Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Cell Mol Med ; 28(8): e18356, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38668995

RESUMEN

Trichospira verticillata is an annual herb that belongs to the family Asteraceae. Trichospira verticillata extract (TVE) elicits anti-plasmodial activity; however, there has been no detailed report about its anti-inflammatory effects and molecular mechanisms. In addition, herbal plants exhibit anti-inflammatory effects by suppressing the NLRP3 inflammasome. Therefore, the primary goal of this study was to examine the effects of TVE on NLRP3 inflammasome activation by measuring interleukin-1ß (IL-1ß) secretion. We treated lipopolysaccharides (LPS)-primed J774A.1 and THP-1 cells with TVE, which attenuated NLRP3 inflammasome activation. Notably, TVE did not affect nuclear factor-kappa B (NF-κB) signalling or intracellular reactive oxygen species (ROS) production and potassium efflux, suggesting that it inactivates the NLRP3 inflammasome via other mechanisms. Moreover, TVE suppressed the formation of apoptosis-associated speck-like protein (ASC) speck and oligomerization. Immunoprecipitation data revealed that TVE reduced the binding of NLRP3 to NIMA-related kinase 7 (NEK7), resulting in reduced ASC oligomerization and speck formation. Moreover, TVE alleviated neutrophilic asthma (NA) symptoms in mice. This study demonstrates that TVE modulates the binding of NLPR3 to NEK7, thereby reporting novel insights into the mechanism by which TVE inhibits NLRP3 inflammasome. These findings suggest TVE as a potential therapeutic of NLRP3 inflammasome-mediated diseases, particularly NA.


Asunto(s)
Antiinflamatorios , Asma , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neutrófilos , Especies Reactivas de Oxígeno , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Inflamasomas/metabolismo , Asma/metabolismo , Asma/tratamiento farmacológico , Asma/inmunología , Asma/patología , Ratones , Antiinflamatorios/farmacología , Humanos , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos , Quinasas Relacionadas con NIMA/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Células THP-1
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L618-L626, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469627

RESUMEN

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.


Asunto(s)
Asma , Citocinas , Estrés del Retículo Endoplásmico , Células Epiteliales , Linfopoyetina del Estroma Tímico , Receptor Toll-Like 3 , Respuesta de Proteína Desplegada , Humanos , Citocinas/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Asma/metabolismo , Asma/patología , Asma/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Transducción de Señal , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Bronquios/metabolismo , Bronquios/patología , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Células Cultivadas , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Apoptosis ; 29(3-4): 393-411, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37950848

RESUMEN

Identification of molecular biomarkers associated with neutrophilic asthma (NA) phenotype may inform the discovery of novel pathobiological mechanisms and the development of diagnostic markers. Three mRNA transcriptome datasets extracted from induced sputum of asthma patients with various inflammatory types were used to screen for macrophage-related molecular mechanisms and targets in NA. Furthermore, the predicted targets were also validated on an independent dataset (N = 3) and animal model (N = 5). A significant increase in total cells, neutrophils and macrophages was observed in bronchoalveolar lavage (BAL) fluid of NA mice induced by ovalbumin/freund's adjuvant, complete (OVA/CFA). And we also found elevated levels of neutrophil and macrophage infiltration in NA subtype in external datasets. NA mice had increased secretion of IgE, IL-1ß, TNF-α and IL-6 in serum and BAL fluid. MPO, an enzyme present in neutrophils, was also highly expressed in NA mice. Then, weighted gene co-expression network analysis (WGCNA) identified 684 targets with the strongest correlation with NA, and we obtained 609 macrophage-related specific differentially expressed genes (DEGs) in NA by integrating macrophage-related genes. The top 10 genes with high degree values were obtained and their mRNA levels and diagnostic performance were then determined by RT-qPCR and receiver operator characteristic (ROC) analysis. Statistically significant correlations were found between macrophages and all key targets, with the strongest correlation between ITGAM and macrophages in NA. Double-Immunofluorescence staining further confirmed the co-localization of ITGAM and F4/80 in NA. ITGAM was identified as a critical target to distinguish NA from healthy/non-NA individuals, which may provide a novel avenue to further uncover the mechanisms and therapy of NA.


Asunto(s)
Apoptosis , Asma , Humanos , Animales , Ratones , Asma/tratamiento farmacológico , Asma/genética , Asma/inducido químicamente , Neutrófilos , Macrófagos , ARN Mensajero/genética , Antígeno CD11b
4.
J Asthma ; 61(9): 912-929, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38294718

RESUMEN

OBJECTIVE: At present, targeting molecular-pharmacological therapy is still difficult in neutrophilic asthma. The investigation aims to identify and validate mitochondrion-related gene signatures for diagnosis and specific targeting therapeutics in neutrophilic asthma. METHODS: Bronchial biopsy samples of neutrophilic asthma and healthy people were identified from the GSE143303 dataset and then matched with human mitochondrial gene data to obtain mitochondria-related differential genes (MitoDEGs). Signature mitochondria-related diagnostic markers were jointly screened by support vector machine (SVM) analysis, least absolute shrinkage, and selection operator (LASSO) regression. The expression of marker MitoDEGs was evaluated by validation datasets GSE147878 and GSE43696. The diagnostic value was evaluated by receiver operating characteristic (ROC) curve analysis. Meanwhile, the infiltrating immune cells were analyzed by the CIBERSORT. Finally, oxidative stress level and mitochondrial functional morphology for asthmatic mice and BEAS-2B cells were evaluated. The expression of signature MitoDEGs was verified by qPCR. RESULTS: 67 MitoDEGs were identified. Five signature MitoDEGs (SOD2, MTHFD2, PPTC7, NME6, and SLC25A18) were further screened out. The area under the curve (AUC) of signature MitoDEGs presented a good diagnostic performance (more than 0.9). There were significant differences in the expression of signature MitoDEGs between neutrophilic asthma and non-neutrophilic asthma. In addition, the basic features of mitochondrial dysfunction were demonstrated by in vitro and in vivo experiments. The expression of signature MitoDEGs in the neutrophilic asthma mice presented a significant difference from the control group. CONCLUSIONS: These MitoDEGs signatures in neutrophilic asthma may hold potential as anchor diagnostic and therapeutic targets in neutrophilic asthma.


Asunto(s)
Asma , Mitocondrias , Neutrófilos , Asma/genética , Asma/patología , Animales , Ratones , Humanos , Mitocondrias/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Estrés Oxidativo/genética , Masculino , Femenino
5.
J Allergy Clin Immunol ; 151(2): 526-538.e8, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35963455

RESUMEN

BACKGROUND: Neutrophilic asthma is associated with disease severity and corticosteroid insensitivity. Novel therapies are required to manage this life-threatening asthma phenotype. Programmed cell death protein-1 (PD-1) is a key homeostatic modulator of the immune response for T-cell effector functions. OBJECTIVE: We sought to investigate the role of PD-1 in the regulation of acute neutrophilic inflammation in a murine model of airway hyperreactivity (AHR). METHODS: House dust mite was used to induce and compare neutrophilic AHR in wild-type and PD-1 knockout mice. Then, the therapeutic potential of a human PD-1 agonist was tested in a humanized mouse model in which the PD-1 extracellular domain is entirely humanized. Single-cell RNA sequencing and flow cytometry were mainly used to investigate molecular and cellular mechanisms. RESULTS: PD-1 was highly induced on pulmonary T cells in our inflammatory model. PD-1 deficiency was associated with an increased neutrophilic AHR and high recruitment of inflammatory cells to the lungs. Consistently, PD-1 agonist treatment dampened AHR, decreased neutrophil recruitment, and modulated cytokine production in a humanized PD-1 mouse model. Mechanistically, we demonstrated at the transcriptional and protein levels that the inhibitory effect of PD-1 agonist is associated with the reprogramming of pulmonary effector T cells that showed decreased number and activation. CONCLUSIONS: PD-1 agonist treatment is efficient in dampening neutrophilic AHR and lung inflammation in a preclinical humanized mouse model.


Asunto(s)
Asma , Receptor de Muerte Celular Programada 1 , Humanos , Animales , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Pulmón , Células Th2 , Modelos Animales de Enfermedad
6.
Immunology ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988516

RESUMEN

IL-17A-producing group 3 innate lymphoid cells (ILC3s) have been found to participate in the development of various phenotypes of asthma, however, little is known about how ILC3s mediate neutrophilic airway inflammation. Elevated IL-1ß has been reported in neutrophilic asthma (NA) and IL-1ß receptor is highly expressed on lung ILC3s. Therefore, we hypothesize that IL-1ß aggravates neutrophilic airway inflammation via provoking IL-17A-producing ILC3s. We sought to determine the pathological roles of the IL-1ß-ILC3-IL-17A axis in neutrophilic airway inflammation. Lung ILC subsets were measured in eosinophilic asthma (ovalbumin [OVA]/Alum) and NA (OVA/lipopolysaccharides [LPS]) murine models. Rag2-/- (lacking adaptive immunity), RORc-/- (lacking transcription factor RORγt), Rag2-/- RORc-/- (lacking adaptive immunity and ILC3s), and ILCs depletion mice were used to verify the roles of ILC3s in neutrophilic airway inflammation by measurement of CXCL-1, IL-17A, IL-22 and neutrophil counts in bronchoalveolar lavage fluid (BALF), detection of Muc5ac in lung tissues, and quantification of IL-17A-producing ILC3s after treatment of anti-IL-17A or recombinant IL-1ß (rIL-1ß) and its monoclonal antibody. NLRP3, Caspase 1 and their induction of IL-1ß were detected in lung tissues of OVA/LPS-induced mice. The OVA/LPS model was characterized by an enrichment of airway neutrophilia, lung RORγt+ ILC3s and Th17 cytokines (IL-17A and IL-22) and neutrophilic chemokine C-X-C motif (chemokine) ligand 1 (CXCL-1), compared to the phenotypic features of airway eosinophilia, GATA3+ ILC2s and type-2 cytokines in OVA/Alum model. The concentration of CXCL-1 and neutrophil counts in BALF were decreased by anti-IL-17A. RORγt deficiency led to a decrease in IL-17A and CXCL-1 levels and neutrophil counts in BALF. ILC depletion in Rag2-/- mice ameliorated OVA/LPS-induced IL-17A, IL-22, CXCL-1 and airway neutrophil counts. IL-17A-producing ILCs and BALF neutrophil counts were significantly lower in Rag2-/- RORc-/- mice than those in Rag2-/- mice. IL-1ß was highly expressed in BALF and bronchial epithelial cells (BECs) in OVA/LPS model, and administration of rIL-1ß substantially aggravated airway inflammation and promoted upregulation of RORγt+ and IL-17A-producing lung ILC3s, which were reversed by anti-IL-1ß. NLRP3 and Caspase 1 expressions were enhanced by OVA/LPS, and their inhibitors abolished the OVA/LPS-induced IL-1ß in BECs. ILC3s play a pathogenic role in the pathogenesis of NA, which is triggered by IL-1ß via promoting IL-17A production of lung ILC3s.

7.
J Asthma ; 60(2): 348-359, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35286184

RESUMEN

OBJECTIVE: Asthma is a chronic airway inflammatory disease caused by multiple genetic and environmental factors. This study mainly sought to provide potential therapeutic targets and biomarkers for neutrophilic asthma (NA). METHODS: Three gene expression profiling datasets were obtained from the Genome Expression Omnibus (GEO) database. GSE45111 and GSE41863 were used to identify hub genes and potential biomarkers, and GSE137268 was used for data verification. We verified the repeatability of intragroup data and identified differentially expressed genes (DEGs). Then, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs, and a protein-protein interaction (PPI) network was constructed to identify the hub genes. Finally, receiver operating characteristic (ROC) analysis was used to verify the ability of the hub genes to differentiate between NA and eosinophilic asthma (EA). RESULTS: In this study, we identified 411 DEGs by comprehensive analysis of NA/EA patients and NA/healthy controls (HCs). Ten hub genes (CXCR1, FCGR3B, CXCR2, SELL, S100A12, CSF3R, IL6R, JAK3, CD48, and GNG2) were identified from the PPI network. Finally, based on the ROC analysis, 7 genes showed good diagnostic value for discriminating NA from EA-CXCR1, FCGR3B, CXCR2, SELL, S100A12, CSF3R, and IL6R (AUC > 0.7). CONCLUSION: We identified 7 hub genes that can distinguish NA from EA. The IL-8-mediated signaling may be the primary pathway to determine the NA phenotype in asthma. CXCR1/2 and S100A12 may be the primary genes determining the NA phenotype. CXCR1/2 and S100A12 might be biomarkers and new therapeutic targets for NA.Supplemental data for this article is available online at at.


Asunto(s)
Asma , Redes Reguladoras de Genes , Humanos , Biomarcadores/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Proteína S100A12/genética , Proteína 2 Similar a ELAV/genética
8.
J Allergy Clin Immunol ; 149(6): 1970-1980, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35034774

RESUMEN

BACKGROUND: Refractory asthma (RA) remains poorly controlled, resulting in high health care utilization despite guideline-based therapies. Patients with RA manifest higher neutrophilia as a result of increased airway inflammation and subclinical infection, the underlying mechanisms of which remain unclear. OBJECTIVE: We sought to characterize and clinically correlate gene expression differences between refractory and nonrefractory (NR) asthma to uncover molecular mechanisms driving group distinctions. METHODS: Microarray gene expression of paired airway epithelial brush and endobronchial biopsy samples was compared between 60 RA and 30 NR subjects. Subjects were hierarchically clustered to identify subgroups of RA, and biochemical and clinical traits (airway inflammatory molecules, respiratory pathogens, chest imaging) were compared between groups. Weighted gene correlation network analysis was used to identify coexpressed gene modules. Module expression scores were compared between groups using linear regression, controlling for age, sex, and body mass index. RESULTS: Differential gene expression analysis showed upregulation of proneutrophilic and downregulation of ciliary function genes/pathways in RA compared to NR. A subgroup of RA with downregulated ciliary gene expression had increased levels of subclinical infections, airway neutrophilia, and eosinophilia as well as higher chest imaging mucus burden compared to other RA, the dominant differences between RA and NR. Weighted gene correlation network analysis identified gene modules related to ciliary function, which were downregulated in RA and were associated with lower pulmonary function and higher airway wall thickness/inflammation, markers of poorer asthma control. CONCLUSIONS: Identification of a novel ciliary-deficient subgroup of RA suggests that diminished mucociliary clearance may underlie repeated asthma exacerbations despite adequate treatment, necessitating further exploration of function, mechanism, and therapeutics.


Asunto(s)
Asma , Asma/metabolismo , Biomarcadores , Broncoscopía , Humanos , Inflamación/metabolismo , Pulmón/patología , Depuración Mucociliar
9.
Respir Res ; 23(1): 289, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271366

RESUMEN

BACKGROUND: Asthma is one of the most common chronic diseases that affects more than 300 million people worldwide. Though most asthma can be well controlled, individuals with severe asthma experience recurrent exacerbations and impose a substantial economic burden on healthcare system. Neutrophil inflammation often occurs in patients with severe asthma who have poor response to glucocorticoids, increasing the difficulty of clinical treatment. METHODS: We established several neutrophil-dominated allergic asthma mouse models, and analyzed the airway hyperresponsiveness, airway inflammation and lung pathological changes. Neutrophil extracellular traps (NETs) formation was analyzed using confocal microscopy and western blot. RESULTS: We found that the ovalbumin (OVA)/complete Freund's adjuvant (CFA)/low-dose lipopolysaccharide (LPS)-induced mouse model best recapitulated the complex alterations in the airways of human severe asthmatic patients. We also observed OVA/CFA/LPS-exposed mice produced large quantities of neutrophil extracellular traps (NETs) in lung tissue and bone marrow neutrophils. Furthermore, we found that reducing the production of NETs or increasing the degradation of NETs can reduce airway inflammation and airway hyperresponsiveness. CONCLUSION: Our findings identify a novel mouse model of neutrophilic asthma. We have also identified NETs play a significant role in neutrophilic asthma models and contribute to neutrophilic asthma pathogenesis. NETs may serve as a promising therapeutic target for neutrophilic asthma.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Ratones , Humanos , Animales , Ovalbúmina , Lipopolisacáridos/toxicidad , Activación Neutrófila , Adyuvante de Freund/efectos adversos , Modelos Animales de Enfermedad , Glucocorticoides/efectos adversos , Asma/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Hipersensibilidad Respiratoria/inducido químicamente
10.
Artículo en Inglés | MEDLINE | ID: mdl-35470936

RESUMEN

BACKGROUND: Asthma exacerbation (AE) leads to social and economic costs and long-term adverse outcomes. We aimed to predict exacerbation-prone asthma (EPA) in children. METHODS: The Korean childhood Asthma Study (KAS) is a prospective nationwide pediatric asthma cohort of children aged 5-15 years followed every 6 months. Patients with AE during the 6 months prior to all three visits, with AE prior to one or two visits, and without AE prior to any visit were defined as having EPA, exacerbation-intermittent asthma (EIA), and exacerbation-resistant asthma (ERA), respectively. Risk factors and prediction models of EPA were explored. RESULTS: Of the 497 patients who completed three visits, 42%, 18%, and 15% had exacerbations prior to visits 1, 2, and 3 and 5%, 47%, and 48% had EPA, EIA, and ERA, respectively. Univariate and multivariable logistic regression revealed forced expiratory volume in 1 s (FEV1) z-score, forced vital capacity (FVC) z-score, white blood cell (WBC) count, and asthma control test (ACT) score as relevant EPA risk factors. The EPA prediction model comprised FVC z-score, WBC count, ACT score, sex, and parental education level (area under the receiver operating characteristic curve [AUROC] 0.841 [95% confidence interval (CI): 0.728-0.954]). CONCLUSION: With appropriate management, AE decreases over time, but persistent AEs may occur. Apart from asthma control level, baseline lung function and WBC count predicted EPA.


Asunto(s)
Asma , Asma/epidemiología , Niño , Volumen Espiratorio Forzado , Humanos , Fenotipo , Estudios Prospectivos , República de Corea/epidemiología
11.
Immunol Invest ; 51(5): 1243-1256, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34018452

RESUMEN

BACKGROUND: Neutrophilic asthma (NA) may result in irreversible airflow limitations. Soluble advanced glycosylation receptor (sRAGE) has been shown to be associated with neutrophilic airway inflammation. However, the association between sRAGE and mucus hypersecretion in NA remains unknown. This study aims to assess the function of sRAGE on mucus hypersecretion. METHODS: A NA mouse model was established and treated with adeno-associated virus 9 (AAV9)-sRAGE and inhibitors. Collagen deposition and goblet cell hyperplasia in the lungs were evaluated by periodic acid-Schiff (PAS) and Masson staining. sRAGE and mucin levels in bronchoalveolar lavage fluid were measured by ELISA. Pathway molecule expression levels were determined by RT-qPCR and western blotting. RESULTS: The results showed that the NA mouse model exhibited airway mucus hypersecretion. Mice can be effectively transfected by AAV9-sRAGE via tail-vein injection and intranasal drip. AAV9-sRAGE increased the sRAGE levels but it inhibited the collagen deposition, the PAS score, as well as the expression of MUC5AC and MUC5B. Inhibitors of high-mobility group protein 1 (HMGB1), receptor for advanced glycation end product (RAGE) and phosphatidylinositol 3-kinase (PI3K) suppressed the MUC5AC levels in NA mice as well as in cultured HMGB1-induced human bronchial epithelial cells. Furthermore, the phospho- extracellular signal-regulated kinase (ERK) protein in NA was increased while the sRAGE intervention inhibited this elevation. CONCLUSIONS: These results suggest that sRAGE may be a potential target for the treatment of mucus hypersecretion in NA.


Asunto(s)
Asma , Moco , Receptor para Productos Finales de Glicación Avanzada , Animales , Asma/metabolismo , Asma/patología , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar/química , Modelos Animales de Enfermedad , Glicosilación , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inflamación/metabolismo , Pulmón/patología , Ratones , Moco/metabolismo , Neutrófilos/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
12.
J Asthma ; 59(6): 1110-1115, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33830849

RESUMEN

OBJECTIVE: Asthma is a heterogeneous disease consisting of several inflammatory phenotypes of which neutrophilic asthma is associated with poorer responses to classic therapies, namely (inhaled) corticosteroids. The development of targeted therapies requires the identification of biomarkers to distinguish these phenotypes. Currently, we lack validated biomarkers for non-eosinophilic asthma. The aim of this study is to examine serum calprotectin (SC) in asthmatics and its potential as biomarker for neutrophilic asthma. METHODS: Hundred-seventeen severe asthmatics were referred for sputum induction and data were obtained from their medical records. To evaluate the association between SC and asthma phenotypes, patients were divided into subgroups based on sputum cell count (3% eosinophils and 61% neutrophils). Additionally, SC levels of asthmatics were compared with these of patients with chronic obstructive pulmonary disease, non-cystic fibrosis bronchiectasis and healthy controls. RESULTS: Asthmatics (n = 45) had significantly higher levels of SC than healthy controls. No significant differences were found between the different asthma phenotypes and in comparison with COPD patients. SC was significantly higher in asthmatics with a lower FEV1/FVC ratio (<70) and non-significantly elevated SC levels were seen in asthmatics with frequent exacerbations (>2 in the last year). CONCLUSION: In conclusion, there was no difference in SC levels between the different inflammatory subtypes in asthmatics. Nevertheless, severe asthmatics seemed to have higher SC levels suggesting that SC may be a marker of disease severity rather than a marker for specific inflammatory subtypes in asthmatics. Further research in larger cohorts is necessary to validate SC as biomarker in severe asthmatics.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Biomarcadores , Eosinófilos , Humanos , Complejo de Antígeno L1 de Leucocito , Neutrófilos , Esputo
13.
Acta Pharmacol Sin ; 43(4): 963-976, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34267342

RESUMEN

Bergenin is a natural PPARγ agonist that can prevent neutrophil aggregation, and often be used in clinics for treating respiratory diseases. Recent data show that Th17 cells are important for neutrophil aggregation and asthma through secreting IL-17A. In this study, we investigated the effects of bergenin on Th17 differentiation in vitro and subsequent neutrophilic asthma in mice. Naïve T cells isolated from mouse mesenteric lymph nodes were treated with IL-23, TGF-ß, and IL-6 to induce Th17 differentiation. We showed that in naïve T cells under Th17-polarizing condition, the addition of bergenin (3, 10, 30 µM) concentration-dependently decreased the percentage of CD4+ IL-17A+ T cells and mRNA expression of specific transcription factor RORγt, and function-related factors IL-17A/F, IL-21, and IL-22, but did not affect the cell vitality and apoptosis. Furthermore, bergenin treatment prevented GLS1-dependent glutaminolysis in the progress of Th17 differentiation, slightly affected the levels of SLC1A5, SLC38A1, GLUD1, GOT1, and GPT2. Glutamine deprivation, the addition of glutamate (1 mM), α-ketoglutarate (1 mM), or GLS1 plasmid all significantly attenuated the above-mentioned actions of bergenin. Besides, we demonstrated that bergenin (3, 10, and 30 µM) concentration-dependently activated PPARγ in naïve T cells, whereas PPARγ antagonist GW9662 and siPPARγ abolished bergenin-caused inhibition on glutaminolysis and Th17 differentiation. Furthermore, we revealed that bergenin inhibited glutaminolysis by regulating the level of CDK1, phosphorylation and degradation of Cdh1, and APC/C-Cdh1-mediated ubiquitin-proteasomal degradation of GLS1 after activating PPARγ. We demonstrated a correlation existing among bergenin-affected GLS1-dependent glutaminolysis, PPARγ, "CDK1-APC/C-Cdh1" signaling, and Th17 differentiation. Finally, the therapeutic effect and mechanisms for bergenin-inhibited Th17 responses and neutrophilic asthma were confirmed in a mouse model of neutrophilic asthma by administration of GW9662 or GLS1 overexpression plasmid in vivo. In conclusion, bergenin repressed Th17 differentiation and then alleviated neutrophilic asthma in mice by inhibiting GLS1-dependent glutaminolysis via regulating the "CDK1-APC/C-Cdh1" signaling after activating PPARγ.


Asunto(s)
Asma , Células Th17 , Animales , Asma/tratamiento farmacológico , Asma/patología , Benzopiranos/farmacología , Benzopiranos/uso terapéutico , Diferenciación Celular , Glutaminasa , Ratones , PPAR gamma/metabolismo
14.
Clin Exp Pharmacol Physiol ; 49(6): 624-632, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35181901

RESUMEN

Asthma is a chronic airway inflammatory disease with heterogeneous features. Most cases of asthma are steroid sensitive, but 5%-10% are unresponsive to steroids, leading to challenges in treatment. Neutrophilic asthma is steroid-resistant and characterized by the absence or suppression of the T-helper type II (TH 2) process and an increase in the TH 1 and/or TH 17 process. Roflumilast (ROF) has anti-inflammatory effects and has been used to treat chronic inflammatory airway diseases, such as chronic pulmonary obstructive disease. It is unclear whether ROF may have a therapeutic role in neutrophilic asthma. In this study, we investigated the synergistic effect of ROF with dexamethasone (DEX) in a neutrophilic asthma mouse model. C57BL/6 female mice sensitized to ovalbumin (OVA) were exposed to five intranasal OVA treatments and three intranasal lipopolysaccharide (LPS) treatments for an additional 10 days. During the intranasal OVA challenge, ROF was administrated orally, and DEX was injected intraperitoneally. Protein, pro-inflammatory cytokines, inflammatory cytokines and other suspected markers were identified by enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot. Following exposure to LPS in OVA-induced asthmatic mice, neutrophil predominant airway inflammation rather than eosinophil predominant inflammation was observed, with increases in airway hyperresponsiveness (AHR). The lungs of animals treated with ROF exhibited less airway inflammation and hyperresponsiveness. To investigate the mechanism underlying this effect, we examined the expression of proinflammatory cytokines suspected to be involved in inflammatory cytokines and proteins. Roflumilast reduced total protein in bronchioalveolar lavage fluid; levels of interleukin (IL)-17A, IL-1ß messenger RNA, interferon γ and tumour necrosis factor α; and recovered histone deacetylase-2 (HDAC2) activity. Combination therapy with ROF and DEX further reduced the levels of IL-17, IL-22 and IL-1ß mRNA and proinflammatory cytokines. The combination of ROF and DEX reduced lung inflammation and AHR much more than one of them alone. Roflumilast reduces AHR and lung inflammation in the neutrophilic asthma mouse model. Furthermore, additive effects were observed when DEX was added to ROF treatment, possibly because of recovery of HDAC2/ß-actin activity. This study demonstrates the anti-inflammatory properties of ROF in a neutrophilic asthma mouse model.


Asunto(s)
Asma , Lipopolisacáridos , Aminopiridinas , Animales , Antiinflamatorios/efectos adversos , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Benzamidas , Líquido del Lavado Bronquioalveolar , Ciclopropanos , Citocinas/metabolismo , Dexametasona/efectos adversos , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Inflamación/patología , Lipopolisacáridos/farmacología , Pulmón , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ovalbúmina/farmacología , Enfermedad Pulmonar Obstructiva Crónica , Esteroides/efectos adversos
15.
J Allergy Clin Immunol ; 147(2): 686-693.e3, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526308

RESUMEN

BACKGROUND: Asthma is a complex heterogeneous disease occurring in adults and children that is characterized by distinct inflammatory patterns. While numerous studies have been performed in adults, little is known regarding the heterogeneity of severe asthma in children, particularly inflammatory signatures involving the air spaces. OBJECTIVE: We sought to determine the relationship of bronchoalveolar lavage (BAL) cytokine/chemokine expression patterns in children with severe therapy-resistant asthma stratified according to neutrophilic versus nonneutrophilic BAL inflammatory cell patterns. METHODS: Children with severe asthma with inadequate symptom control despite therapy underwent diagnostic bronchoscopy and BAL. Inflammatory cytokine/chemokine concentrations were determined using a multiplex protein bead assay. RESULTS: Analysis of BAL constituents with an unbiased clustering approach revealed distinct cytokine/chemokine patterns, and these aligned with pathways associated with type 2 innate lymphoid cells, monocytes, neutrophil trafficking, and T effector cells. All cytokines examined (n = 27) with 1 exception (vascular endothelial growth factor) were overexpressed with BAL neutrophilia compared with nonneutrophilic asthma, and this was confirmed in a cross-validation analysis. Cytokines specifically responsible for Th17 (IL-17, IL-6, G-CSF) and Th1 differentiation and expression (IL-12, TNF-α, IFN-γ) were enhanced in the neutrophilic cohorts. Neutrophilic groups were also characterized by higher prevalence of bacterial and viral pathogens; however, cytokine expression patterns manifested independently of pathogen expression. CONCLUSIONS: The results demonstrate that children with refractory asthma and neutrophilic inflammation had a BAL cytokine pattern consistent with a mixed Th17/Th1/Th2 response. In contrast, nonneutrophilic asthma presented independently of cytokine overexpression.


Asunto(s)
Asma/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Granulocitos/inmunología , Neutrófilos/inmunología , Adolescente , Líquido del Lavado Bronquioalveolar/citología , Niño , Preescolar , Femenino , Humanos , Masculino
16.
Respir Res ; 22(1): 167, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082773

RESUMEN

BACKGROUND: Extracellular DNA (e-DNA) and neutrophil extracellular traps (NETs) are linked to asthmatics airway inflammation. However, data demonstrating the characterization of airway inflammation associated with excessive e-DNA production and its impact on asthma outcomes are limited. OBJECTIVE: To characterize the airway inflammation associated with excessive e-DNA production and its association with asthma control, severe exacerbations and pulmonary function, particularly, air trapping and small airway dysfunction. METHODS: We measured e-DNA concentrations in induced sputum from 134 asthma patients and 28 healthy controls. We studied the correlation of e-DNA concentrations with sputum neutrophils, eosinophils and macrophages and the fractional exhaled nitric oxide (FeNO). Lung function was evaluated using spirometry, body plethysmography, impulse oscillometry and inert gas multiple breath washout. We stratified patients with asthma into low-DNA and high-DNA to compare lung function impairments and asthma outcomes. RESULTS: Patients with severe asthma had higher e-DNA concentration (54.2 ± 42.4 ng/µl) than patients with mild-moderate asthma (41.0 ± 44.1 ng/µl) or healthy controls (26.1 ± 16.5 ng/µl), (all p values < 0.05). E-DNA concentrations correlated directly with sputum neutrophils (R = 0.49, p < 0.0001) and negatively with sputum macrophages (R = - 0.36, p < 0.0001), but neither with sputum eosinophils (R = 0.10, p = 0.26), nor with FeNO (R = - 0.10, p = 0.22). We found that 29% of asthma patients (n = 39) had high e-DNA concentrations above the upper 95th percentile value in healthy controls (55.6 ng /µl). High-DNA was associated with broad lung function impairments including: airflow obstruction of the large (FEV1) and small airways (FEF50%, FEF25-75), increased air trapping (RV, RV/TLC), increased small airway resistance (R5-20, sReff), decreased lung elasticity (X5Hz) and increased ventilation heterogeneity (LCI), (all P values < 0.05). We also found that high e-DNA was associated with nearly three-fold greater risk of severe exacerbations (OR 2·93 [95% CI 1.2-7.5]; p = 0·012), worse asthma control test (p = 0.03), worse asthma control questionnaire scores (p = 0.01) and higher doses of inhaled corticosteroids (p = 0.026). CONCLUSION: Increased production of extracellular DNA in the airway characterizes a subset of neutrophilic asthma patients who have broad lung function impairments, poor symptom control and increased risk of severe exacerbations.


Asunto(s)
Asma/metabolismo , ADN/metabolismo , Líquido Extracelular/metabolismo , Volumen Espiratorio Forzado/fisiología , Pulmón/fisiopatología , Neutrófilos/patología , Esputo/metabolismo , Adulto , Asma/patología , Asma/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Pruebas de Función Respiratoria , Esputo/citología
17.
Int Arch Allergy Immunol ; 182(12): 1143-1154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34649239

RESUMEN

BACKGROUND: Asthma animal models provide valuable information about the pathogenesis and the treatment of asthma. An ovalbumin (OVA)/complete Freund's adjuvant (CFA)-sensitized model was developed to induce neutrophil-dominant asthma and to investigate whether fungal immunomodulatory peptide-fve (FIP-fve) could improve asthma features in the OVA/CFA-sensitized model. METHODS: We used female BALB/c mice and sensitized them intraperitoneally with OVA/CFA on days 1, 2, and 3. On days 14, 17, 21, 24, and 27, they were challenged with intranasal OVA. The airway hyper-responsiveness (AHR) was detected by BUXCO, inflammatory cells were stained with Liu's stain, the cytokines were detected using ELISA, and the airway inflammation was analyzed with hematoxylin and eosin stain. RESULTS: According to the results, OVA/CFA sensitization could induce AHR, high levels of IgE, and inflammatory cells especially neutrophils infiltration in the lung and airway inflammation. IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, IL-17, IL-25, IL-33, and transforming growth factor-ß (TGF-ß) increased in the OVA/CFA-sensitized mice. OVA/CFA-sensitized mice treated with FIP-fve not only increased IL-12 and IFN-γ but also decreased IL-4, IL-5, IL-6, IL-8, IL-13, IL-17, IL-25, IL-33, and TGF-ß in the bronchoalveolar lavage fluid. Moreover, FIP-fve significantly decreased neutrophil infiltration in the lung. CONCLUSION: The OVA/CFA model induced neutrophilic asthma successfully, and FIP-fve improved neutrophil-dominant asthma.


Asunto(s)
Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Proteínas Fúngicas/uso terapéutico , Neutrófilos/efectos de los fármacos , Animales , Antiasmáticos/farmacología , Asma/inmunología , Asma/patología , Biomarcadores/metabolismo , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Adyuvante de Freund/inmunología , Proteínas Fúngicas/farmacología , Inmunoglobulina E/metabolismo , Ratones , Ratones Endogámicos BALB C , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Ovalbúmina/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Resultado del Tratamiento
18.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(1): 123-130, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-34117844

RESUMEN

Bronchial asthma is a chronic respiratory disease,characterized by airway inflammation,airway hyperresponsiveness,reversible airway obstruction and airway remodeling,in which a variety of cells including airway inflammatory cells and structural cells are involved. Previous studies have shown that asthma is mainly driven by Th2 cytokines IL-4,IL-5,and IL-13,leading to airway eosinophil inflammation. With further research,however,it has been found that neutrophils are also closely related to asthma. Numbers of neutrophils are elevated in airway through increased chemotaxis and decreased apoptosis,which is earlier than eosinophils,leading to airway neutrophilic inflammation. Neutrophils can produce elastase,myeloperoxidase,neutrophil extra- cellular traps,chemokines and cytokines,participating in the occurrence and development of asthma. The antagonists against these molecules,such as anti-IL-8 receptor antibody,anti-IL-17 antibody,and DNase,have shown positive effects on neutrophilic asthma,but further studies are needed to support their clinical application. This article mainly reviews the role of neutrophils in asthma and related mechanisms.


Asunto(s)
Asma , Neutrófilos , Asma/inmunología , Citocinas , Eosinófilos , Humanos , Inflamación , Neutrófilos/inmunología
19.
Respir Res ; 21(1): 116, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32423405

RESUMEN

BACKGROUND: Neutrophilic subtype asthma occurs in approximately 15-25% of the asthma cases and is associated with severe airflow obstruction, corticosteroid resistance. MicroRNA plays a vital role in regulating many immune processes, but how miRNA circuits coordinate airway inflammation during neutrophilic asthma is unclear. METHODS: To investigate the molecular mechanism of miR-223 in regulation of neutrophilic airway inflammation, miR-223 knockout mice were used to the OVA/CFA-induced neutrophilic asthma or treated with NLRP3 inhibitor and IL-1ß receptor antagonist. Based on the results obtained, wide-type mice were subsequently treated with miR-223 agomirs or negative control agomirs, and the effects on airway inflammation were assessed using morphometric techniques, quantitative RT-PCR, western blot, ELISA and other molecular approaches. RESULTS: The expression of miR-223 was upregulated in lung tissues of experimental mice model. Furthermore, miR-223-/- mice led to aggravated neutrophilic airway inflammation with heightened histopathological, inflammatory cells and cytokines readouts. Moreover, miR-223-/- mice also presented with enhanced NLRP3 inflammasome level with elevated IL-1ß. Blocking NLRP3 or IL-1ß diminished this phenotype. Finally, overexpression of miR-223 via treatment with miR-223 agomirs attenuated airway inflammation, NLRP3 levels and IL-1ß release. CONCLUSIONS: The findings of this study revealed a crucial role for miR-223 in regulating the immunoinflammatory responses by depressing the NLRP3/ IL-1ß axis in neutrophilic asthma.


Asunto(s)
Asma/metabolismo , Asma/prevención & control , MicroARNs/biosíntesis , Proteína con Dominio Pirina 3 de la Familia NLR/biosíntesis , Neutrófilos/metabolismo , Animales , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/genética
20.
Respir Res ; 21(1): 170, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620122

RESUMEN

Asthma is a complex heterogeneous disease. The neutrophilic subtypes of asthma are described as persistent, more severe and corticosteroid-resistant, with higher hospitalization and mortality rates, which seriously affect the lives of asthmatic patients. With the development of high-throughput sequencing technology, an increasing amount of evidence has shown that lower airway microbiome dysbiosis contributes to the exacerbation of asthma, especially neutrophilic asthma. Nontypeable Haemophilus influenzae is normally found in the upper respiratory tract of healthy adults and is one of the most common strains in the lower respiratory tract of neutrophilic asthma patients, in whom its presence is related to the occurrence of corticosteroid resistance. To understand the pathogenic mechanism by which nontypeable Haemophilus influenzae colonization leads to the progression of neutrophilic asthma, we reviewed the previous literature on nontypeable Haemophilus influenzae colonization and subsequent aggravation of neutrophilic asthma and corticosteroid resistance. We discussed nontypeable Haemophilus influenzae as a potential therapeutic target to prevent the progression of neutrophilic asthma.


Asunto(s)
Asma/microbiología , Asma/patología , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/patología , Haemophilus influenzae , Neutrófilos/patología , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda