothalamus. These findings identify a key role for intestinal mechanoreceptors in the regulation of feeding.


Asunto(s)
Conducta Alimentaria/fisiología , Fenómenos Genéticos , Células Receptoras Sensoriales/fisiología , Nervio Vago/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Encéfalo/fisiología , Tracto Gastrointestinal/inervación , Marcadores Genéticos , Mecanorreceptores/metabolismo , Ratones , Nervio Vago/anatomía & histología , Vísceras/inervación
10.
Cell ; 176(4): 716-728.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712871

RESUMEN

Sensory axons degenerate following separation from their cell body, but partial injury to peripheral nerves may leave the integrity of damaged axons preserved. We show that an endogenous ligand for the natural killer (NK) cell receptor NKG2D, Retinoic Acid Early 1 (RAE1), is re-expressed in adult dorsal root ganglion neurons following peripheral nerve injury, triggering selective degeneration of injured axons. Infiltration of cytotoxic NK cells into the sciatic nerve by extravasation occurs within 3 days following crush injury. Using a combination of genetic cell ablation and cytokine-antibody complex stimulation, we show that NK cell function correlates with loss of sensation due to degeneration of injured afferents and reduced incidence of post-injury hypersensitivity. This neuro-immune mechanism of selective NK cell-mediated degeneration of damaged but intact sensory axons complements Wallerian degeneration and suggests the therapeutic potential of modulating NK cell function to resolve painful neuropathy through the clearance of partially damaged nerves.


Asunto(s)
Células Asesinas Naturales/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axones , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Regeneración Nerviosa , Neuronas/citología , Neuronas Aferentes/inmunología , Neuronas Aferentes/metabolismo , Proteínas Asociadas a Matriz Nuclear/fisiología , Proteínas de Transporte Nucleocitoplasmático/fisiología , Dolor , Traumatismos de los Nervios Periféricos/inmunología , Enfermedades del Sistema Nervioso Periférico , Nervio Ciático , Células Receptoras Sensoriales/metabolismo
11.
Cell ; 175(3): 665-678.e23, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30245012

RESUMEN

The gut is now recognized as a major regulator of motivational and emotional states. However, the relevant gut-brain neuronal circuitry remains unknown. We show that optical activation of gut-innervating vagal sensory neurons recapitulates the hallmark effects of stimulating brain reward neurons. Specifically, right, but not left, vagal sensory ganglion activation sustained self-stimulation behavior, conditioned both flavor and place preferences, and induced dopamine release from Substantia nigra. Cell-specific transneuronal tracing revealed asymmetric ascending pathways of vagal origin throughout the CNS. In particular, transneuronal labeling identified the glutamatergic neurons of the dorsolateral parabrachial region as the obligatory relay linking the right vagal sensory ganglion to dopamine cells in Substantia nigra. Consistently, optical activation of parabrachio-nigral projections replicated the rewarding effects of right vagus excitation. Our findings establish the vagal gut-to-brain axis as an integral component of the neuronal reward pathway. They also suggest novel vagal stimulation approaches to affective disorders.


Asunto(s)
Intestinos/fisiología , Recompensa , Sustancia Negra/fisiología , Nervio Vago/fisiología , Vías Aferentes/metabolismo , Vías Aferentes/fisiología , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Ácido Glutámico/metabolismo , Intestinos/inervación , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética
12.
Cell ; 170(5): 973-985.e10, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28841420

RESUMEN

Mycobacterium leprae causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy.


Asunto(s)
Antígenos Bacterianos/metabolismo , Modelos Animales de Enfermedad , Glucolípidos/metabolismo , Lepra/microbiología , Lepra/patología , Macrófagos/inmunología , Mycobacterium leprae/fisiología , Animales , Axones/metabolismo , Axones/patología , Enfermedades Desmielinizantes , Larva/crecimiento & desarrollo , Lepra/inmunología , Mycobacterium marinum/metabolismo , Vaina de Mielina/química , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Neuroglía/metabolismo , Neuroglía/patología , Óxido Nítrico/metabolismo , Pez Cebra
13.
Cell ; 168(3): 503-516.e12, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28129542

RESUMEN

Sickness-induced anorexia is a conserved behavior induced during infections. Here, we report that an intestinal pathogen, Salmonella Typhimurium, inhibits anorexia by manipulating the gut-brain axis. Inhibition of inflammasome activation by the S. Typhimurium effector, SlrP, prevented anorexia caused by IL-1ß-mediated signaling to the hypothalamus via the vagus nerve. Rather than compromising host defenses, pathogen-mediated inhibition of anorexia increased host survival. SlrP-mediated inhibition of anorexia prevented invasion and systemic infection by wild-type S. Typhimurium, reducing virulence while increasing transmission to new hosts, suggesting that there are trade-offs between transmission and virulence. These results clarify the complex and contextual role of anorexia in host-pathogen interactions and suggest that microbes have evolved mechanisms to modulate sickness-induced behaviors to promote health of their host and their transmission at the expense of virulence.


Asunto(s)
Anorexia/microbiología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/transmisión , Salmonella typhimurium/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas , Infecciones por Salmonella/inmunología , Salmonella typhimurium/fisiología , Organismos Libres de Patógenos Específicos , Virulencia
14.
Immunity ; 55(8): 1466-1482.e9, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863346

RESUMEN

Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.


Asunto(s)
Hipertensión , Microglía , Animales , Hipertensión/metabolismo , Ratones , Neuronas/fisiología , Potasio/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
15.
Physiol Rev ; 103(2): 1565-1644, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454715

RESUMEN

Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and ß) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Humanos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/uso terapéutico , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Sistema Nervioso Central/metabolismo , Neuronas Motoras
16.
Physiol Rev ; 103(2): 1487-1564, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521049

RESUMEN

Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.


Asunto(s)
Sistema Nervioso Entérico , Humanos , Tracto Gastrointestinal , Neuronas/fisiología , Neuroglía , Transducción de Señal/fisiología
17.
Genes Dev ; 36(3-4): 133-148, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086862

RESUMEN

The regeneration of peripheral nerves is guided by regeneration tracks formed through an interplay of many cell types, but the underlying signaling pathways remain unclear. Here, we demonstrate that macrophages are mobilized ahead of Schwann cells in the nerve bridge after transection injury to participate in building regeneration tracks. This requires the function of guidance receptor Plexin-B2, which is robustly up-regulated in infiltrating macrophages in injured nerves. Conditional deletion of Plexin-B2 in myeloid lineage resulted in not only macrophage misalignment but also matrix disarray and Schwann cell disorganization, leading to misguided axons and delayed functional recovery. Plexin-B2 is not required for macrophage recruitment or activation but enables macrophages to steer clear of colliding axons, in particular the growth cones at the tip of regenerating axons, leading to parallel alignment postcollision. Together, our studies unveil a novel reparative function of macrophages and the importance of Plexin-B2-mediated collision-dependent contact avoidance between macrophages and regenerating axons in forming regeneration tracks during peripheral nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Nervios Periféricos , Axones/fisiología , Moléculas de Adhesión Celular , Macrófagos/metabolismo , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo
18.
Physiol Rev ; 102(2): 689-813, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486393

RESUMEN

During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.


Asunto(s)
Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Animales , Homeostasis/fisiología , Humanos , Transducción de Señal/fisiología
19.
Annu Rev Neurosci ; 44: 197-219, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33722070

RESUMEN

Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.


Asunto(s)
Axones , Vaina de Mielina , Animales , Neuroglía , Neuronas , Oligodendroglía
20.
Annu Rev Neurosci ; 43: 337-353, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32101483

RESUMEN

Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.


Asunto(s)
Encéfalo/fisiología , Células Enteroendocrinas/fisiología , Sinapsis/fisiología , Nervio Vago/fisiología , Animales , Humanos , Neuronas/fisiología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda