Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(35): e2402726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38651509

RESUMEN

Heterogeneous catalysts have attracted extensive attention among various emerging catalysts for their exceptional oxygen evolution reaction (OER) capabilities, outperforming their single-component counterparts. Nonetheless, the synthesis of heterogeneous materials with predictable, precise, and facile control remains a formidable challenge. Herein, a novel strategy involving the decoration of catalysts with CeO2 is introduced to concurrently engineer heterogeneous interfaces and adjust phase composition, thereby enhancing OER performance. Theoretical calculations suggest that the presence of ceria reduces the free energy barrier for the conversion of nitrides into metals. Supporting this, the experimental findings reveal that the incorporation of rare earth oxides enables the controlled phase transition from nitride into metal, with the proportion adjustable by varying the amount of added rare earth. Thanks to the role of CeO2 decoration in promoting the reaction kinetics and fostering the formation of the genuine active phase, the optimized Ni3FeN/Ni3Fe/CeO2-5% nanoparticles heterostructure catalyst exhibits outstanding OER activity, achieving an overpotential of just 249 mV at 10 mA cm-2. This approach offers fresh perspectives for the conception of highly efficient heterogeneous OER catalysts, contributing a strategic avenue for advanced catalytic design in the field of energy conversion.

2.
Adv Sci (Weinh) ; 11(21): e2310115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491872

RESUMEN

In this work, 2D ferromagnetic M3GeTe2 (MGT, M = Ni/Fe) nanosheets with rich atomic Te vacancies (2D-MGTv) are demonstrated as efficient OER electrocatalyst via a general mechanical exfoliation strategy. X-ray absorption spectra (XAS) and scanning transmission electron microscope (STEM) results validate the dominant presence of metal-O moieties and rich Te vacancies, respectively. The formed Te vacancies are active for the adsorption of OH* and O* species while the metal-O moieties promote the O* and OOH* adsorption, contributing synergistically to the faster oxygen evolution kinetics. Consequently, 2D-Ni3GeTe2v exhibits superior OER activity with only 370 mV overpotential to reach the current density of 100 mA cm-2 and turnover frequency (TOF) value of 101.6 s-1 at the overpotential of 200 mV in alkaline media. Furthermore, a 2D-Ni3GeTe2v-based anion-exchange membrane (AEM) water electrolysis cell (1 cm2) delivers a current density of 1.02 and 1.32 A cm-2 at the voltage of 3 V feeding with 0.1 and 1 m KOH solution, respectively. The demonstrated metal-O coordination with abundant atomic vacancies for ferromagnetic M3GeTe2 and the easily extended preparation strategy would enlighten the rational design and fabrication of other ferromagnetic materials for wider electrocatalytic applications.

3.
ACS Appl Mater Interfaces ; 12(17): 19572-19580, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32270997

RESUMEN

Exploring efficient electrocatalysts for lithium-sulfur (Li-S) batteries is of great significance for the sulfur/polysulfide/sulfide multiphase conversion. Herein, we report nickel-iron intermetallic (Ni3Fe) as a novel electrocatalyst to trigger the highly efficient polysulfide-involving surface reactions. The incorporation of iron into the cubic nickel phase can induce strong electronic interaction and lattice distortion, thereby activating the inferior Ni phase to catalytically active Ni3Fe phase. Kinetics investigations reveal that the Ni3Fe phase promotes the redox kinetics of the multiphase conversion of Li-S electrochemistry. As a result, the Li-S cells assembled with a 70 wt % sulfur cathode and a Ni3Fe-modified separator deliver initial capacities of 1310.3 mA h g-1 at 0.1 C and 598 mA h g-1 at 4 C with excellent rate capability and a long cycle life of 1000 cycles at 1 C with a low capacity fading rate of ∼0.034 per cycle. More impressively, the Ni3Fe-catalyzed cells exhibit outstanding performance even at harsh working conditions, such as high sulfur loading (7.7 mg cm-2) or lean electrolyte/sulfur ratio (∼6 µL mg-1). This work provides a new concept on exploring advanced intermetallic catalysts for high-rate and long-life Li-S batteries.

4.
ACS Appl Mater Interfaces ; 12(50): 55782-55794, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33258579

RESUMEN

Strategic design and fabrication of a highly efficient and cost-effective bifunctional electrocatalyst is of great significance in water electrolysis in order to produce sustainable hydrogen fuel in a large scale. However, it is still challenging to develop a stable, inexpensive, and efficient bifunctional electrocatalyst that can overcome the sluggish oxygen evolution kinetics in water electrolysis. To address the aforementioned concerns, a metal-organic framework-derived Fe-doped Ni3Fe/NiFe2O4 heterostructural nanoparticle-embedded carbon nanotube (CNT) matrix (Fe(0.2)/Ni-M@C-400-2h) is synthesized via a facile hydrothermal reaction and subsequent carbonization of an earth-abundant Ni/Fe/C precursor. With a novel porous nanoarchitecture fabricated by a Ni3Fe/NiFe2O4 heterostructure on a highly conductive CNT matrix, this catalyst exhibits exceptional bifunctional activity during water electrolysis over the Ni/Fe-based electrocatalysts reported recently. It delivers a low overpotential of 250 mV to achieve a current density of 10 mA/cm2 with a small Tafel slope of 43.4 mV/dec for oxygen evolution reaction. It requires a low overpotential of 128 mV (η10) for hydrogen evolution reaction and displays a low overpotential of 1.62 V (η10) for overall water splitting. This study introduces a facile and straightforward synthesis strategy to develop transition metal-based nanoarchitectures with high performance and durability for overall water-splitting catalysis.

5.
ACS Appl Mater Interfaces ; 11(4): 4028-4036, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30652847

RESUMEN

The development of low-cost and efficient electrocatalysts with a bicomponent active surface for reversible oxygen electrode reactions is highly desirable and challenging. Herein, we develop an effective calcination-hydrothermal approach to fabricate graphene aerogel-anchored Ni3Fe-Co9S8 bifunctional electrocatalyst (Ni3Fe-Co9S8/rGO). The mutually beneficial Ni3Fe-Co9S8 bifunctional active components efficiently balance the performance of oxygen reduction and oxygen evolution reactions (ORR/OER), in which Co9S8 promotes the ORR and Ni3Fe facilitates the OER. This balance behavior has an obvious advantage over that of monocomponent Ni3Fe/rGO and Co9S8/rGO catalysts. Meanwhile, the additional synergy between porous rGO aerogels and Ni3Fe-Co9S8 endows the composite with more exposed active sites, faster electrons/ions transport rate, and better structural stability. Benefiting from the reasonable material selection and structural design, the Ni3Fe-Co9S8/rGO exhibits not only outstanding ORR activity with the high onset- and half-wave potentials ( Eonset = 0.91 V and E1/2 = 0.80 V) but also satisfactory OER activity with a low overpotential at 10 mA cm-2 (0.39 V). Moreover, rechargeable Zn-air cells equipped with Ni3Fe-Co9S8/rGO exhibit excellent rechargeability and a fast dynamic response.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda