Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000096

RESUMEN

The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.


Asunto(s)
Movimiento Celular , Proteína Doblecortina , Neurogénesis , Neuronas , Animales , Ratas , Neuronas/metabolismo , Neuronas/citología , Masculino , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Hipotálamo/metabolismo , Hipotálamo/citología , Arginina Vasopresina/metabolismo
2.
J Physiol ; 601(5): 1017-1036, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36647759

RESUMEN

The carotid body (CB) is a prototypical acute oxygen (O2 )-sensing organ that mediates reflex hyperventilation and increased cardiac output in response to hypoxaemia. CB overactivation, secondary to the repeated stimulation produced by the recurrent episodes of intermittent hypoxia, is believed to contribute to the pathogenesis of sympathetic hyperactivity present in sleep apnoea patients. Although CB functional plasticity induced by chronic intermittent hypoxia (CIH) has been demonstrated, the underlying mechanisms are not fully elucidated. Here, we show that CIH induces a small increase in CB volume and rearrangement of cell types in the CB, characterized by a mobilization of immature quiescent neuroblasts, which enter a process of differentiation into mature, O2 -sensing and neuron-like, chemoreceptor glomus cells. Prospective isolation of individual cell classes has allowed us to show that maturation of CB neuroblasts is paralleled by an upregulation in the expression of specific glomus cell genes involved in acute O2 -sensing. CIH enhances mitochondrial responsiveness to hypoxia in maturing neuroblasts as well as in glomus cells. These data provide novel perspectives on the pathogenesis of CB-mediated sympathetic overflow that may lead to the development of new pharmacological strategies of potential applicability in sleep apnoea patients. KEY POINTS: Obstructive sleep apnoea is a frequent condition in the human population that predisposes to severe cardiovascular and metabolic alterations. Activation of the carotid body, the main arterial oxygen-sensing chemoreceptor, by repeated episodes of hypoxaemia induces exacerbation of the carotid body-mediated chemoreflex and contributes to sympathetic overflow characteristic of sleep apnoea patients. In rats, chronic intermittent hypoxaemia induces fast neurogenesis in the carotid body with rapid activation of neuroblasts, which enter a process of proliferation and maturation into O2 -sensing chemoreceptor glomus cells. Maturing carotid body neuroblasts and glomus cells exposed to chronic intermittent hypoxia upregulate genes involved in acute O2 sensing and enhance mitochondrial responsiveness to hypoxia. These findings provide novel perspectives on the pathogenesis of carotid body-mediated sympathetic hyperactivation. Pharmacological modulation of carotid body fast neurogenesis could help to ameliorate the deleterious effects of chronic intermittent hypoxaemia in sleep apnoea patients.


Asunto(s)
Cuerpo Carotídeo , Apnea Obstructiva del Sueño , Ratas , Humanos , Animales , Cuerpo Carotídeo/metabolismo , Hipoxia , Oxígeno/metabolismo , Neurogénesis
3.
Adv Anat Embryol Cell Biol ; 237: 5-11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37946074

RESUMEN

This chapter describes the history of the carotid body (CB) and the subsequent research on its structure and function. The chronological development of ideas about its anatomical structure as a ganglion, the first descriptions of its glandular nature as a ball of highly vascular tissue (glomus), the discovery of its neural crest origin and relevant embryological views as a true paraganglion toward a more conclusive understanding of its sensory nature as a chemoreceptor for chemical changes in blood have been consistently demonstrated. The knowledge of the CB neurochemistry, physiology and pathophysiology has progressed immensely in the past century and a large and compelling body of evidence for the presence of a neurogenic niche in the CB has accumulated over the last two decades, thus underlying its function and possibility for the development of cell replacement therapies.


Asunto(s)
Cuerpo Carotídeo , Paraganglios Cromafines , Cuerpo Carotídeo/fisiología , Células Quimiorreceptoras , Neurogénesis
4.
Adv Anat Embryol Cell Biol ; 237: 161-163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37946083

RESUMEN

Over the last century, the structure of the mammalian carotid body (CB) has repeatedly been studied, and our present understanding of its normal morphology is comprehensive. It has been demonstrated that the CB has an intricate internal structure and a remarkable ability to release a wide variety of neurotransmitters and neuromodulators in response to different chemical stimuli. The advances in modern cellular/molecular biological methods and newly developed single-cell electrophysiological techniques have provided an additional insight into the precise working mechanisms and roles of the CB in health and disease. Emerging experimental evidence has also shown that the CB exhibits an extraordinary structural and functional plasticity as a consequence of various environmental stimuli. Lately, the CB has attracted much clinical interest because its dysfunction relates to a number of cardiovascular and respiratory disorders. Expanding knowledge about the pathophysiological mechanisms that alter the CB cell function would certainly help to facilitate the translational research. Recent progress in cell fate experiments has further revealed that the CB is a neurogenic center with a functionally active germinal niche. This may lead to the development of promising new candidate therapies to combat these diseases and improve the quality of human life. Thus, the CB has entered the twenty-first century with its actual designation.


Asunto(s)
Cuerpo Carotídeo , Animales , Humanos , Cuerpo Carotídeo/fisiología , Diferenciación Celular , Neurogénesis , Mamíferos
5.
Stem Cells ; 40(7): 630-640, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35446432

RESUMEN

The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is a neurogenic niche of the adult brain that contains neural stem cells (NSCs) able to generate excitatory glutamatergic granule neurons, which integrate into the DG circuit and contribute to hippocampal plasticity, learning, and memory. Thus, endogenous NSCs could be harnessed for therapeutic purposes. In this context, it is critical to characterize the molecular mechanisms controlling the generation and functional integration of adult-born neurons. Adult hippocampal neurogenesis is tightly controlled by both cell-autonomous mechanisms and the interaction with the complex niche microenvironment, which harbors the NSCs and provides the signals to support their maintenance, activation, and differentiation. Among niche-derived factors, Wnt ligands play diverse roles. Wnts are secreted glycoproteins that bind to Frizzled receptors and co-receptors to trigger the Wnt signaling pathway. Here, we summarize the current knowledge about the roles of Wnts in the regulation of adult hippocampal neurogenesis. We discuss the possible contribution of the different niche cells to the regulation of local Wnt signaling activity, and how Wnts derived from different cell types could induce differential effects. Finally, we discuss how the effects of Wnt signaling on hippocampal network activity might contribute to neurogenesis regulation. Although the evidence supports relevant roles for Wnt signaling in adult hippocampal neurogenesis, defining the cellular source and the mechanisms controlling secretion and diffusion of Wnts will be crucial to further understand Wnt signaling regulation of adult NSCs, and eventually, to propose this pathway as a therapeutic target to promote neurogenesis.


Asunto(s)
Células-Madre Neurales , Vía de Señalización Wnt , Adulto , Diferenciación Celular/fisiología , Hipocampo , Humanos , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Vía de Señalización Wnt/fisiología
6.
Cell Mol Life Sci ; 77(12): 2315-2330, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31960113

RESUMEN

Amyloid precursor protein (APP) is a transmembrane protein expressed largely within the central nervous system. Upon cleavage, it does not produce the toxic amyloid peptide (Aß) only, which is involved in neurodegenerative progressions but via a non-amyloidogenic pathway it is metabolized to produce a soluble fragment (sAPPα) through α-secretase. While a lot of studies are focusing on the role played by APP in the pathogenesis of Alzheimer's disease, sAPPα is reported to have numerous neuroprotective effects and it is being suggested as a candidate with possible therapeutic potential against Alzheimer's disease. However, the mechanisms through which sAPPα precisely works remain elusive. We have presented a comprehensive review of how sAPPα is regulating the neuroprotective effects in different biological models. Moreover, we have focused on the role of sAPPα during different developmental stages of the brain, neurogenic microenvironment in the brain and how this metabolite of APP is regulating the neurogenesis which is regarded as a compelling approach to ameliorate the impaired learning and memory deficits in dementia and diseases like Alzheimer's disease. sAPPα exerts beneficial physiological, biochemical and behavioral effects mitigating the detrimental effects of neurotoxic compounds. It has shown to increase the proliferation rate of numerous cell types and promised the synaptogenesis, neurite outgrowth, cell survival and cell adhesion. Taken together, we believe that further studies are warranted to investigate the exact mechanism of action so that sAPPα could be developed as a novel therapeutic target against neuronal deficits.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Neuroprotección/fisiología , Fármacos Neuroprotectores/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Neuronas/metabolismo
7.
Handb Exp Pharmacol ; 266: 281-300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782772

RESUMEN

Neurogenesis is the process by which new neurons are generated from neural stem cells (NSCs), which are cells that have the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. The process is essential for homeostatic tissue regeneration and the coordination of neural plasticity throughout life, as neurons cannot regenerate once injured. Therefore, defects in neurogenesis are related to the onset and exacerbation of several neuropsychiatric disorders, and therefore, the regulation of neurogenesis is considered to be a novel strategy for treatment. Neurogenesis is regulated not only by NSCs themselves, but also by the functional microenvironment surrounding the NSCs, known as the "neurogenic niche." The neurogenic niche consists of several types of neural cells, including neurons, glial cells, and vascular cells. To allow communication with these cells, transporters may be involved in the secretion and uptake of substrates that are essential for signal transduction. This chapter will focus on the involvement of polyspecific solute carriers transporting organic cations in the possible regulation of neurogenesis by controlling the concentration of several organic cation substrates in NSCs and the neurogenic niche. The potential therapeutic implications of neurogenesis regulation by these transporters will also be discussed.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Neuroglía , Neuronas , Transducción de Señal
8.
Bull Exp Biol Med ; 170(6): 693-698, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33893948

RESUMEN

The protocol of optogenetic ChR2-mediated activation of astrocytes was used in a model of artificial neurogenic niche, neurospheres implanted into ex vivo organotypic cultures of mouse hippocampus. The electrophysiological characteristics of the hippocampus and expression of molecules involved in the mechanisms of activation of astrocytes and microglia (GFAP, CD38, C3/C3b, Cx43, CD11b, and CD18) were evaluated. Photoactivation of astrocytes led to activation of neurogenesis and changes in the expression of molecules (Cx43 and CD38) that determine bioavailability of NAD+ to ensure proliferative activity of cells in the neurogenic niche. Implantation of neurospheres into organotypic slices of the hippocampus caused an increase in C3/C3b expression and suppression of the synaptic plasticity of hippocampal neurons.


Asunto(s)
Astrocitos/metabolismo , Neurogénesis/fisiología , Células Madre/metabolismo , Animales , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Optogenética
9.
Cell Mol Neurobiol ; 40(6): 967-989, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31980992

RESUMEN

Decapod crustaceans, like mammals, retain the ability to make new neurons throughout life. In mammals, immune cells are closely associated with stem cells that generate adult-born neurons. In crayfish, evidence suggests that immune cells (hemocytes) originating in the immune system travel to neurogenic regions and transform into neural progenitor cells. This nontraditional immune activity takes place continuously under normal physiological conditions, but little is known under pathological conditions (neurodegeneration). In this study, the immune system and its relationship with neurogenesis were investigated during neurodegeneration (unilateral antennular ablation) in adult crayfish. Our experiments show that after ablation (1) Proliferating cells decrease in neurogenic areas of the adult crayfish brain; (2) The immune response, but not neurogenesis, is ablation-side dependent; (3) Inducible nitric oxide synthase (iNOS) plays a crucial role in the neurogenic niche containing neural progenitors during the immune response; (4) Brain areas targeted by antennular projections respond acutely (15 min) to the lesion, increasing the number of local immune cells; (5) Immune cells are recruited to the area surrounding the ipsilateral neurogenic niche; and (6) The vasculature in the niche responds acutely by dilation and possibly also neovascularization. We conclude that immune cells are important in both neurodegeneration and neurogenesis by contributing in physiological conditions to the maintenance of the number of neural precursor cells in the neurogenic niche (neurogenesis), and in pathological conditions (neurodegeneration) by coordinating NO release and vascular responses associated with the neurogenic niche. Our data suggest that neural damage and recovery participate in a balance between these competing immune cell roles.


Asunto(s)
Astacoidea/inmunología , Sistema Inmunológico/inmunología , Degeneración Nerviosa/inmunología , Neurogénesis/inmunología , Animales , Astacoidea/ultraestructura , Vasos Sanguíneos/metabolismo , Encéfalo/patología , Bromodesoxiuridina/metabolismo , Recuento de Células , Proliferación Celular , Femenino , Glutamato-Amoníaco Ligasa/metabolismo , Hemocitos/metabolismo , Masculino , Neurópilo/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nicho de Células Madre
10.
Proc Natl Acad Sci U S A ; 113(18): E2536-45, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091993

RESUMEN

Adult hippocampal neurogenesis relies on the activation of neural stem cells in the dentate gyrus, their division, and differentiation of their progeny into mature granule neurons. The complex morphology of radial glia-like (RGL) stem cells suggests that these cells establish numerous contacts with the cellular components of the neurogenic niche that may play a crucial role in the regulation of RGL stem cell activity. However, the morphology of RGL stem cells remains poorly described. Here, we used light microscopy and electron microscopy to examine Nestin-GFP transgenic mice and provide a detailed ultrastructural reconstruction analysis of Nestin-GFP-positive RGL cells of the dentate gyrus. We show that their primary processes follow a tortuous path from the subgranular zone through the granule cell layer and ensheathe local synapses and vasculature in the inner molecular layer. They share the ensheathing of synapses and vasculature with astrocytic processes and adhere to the adjacent processes of astrocytes. This extensive interaction of processes with their local environment could allow them to be uniquely receptive to signals from local neurons, glia, and vasculature, which may regulate their fate.


Asunto(s)
Arterias Cerebrales/citología , Giro Dentado/citología , Nestina/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Sinapsis/ultraestructura , Animales , Astrocitos/citología , Células Cultivadas , Arterias Cerebrales/metabolismo , Giro Dentado/metabolismo , Proteínas Fluorescentes Verdes , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Acoplamiento Neurovascular/fisiología , Nicho de Células Madre/fisiología , Sinapsis/metabolismo , Distribución Tisular
11.
Eur J Neurosci ; 48(12): 3514-3533, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30402991

RESUMEN

Understanding endogenous neurogenesis and neuronal replacement to mature circuits is a topic of discussion as a therapeutic alternative under acute and chronic neurodegenerative disorders. Adaptive neurogenic response may result as a result of ischemia which could support long-term recovery of behavioral functions. Endogenous sources of neural progenitors may be stimulated by changes in blood flow or neuromodulation. Using a mouse model of unilateral cortical devascularization, we have observed reactive neurogenesis in the perilesional cortex and subventricular zone neurogenic niche. C57BL/6L 4 weeks old male mice were craneotomized at 1 mm caudal from frontal suture and 1 mm lateral from midline to generate a window of 3 mm side. Brain injury was produced by removal of the meninges and superficial vasculature of dorsal parietal cortex. BrdU agent (50 mg/kg, ip) was injected to lesioned and sham animals, during days 0 and 1 after surgery. Sagittal sections were analyzed at 1, 4, 7, and 10 days post-injury. A time-dependent increase in BrdU+ cells in the perilesional parietal cortex was accompanied by augmented BrdU+ cells in the sub ventricular and rostral migratory stream of ipsilateral and contralateral hemispheres. Neural progenitors and neuroblasts proliferated in the lesioned and non-lesioned subventricular zone and rostral migratory stream on day 4 after injury. Augmented contralateral neurogenesis was associated with an increase in vesicular monoamine transporter 2 protein in the striosomal sub ventricular neurogenic niche of non-lesioned hemisphere.


Asunto(s)
Isquemia Encefálica/patología , Corteza Cerebral/metabolismo , Dopamina/metabolismo , Neurogénesis/fisiología , Transmisión Sináptica/fisiología , Animales , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Neuronas/citología
12.
Cell Tissue Res ; 371(1): 115-124, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29124394

RESUMEN

The genesis of new neurons from neural stem cells in the adult brain offers the hope that this mechanism of plasticity can be harnessed for the treatment of brain injuries and diseases. However, neurogenesis becomes impaired during the normal course of aging; this is also the primary risk factor for most neurodegenerative diseases. The local microenvironment that regulates the function of resident neural stem cells (the "neurogenic niche") is a particularly complex network of various signaling mechanisms, rendering it especially challenging for the dissection of the control of these cells but offering the potential for the advancement of our understanding of the regulation/misregulation of neurogenesis. In this review, we examine the factors that control neurogenesis in an age-dependent manner, and we define these signals by the extrinsic mechanism through which they are presented to the neural stem cells. Secreted signals, cell-contact-dependent signals, and extracellular matrix cues all contribute to the regulation of the aging neurogenic niche and offer points of therapeutic intervention.


Asunto(s)
Envejecimiento/fisiología , Hipocampo/fisiología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Nicho de Células Madre , Animales , Matriz Extracelular/metabolismo , Humanos , Ratones , Modelos Animales , Neuronas/metabolismo , Ratas , Transducción de Señal
13.
Front Neuroendocrinol ; 37: 146-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25462590

RESUMEN

To cope with variations in the environment, most mammalian species exhibit seasonal cycles in physiology and behaviour. Seasonal plasticity during the lifetime contributes to seasonal physiology. Over the years, our ideas regarding adult brain plasticity and, more specifically, hypothalamic plasticity have greatly evolved. Along with the two main neurogenic regions, namely the hippocampal subgranular and lateral ventricle subventricular zones, the hypothalamus, which is the central homeostatic regulator of numerous physiological functions that comprise sexual behaviours, feeding and metabolism, also hosts neurogenic niches. Both endogenous and exogenous factors, including the photoperiod, modulate the hypothalamic neurogenic capacities. The present review describes the effects of season on adult morphological plasticity and neurogenesis in seasonal species, for which the photoperiod is a master environmental cue for the successful programming of seasonal functions. In addition, the potential functional significance of adult neurogenesis in the mediation of the seasonal control of reproduction and feeding is discussed.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/fisiología , Mamíferos/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Estaciones del Año , Ovinos/fisiología , Animales , Humanos
14.
Stem Cells ; 33(9): 2864-76, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26038197

RESUMEN

The region surrounding the central canal (CC) of the spinal cord is a highly plastic area, defined as a postnatal neurogenic niche. Within this region are ependymal cells that can proliferate and differentiate to form new astrocytes and oligodendrocytes following injury and cerebrospinal fluid contacting cells (CSFcCs). The specific environmental conditions, including the modulation by neurotransmitters that influence these cells and their ability to proliferate, are unknown. Here, we show that acetylcholine promotes the proliferation of ependymal cells in mice under both in vitro and in vivo conditions. Using whole cell patch clamp in acute spinal cord slices, acetylcholine directly depolarized ependymal cells and CSFcCs. Antagonism by specific nicotinic acetylcholine receptor (nAChR) antagonists or potentiation by the α7 containing nAChR (α7*nAChR) modulator PNU 120596 revealed that both α7*nAChRs and non-α7*nAChRs mediated the cholinergic responses. Using the nucleoside analogue EdU (5-ethynyl-2'-deoxyuridine) as a marker of cell proliferation, application of α7*nAChR modulators in spinal cord cultures or in vivo induced proliferation in the CC region, producing Sox-2 expressing ependymal cells. Proliferation also increased in the white and grey matter. PNU 120596 administration also increased the proportion of cells coexpressing oligodendrocyte markers. Thus, variation in the availability of acetylcholine can modulate the rate of proliferation of cells in the ependymal cell layer and white and grey matter through α7*nAChRs. This study highlights the need for further investigation into how neurotransmitters regulate the response of the spinal cord to injury or during aging.


Asunto(s)
Proliferación Celular/fisiología , Neuronas/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Colinérgicos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
15.
Glia ; 62(3): 428-39, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24382645

RESUMEN

Brain injuries modulate activation of neural stem cells (NSCs) in the adult brain. In pathological conditions, the concentrations of extracellular nucleotides (eNTs) raise several folds, contribute to reactive gliosis, and possibly directly affect subventricular zone (SVZ) cell functioning. Among eNTs and derived metabolites, the P2Y1 receptor agonist ADP strongly promotes astrogliosis and might also influence SVZ progenitor activity. Here, we tested the ability of the stable P2Y1 agonist adenosine 5'-O-(2-thiodiphosphate) (ADPßS) to control adult NSC functions both in vitro and in vivo, with a focus on the possible effects exerted by reactive astrocytes. In the absence of growth factors, ADPßS promoted proliferation and differentiation of SVZ progenitors. Moreover, ADPßS-activated astrocytes markedly changed the pattern of released cytokines and chemokines, and strongly modulated neurosphere-forming capacity of SVZ progenitors. Notably, a significant enhancement in proliferation was observed when SVZ cells, initially grown in the supernatant of astrocytes exposed to ADPßS, were shifted to normal medium. In vivo, ADPßS administration in the lateral ventricle of adult mice by osmotic minipumps caused diffused reactive astrogliosis, and a strong response of SVZ progenitors. Indeed, proliferation of glial fibrillary acidic protein-positive NSCs increased and led to a significant expansion of SVZ transit-amplifying progenitors and neuroblasts. Lineage tracing experiments performed in the GLAST::CreERT2;Rosa-YFP transgenic mice further demonstrated that ADPßS promoted proliferation of glutamate/aspartate transporter-positive progenitors and sustained their progression toward the generation of rapidly dividing progenitors. Altogether, our results show that the purinergic system crucially affects SVZ progenitor activities both directly and through the involvement of reactive astrocytes.


Asunto(s)
Astrocitos/fisiología , Encéfalo/anatomía & histología , Ventrículos Laterales/citología , Purinas/metabolismo , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Células Madre Adultas/efectos de los fármacos , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Proteínas de Dominio Doblecortina , Transportador 1 de Aminoácidos Excitadores/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacología , Tionucleótidos/farmacología
16.
Neural Dev ; 19(1): 7, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902780

RESUMEN

Adult neurogenesis, which takes place in both vertebrate and invertebrate species, is the process by which new neurons are born and integrated into existing functional neural circuits, long after embryonic development. Most studies in mammals suggest that self-renewing stem cells are the source of the new neurons, although the extent of self-renewal is a matter of debate. In contrast, research in the crayfish Procambarus clarkii has demonstrated that the neural progenitors producing adult-born neurons are capable of both self-renewing and consuming (non-self-renewing) divisions. However, self-renewing divisions are relatively rare, and therefore the production of adult-born neurons depends heavily on progenitors that are not replenishing themselves. Because the small pool of neural progenitors in the neurogenic niche is never exhausted throughout the long lives of these animals, we hypothesized that there must also be an extrinsic source of these cells. It was subsequently demonstrated that the neural progenitors originate in hemocytes (blood cells) produced by the immune system that travel in the circulation before ultimately integrating into niches where the neural lineage begins. The current study examines the developmental lineage of the three hemocyte types - hyaline (HC), semigranular (SGC) and granular (GC) cells - with the goal of understanding the origins of the progenitor cells that produce adult-born neurons. Longstanding qualitative metrics for hemocyte classification were validated quantitatively. Then, in a longitudinal study, proliferation markers were used to label the hemocytes in vivo, followed by sampling the circulating hemocyte population over the course of two months. Hemolymph samples were taken at intervals to track the frequencies of the different hemocyte types. These data reveal sequential peaks in the relative frequencies of HCs, SGCs and GCs, which were identified using qualitative and quantitative measures. These findings suggest that the three hemocyte types comprise a single cellular lineage that occurs in the circulation, with each type as a sequential progressive stage in hemocyte maturation beginning with HCs and ending with GCs. When combined with previously published data, this timeline provides additional evidence that HCs serve as the primary neural progenitor during adult neurogenesis in P. clarkii.


Asunto(s)
Linaje de la Célula , Hemocitos , Células-Madre Neurales , Neurogénesis , Animales , Neurogénesis/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Hemocitos/citología , Hemocitos/fisiología , Linaje de la Célula/fisiología , Astacoidea/citología , Astacoidea/fisiología , Neuronas/fisiología , Neuronas/citología
17.
J Tissue Eng ; 15: 20417314241235527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516227

RESUMEN

In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.

18.
Brain Behav Immun ; 34: 17-28, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23732461

RESUMEN

Peripheral inflammation, both during the prenatal period and in adulthood, impairs adult neurogenesis. We hypothesized that, similar to other programming effects of prenatal treatments, only prenatal inflammation causes long-term consequences in adult neurogenesis and its neurogenic niche. To test this, pregnant Wistar rats were subcutaneously injected with lipopolysaccharide (LPS; 0.5 mg/kg) or saline solution every other day from gestational/embryonic day (GD) 14-20. In addition adult animals were injected with a single intraperitoneal saline or LPS injection (1 mg/kg) and the effects on neurogenesis were assessed 7 days later. Alternatively, to evaluate long-term consequences of adult LPS injections, LPS (1 mg/kg) was administered peripherally to adult rats four times every other day, and the effects on neurogenesis were assessed 60 days later. Prenatal and adult LPS treatments reduced adult neurogenesis and provoked specific microglial (but not astroglial) activation in the dentate gyrus (DG). However, only prenatal inflammation-mediated effects were long-lasting (at least 60 days). Moreover, these effects were specific to the DG since the Subventricular Zone (SVZ) and the Rostral Migratory Stream (RMS) were not affected. In addition, these stimuli caused differential effects on the molecular components of the neurogenic niche; only prenatal LPS treatment reduced the local levels of TGF-ß1 mRNA in the DG. Finally, TGF-ß1 exerted its pro-neurogenic effects via the Smad 2/3 pathway in a neural stem cell culture. Taken together, these data add evidence to the duration, regional specificity and dramatic consequences of prenatal immune programming on CNS physiology, compared with the limited response observed in the adult brain.


Asunto(s)
Giro Dentado/citología , Lipopolisacáridos/toxicidad , Neurogénesis/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Edad , Animales , Astrocitos/citología , Giro Dentado/efectos de los fármacos , Giro Dentado/embriología , Giro Dentado/metabolismo , Femenino , Inflamación/patología , Masculino , Microglía/citología , Neurogénesis/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar , Factores de Tiempo
19.
Front Neurosci ; 17: 1186256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496737

RESUMEN

Hippocampal neurogenesis is a tightly regulated process in which neural stem cells (NSCs) get activated, enter in the cell cycle and give rise to neurons after a multistep process. Quiescent and activated NSCs, neural precursors, immature and mature neurons and newborn astrocytes coexist in the neurogenic niche in a strictly controlled environment which maintains the correct functioning of neurogenesis. NSCs are the first step in the neurogenic process and are a finite and, mostly, non-renewable resource, therefore any alteration of the intrinsic properties of NSCs will impact the total neurogenic output. Neuronal hyperexcitation is a strong activator of NSCs prompting them to divide and therefore increasing neurogenesis. However, neuronal hyperactivity is not an isolated process but often also involves excitotoxicity which is subsequently accompanied by neuroinflammation. Neuroinflammation normally reduces the activation of NSCs. It is technically difficult to isolate the effect of neuronal hyperexcitation alone, but neuroinflammation without neuronal hyperexcitation can be studied in a variety of models. In order to shed light on how the balance of neuronal hyperexcitation and neuroinflammation affect NSCs we analyzed proliferation and morphology of NSCs. We used two models of neuronal hyperactivity [an epilepsy model induced by KA, and a model of traumatic brain injury (TBI)] and different models of inflammation (LPS, Poly I:C, IFN-α and IL-6). We observed that only those models that induce neuronal hyperactivity induce NSCs activation but neuroinflammation causes the opposite effect. We also analyzed the response of other cell types in the neurogenic niche, focusing on astrocytes.

20.
Mol Neurobiol ; 60(3): 1353-1368, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36445633

RESUMEN

Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid ß (Aß) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Humanos , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Neurogénesis/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda