Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 843
Filtrar
1.
Small ; 20(13): e2306863, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37963848

RESUMEN

The construction of stable copper nanoclusters (Cu-NCs) with near-infrared (NIR) emission that can be used for catalysis is highly desired, yet remains a challenge. Herein, an atomically precise bimetallic Cu/Pd NC with a molecular formula of Cu16Pd1L10(PPh3)2(Pz)6 (Pz = 3,5-(CF3)2Pyrazolate, L = 4-CH3OPhC≡C-), abbreviated as Cu16Pd1, is synthesized. Single-crystal X-ray crystallographic analysis of Cu16Pd1 reveals a Cu10Pd1 kernel with pseudo-gyroelongated square bipyramid confirmation surrounded by other 6 Cu(I) ions and protected ligands. Interestingly, it exhibits strong NIR emission with the highest photoluminescence quantum yield (PLQY) among all the Cu NCs/Cu alloys (λem > 800 nm) in the solid-state, and also displays NIR emission in solution. Experimental results and theoretical calculations suggest that the impressive NIR emission is attributed to abundant supramolecular interactions in the solid-state, including intramolecular metal-metal and intermolecular interactions. Of note, the bimetallic Cu16Pd1 can catalyze the reduction of 4-nitrophenol. This work provides a novel method for synthesizing Cu/Pd NCs and reminds that the less studied Cu/Pd NC can serve as outstanding luminescent material, which is seldom noticed in atomically precise nanoclusters.

2.
Small ; 20(25): e2310380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38189520

RESUMEN

Supported noble metal nanoparticles (NMNPs) are appealing for energy and environment catalysis. To facilitate the loading of NMNPs, in situ reduction of Mn+ on the support with extra reductants/surfactants is adopted, but typically results in aggregated NMNPs with uneven size distributions or blocked active sites of the NMNPs. Herein, the use of cobalt layered double hydroxide (Co-LDH) is proposed as both support and reductant for the preparation of supported NMNPs with ultrasmall sizes and even distributions. The resultant Co-LDH-supported NMNPs exhibit excellent catalytic performance and stability. For example, Ir/Co-LDH displays a low overpotential of 188 mV (10 mA cm-2) for electrocatalytic oxygen evolution reaction and a long-term stability over 100 h (100 mA cm-2) in overall water splitting. Ru/Co-LDH can achieve a 4-nitrophenol reduction with high rate of 0.36 min-1 and S2- detection with low limit of detection (LOD) of 0.34 µm. Overall, this work provides a green and effective strategy to fabricate supported NMNPs with greatly improved catalytic performances.

3.
Chemistry ; 30(44): e202401637, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38837442

RESUMEN

We propose silver oxide as a cost-effective and sustainable alternative to noble metals for the catalytic reduction of nitroaromatics. In the present investigation, we adopt a facile and green synthetic route for the synthesis of silver oxide nanostructures. The prepared nanostructures were found to crystallize in the cuprite phase and exhibit absorbance across the entire visible range of the electromagnetic spectrum. The catalytic potential of the silver oxide was evaluated by following the kinetics of nitrophenol reduction under ambient conditions and is observed to follow pseudo-first order kinetics with the apparent rate constant k a p p = 4 . 24 × 10 - 3 ${{k}_{app}=4.24\ \times {10}^{-3}}$ s-1 at minimum concentration of the catalyst. We attribute the observed catalytic activity to the freshly generated catalytic surface featuring a partially reduced form of silver oxide during reaction. The findings highlight the efficacy of silver oxide in mitigating the environmental pollution originating from the recalcitrant nitroarenes.

4.
Biopolymers ; : e23608, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923469

RESUMEN

The paper reports on the preparation of cellulose nanocrystals/reduced graphene oxide matrix loaded with cuprous oxide nanoparticles (CNC/rGO-Cu2O) through a simple solvothermal method and its application for 4-nitrophenol reduction to 4-aminophenol using sodium borohydride. The CNC/rGO-Cu2O nanocomposite was formed chemically by first mixing CNC and graphene oxide (GO) followed by complexation of the negatively charged functional groups of CNC/GO with Cu2+ ions and subsequent heating at 100°C. This resulted in the simultaneous reduction of GO to rGO and the formation of Cu2O nanoparticles. The as-elaborated nanocomposite was firstly characterized using different techniques such as atomic force microscopy, scanning electron microscopy, transmission electron microscopy, UV-Vis spectrophotometry, Raman spectroscopy and x-ray photoelectron spectroscopy. Then, it was successfully applied for efficient catalytic reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride: the reduction was completed in about 6 min. After eight times use, the catalyst still maintained good catalytic performance. Compared to CNC/rGO, rGO/Cu2O and free Cu2O nanoparticles, the CNC/rGO-Cu2O nanocomposite exhibits higher catalytic activity even at lower copper loading.

5.
Nanotechnology ; 35(12)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38096572

RESUMEN

Due to the unique physicochemical properties of gold nanoparticles (AuNPs) decorated silica nanostructures (SiO2@AuNPs), they show great potential for applications in catalysis, biosensing, optical devices and medicine. It is essential to explore the catalytic effect of SiO2@AuNPs and the understanding of the essential process of catalytic reactions. We have prepared SiO2@AuNPs by loading small-sized AuNPs on surface-modified silica nanospheres. SiO2@AuNPs was used as a catalyst for the catalytic reduction of 4-nitrophenol (4-NP) in the presence of excess NaBH4, and the results showed that with the increase of the amount of catalyst from 30 to 100µl, the corresponding rate constantKappwas increased from 6.44 × 10-3to 1.45 × 10-2s-1, and its TOF was as high as 1.326 × 103h-1, and the catalytic rate could still be maintained at 87% after five cycles. By analyzing the morphology and size of the SiO2supported AuNPs before and after the catalytic reaction, it can be seen that the atoms on the surface of small-sized AuNPs supported by silica have migrated during the catalytic process, which subsequently affects the catalytic efficiency of the structure. This study proves the good catalytic effect of SiO2@AuNPs structure and lays the foundation for its wider application.

6.
Nanotechnology ; 35(20)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38320322

RESUMEN

The increasing use of nanomaterials in consumer products is expected to lead to environmental contamination sometime soon. As water pollution is a pressing issue that threatens human survival and impedes the promotion of human health, the search for adsorbents for removing newly identified contaminants from water has become a topic of intensive research. The challenges in the recyclability of contaminated water continue to campaign the development of highly reusable catalysts. Although exfoliated 2D MXene sheets have demonstrated the capability towards water purification, a significant challenge for removing some toxic organic molecules remains a challenge due to a need for metal-based catalytic properties owing to their rapid response. In the present study, we demonstrate the formation of hybrid structure AuNPs@MXene (Mo2CTx) during the sensitive detection of Au nanoparticle through MXene sheets without any surface modification, and subsequently its applications as an efficient catalyst for the degradation of 4-nitrophenol (4-NP), methyl orange (MO), and methylene blue (MB). The hybrid structure (AuNPs@MXene) reveals remarkable reusability for up to eight consecutive cycles, with minimal reduction in catalytic efficiency and comparable apparent reaction rate constant (Kapp) values for 4-NP, MB, and MO, compared to other catalysts reported in the literature.

7.
J Fluoresc ; 34(1): 321-332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37249679

RESUMEN

Fluorescent organic nanoparticles (FONPs) have attracted much attention as a practicable and effective platform for detection applications. The present article describes the preparation of FONPs derived from the quinazolinone-based 2-(furan-2-yl)-2,3-dihydroquinazolin-4(1H)-one derivative FHDQ. Self-assembly of FHDQ in an aqueous medium resulted in the formation of FONPs through H-type aggregation and showed excellent fluorescence properties. The presence of other coexisting species solutions did not affect the selective fluorescence quenching observed with the addition of 4-nitrophenol (4-NP). The photophysical properties, i.e., UV-Vis absorbance, fluorescence emission, and lifetime measurements together with zeta particle sizer, support excited-state complex formation followed by a dynamic fluorescence quenching phenomenon in the emission of FDHQNPs. In the concentration range of 0 to 36 µg.[Formula: see text], the detection limit of this turn-off sensor FDHQNPs against 4-NP was determined to be 0.01611 µM. Finally, the practicability of the FDHQNPs for the analysis of 4-NP in environmental samples was demonstrated.

8.
Environ Res ; 246: 118071, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163546

RESUMEN

Herein, we present the exceptional performance of FeCx-coated carbon sheets (FC) derived from the pyrolysis of waste biomass as a bifunctional catalyst for electrochemical detection and catalytic reduction of 4-nitrophenol (4-NP). Despite having a lower surface area, larger particle size, and lesser N content, the FC material prepared at a calcination temperature of 900 °C (FC900) outperforms the other samples. Deeper investigations revealed that the FC900 efficiently facilitates the charge transfer process and enhances the diffusion rate of 4-NP, leading to increased surface coverage of 4-NP on the surface of FC900. Additionally, relatively weaker interactions between 4-NP and FC900 allow the facile adsorption and desorption of reaction intermediates. Due to the synergetic interplay of these factors, FC900 exhibited a linear response to changes in 4-NP concentration from 1 µM to 100 µM with a low limit of detection (LOD) of 84 nM (S/N = 3) and high sensitivity of 12.15 µA µM-1 cm-2. Importantly, it selectively detects 4-NP in the presence of five times more concentrated 2-aminophenol, 4-aminophenol, catechol, resorcinol, and hydroquinone and ten times more concentrated metal salts such as Na2SO4. NaNO3, KCl, CuCl2, and CaCl2. Moreover, FC900 can accurately detect micromolar levels of 4-NP in river water with high recovery values (99.8-103.5 %). In addition, FC900 exhibited outstanding catalytic activity in reducing 4-NP to 4-aminophenol (4-AP), achieving complete conversion within 8 min with a high-rate constant of 0.42 min-1. FC900 also shows high recyclability in six consecutive catalytic reactions due to Fe magnetic property.


Asunto(s)
Aminofenoles , Carbono , Carbón Orgánico , Nitrofenoles
9.
Environ Res ; 258: 119471, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38914256

RESUMEN

Organic dye and nitrophenol pollution from textiles and other industries present a substantial risk to people and aquatic life. One of the most essential remediation techniques is photocatalysis, which uses the strength of visible light to decolorize water. The present study reports Canthium Parviflorum (CNP) leaf extract utilization as an effective bio-reductant for green synthesis of Au NPs. A simple, eco-friendly process with low reaction time and temperature was adopted to synthesize CNP extract-mediated Au-NPs (CNP-AuNPs). The prepared AuNPs characterization involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS) surface area analysis, ultraviolet-visible spectroscopy (UV-Vis). XRD results showed that the cubic-structured AuNPs had a crystallite size of 14.12 nm. Assessment of organic dyes performance in degrading brilliant green (BTG) and amido black 10B (AMB) under visible light irradiation highlights an impressive 83.25% and 86% degradation efficiency within 120 min, accompanied by a kinetic rate constant dyes was found to be 0.0828 min⁻1, BTG, and 0.0123 min⁻1, Furthermore, the reduction of 4-nitrophenol by NaBH4 using CNP-AuNPs as a catalyst demonstrated good catalytic performance and rapid degradation at 89.4%. and rate constant 0.099 min-1 followed pseudo-first-order. The LC-MS analysis identified various intermediates during the degradation of the CR dye. Radical trapping experiments suggest that photogenerated free electrons and hydroxyl radicals are crucial for degrading the amido black 10B dye The AuNPs influenced the significant factors responsible for the photocatalytic activity, such as the increase in range of absorbance, increased e- and h+ pair separation, improvement in the charge transfer process, and active site formation, which significantly enhanced the process of degradation. We found that the CNP-AuNPs could effectively remove dyes and nitrophenol from industrial wastewater.


Asunto(s)
Oro , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Oro/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Tecnología Química Verde/métodos , Restauración y Remediación Ambiental/métodos , Catálisis , Contaminantes Químicos del Agua/química , Colorantes/química , Fotólisis
10.
Environ Res ; 249: 118473, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354892

RESUMEN

The development of a catalyst with a consistent and clearly defined crystal structure is crucial for establishing an efficient catalytic performance system. This study focuses on catalyzing the reduction of nitroarenes to amino-derivatives in an aquatic environment at ambient temperature, employing metallic (Au) and bimetallic (Au-Pd or Au-Ag) nanoparticles loaded on a Ce-BTC metal-organic framework using a facile sol-immobilization approach. Diverse analytical instruments, comprising SEM, TEM, XRD, FT-IR, XPS, TGA, and N2 isotherm, have been utilized to characterize the synthesized catalysts. Among the catalysts that were fabricated, Au-Pd@Ce-BTC displayed the maximum catalytic efficacy, offering a rate constant (kapp) of 0.5841 min-1, conversion percentages reaching 99.7%, and a KAF of 116.8 min-1g-1. Moreover, it exhibited remarkable recyclability over five consecutive cycles. This catalyst offers the advantages of operating under ambient reaction conditions and exhibiting tolerance to a broad range of substrates containing various functional moieties. The mechanistic understanding of nitroarene reduction and the factors contributing to the superior activity of Au-Pd/Ce-BTC are explored through spectroscopic and porosity analyses. Spectroscopic measurements indicate that the elevated Auo and Pdo/Pd2+ ratio, increased surface area, and the synergistic collaboration of the bimetallic NPs are key factors contributing to the heightened activity of Au-Pd/Ce-BTC. These findings hold significant appeal from both an industrial and academic standpoint.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Catálisis , Oro/química , Estructuras Metalorgánicas/química , Oxidación-Reducción , Paladio/química , Cerio/química , Contaminantes Químicos del Agua/química
11.
Environ Res ; 248: 118218, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266892

RESUMEN

The contamination of water with organic pollutants such as dyes and phenols is a serious environmental problem, requiring effective treatment methods. In the present study, a novel nanocomposite was synthesized by intercalating graphene oxide and bentonite clay into MgFeAl-layered triple hydroxide (GO/BENT/LTH), which was characterized using different techniques. The adsorption efficacy of the GO/BENT/LTH nanocomposite was assessed via the removal of two harmful organic water pollutants, namely methyl orange (MO) and 2-nitrophenol (2NP). The obtained results revealed that the maximum adsorption capacities (qmax) of MO and 2NP reached 3106.3 and 2063.5 mg/g, respectively, demonstrating the excellent adsorption performance of the nanocomposite. Furthermore, this study examined the effects of contact time, initial MO and 2NP concentrations, pH, and temperature of the wastewater samples on the adsorptive removal of MO and 2NP by the GO/BENT/LTH nanocomposite. The pH, zeta potential, and FTIR investigations suggested the presence of more than one adsorption mechanism. Thermodynamic investigations elucidated the exothermic nature of the adsorption of MO and 2NP onto the GO/BENT/LTH nanocomposite, with MO adsorption being more sensitive to temperature change. Additionally, regeneration studies revealed a marginal loss in the MO and 2NP removal with the repetitive use of the GO/BENT/LTH nanocomposite, demonstrating its reusability. Overall, the findings of this study reveal the promise of the GO/BENT/LTH nanocomposite for effective water decontamination.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Contaminantes Químicos del Agua , Bentonita/química , Adsorción , Contaminantes Químicos del Agua/análisis , Agua , Nanocompuestos/química , Cinética , Concentración de Iones de Hidrógeno
12.
Environ Res ; 251(Pt 1): 118567, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432568

RESUMEN

There has been a growing interest in the design and development of graphene based composite materials with superior performances for environmental catalytic applications. But in most of the studies the synthesis conditions require elevated temperatures and expensive working setups (high temperature furnaces, autoclaves, inert atmosphere conditions etc.). In this reported work, the nitrogen doped reduced graphene oxide supported CuCo2O4 (NG/CuCo2O4) composites were prepared through a simple one pot synthesis method under mild conditions (∼95 °C and air atmosphere) and successfully employed as catalysts for the reduction of toxic 4-nitrophenol (4NP). The characterization results revealed the successful formation of NG/CuCo2O4 composites with a possible charge transfer interaction between nitrogen doped reduced graphene oxide support of CuCo2O4. The NG/CuCo2O4 hybrids exhibited robust catalytic activity in 4NP reduction with an activity factor of 261.5 min-1 g-1. A 4NP conversion percentage which is as high as 99.5% was achieved within 11 min using the NG/CuCo2O4 catalyst. The detailed kinetic analysis confirmed the Langmuir-Hinshelwood model for the NG/CuCo2O4 catalysed 4NP reduction. The nitrogen doped reduced graphene oxide support modified the electronic levels of CuCo2O4 nanoparticles through electron transfer interactions and enhanced the catalytic activity of CuCo2O4 in NG/CuCo2O4 through improved adsorption of reactant ions and effective generation of active hydrogen species. The good reusability and stability along with profound activity of NG/CuCo2O4 catalyst makes it a promising material for wide scale catalytic applications.


Asunto(s)
Grafito , Nitrógeno , Nitrofenoles , Grafito/química , Nitrofenoles/química , Catálisis , Nitrógeno/química , Oxidación-Reducción , Cobre/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Transporte de Electrón , Óxidos/química
13.
Ecotoxicol Environ Saf ; 282: 116701, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018731

RESUMEN

Herein, we reported the dual functions of molybdenum disulfide/sulfur-doped graphitic carbon nitride (MoS2/SGCN) composite as a sensing material for electrochemical detection of 4-NP and a catalyst for 4-NP degradation. The MoS2 nanosheet, sulfur-doped graphitic carbon nitride (SGCN) and MoS2/SGCN were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) spectroscopy and X-ray photoelectron spectroscopy (XPS). Electrochemical characterization of these materials with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1 mM K4[Fe(CN)6]3-/4- show that the composite has the lowest charge transfer resistance and the best electrocatalytic activity. The limit of detection (LOD) and the linear range of 4-nitrophenol at MoS2/SGCN modified glassy carbon electrode (MoS2/SGCN/GCE) were computed as 12.8 nM and 0.1 - 2.6 µM, respectively. Also, the percentage recoveries of 4-NP in spiked tap water samples ranged from 97.8 - 99.1 %. The electroanalysis of 4-NP in the presence of notable interferons shows that the proposed electrochemical sensor features outstanding selectivity toward 4-NP. Additionally, the results of the catalytic degradation of 4-NP at MoS2/SGCN show that the nanocatalyst catalyzed the transformation of 4-NP to 4-aminophenol (4-AP) with a first-order rate constant (k) estimated to be 4.2 ×10-2 s-1. The results of this study confirm that the MoS2/SGCN nanocatalyst is a useful implement for electroanalytical monitoring and catalytic degradation of the hazardous 4-NP in water samples.


Asunto(s)
Disulfuros , Técnicas Electroquímicas , Grafito , Límite de Detección , Molibdeno , Nitrofenoles , Contaminantes Químicos del Agua , Molibdeno/química , Molibdeno/análisis , Nitrofenoles/análisis , Nitrofenoles/química , Técnicas Electroquímicas/métodos , Disulfuros/química , Catálisis , Contaminantes Químicos del Agua/análisis , Grafito/química , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/análisis , Electrodos
14.
Mikrochim Acta ; 191(8): 446, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963446

RESUMEN

The stability of black phosphorene (BP) and its preparation and modification for developing and applying devices have become a hot topic in the interdisciplinary field. We propose ultrasound-electrochemistry co-assisted liquid-phase exfoliation as an eco-friendly one-step method to prepare gold-silver bimetallic nanoparticles (Au-AgNPs)-decorated BP nanozyme for smartphone-based portable sensing of 4-nitrophenol (4-NP) in different water sources. The structure, morphology, composition, and properties of Au-AgNPs-BP nanozyme are characterized by multiple instrumental analyses. Bimetallic salts are induced to efficiently occupy oxidative sites of BP to form highly stable Au-AgNPs-BP nanozyme and guarantee the integrity of the lamellar BP. The electrochemistry shortens the exfoliation time of the BP nanosheet and contributes to the loading efficiency of bimetallic nanoparticles on the BP nanosheet. Au-AgNPs-BP-modified screen-printed carbon electrode coupled with palm-sized smartphone-controlled wireless electrochemical analyzer as a portable wireless intelligent sensing platform was applied to the determination of 4-NP in a linear range of 0.6-10 µM with a limit of detection of 63 nM. It enables on-site determination of 4-NP content in lake water, river water, and irrigation ditch water. This work will provide a reference for an eco-friendly one-step preparation of bimetallic nanoparticle-decorated graphene-like materials as nanozymes and their smartphone-based portable sensing application outdoors.

15.
J Environ Manage ; 351: 119994, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160550

RESUMEN

The upcycling strategy is an approach that includes the conversion of waste into new higher value-added products. This study reports on a new methodology for the environmentally friendly synthesis of MFe2O4 spinel nanoferrites (M = Co, Cu, Fe and Mn) to be used as catalysts applied in the upcycling method. Thus, the reduction of 4-nitrophenol (4-NP), methyl orange, and methyl red to commercially valuable compounds was evaluated, as well as the simultaneous generation of hydrogen in a short time. Therefore, an eco-friendly synthesis was proposed, according to the 12 principles of green chemistry and sustainability. Product were obtained with satisfactory properties in terms of crystallinity, magnetic particle size, and magnetization. The materials exhibited excellent performance in catalytic reduction of 4-NP, whose reduction time decreased in the order MnFe2O4 > Fe3O4 > CoFe2O4 > CuFe2O4. This behavior highlighted the CuFe2O4 nanoferrite, which achieved 4-NP reduction in just 10 s. It proved that it could also be reused for 10 consecutive cycles while maintaining its crystalline structure. The catalyst was also effective in the reduction of azo dyes and subsequent production of substituted aromatic compounds suitable for use in chemical processes. Under the optimized conditions, the green CuFe2O4 catalyst was effective in producing hydrogen by hydrolysis. HGR and activation energy (Ea) values were of the order of 19,600 mL g-1 min-1 and 25.5 kJ mol-1, respectively. The results demonstrated the potential of this simple strategy for the environmental pollutant elimination and power generation.


Asunto(s)
Contaminantes Ambientales , Magnetismo
16.
Molecules ; 29(2)2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257274

RESUMEN

4-Nitrophenol (4-NP) is considered a priority organic pollutant with high toxicity. Many authors have been committed to developing efficient, green, and environmentally friendly technological processes to treat wastewater containing 4-NP. Here, we investigated how the addition of Ca2+ affects the catalytic degradation of 4-NP with AgInS2 when exposed to light. We synthesized AgInS2 (AIS) and Ca2+-doped AgInS2 (Ca-AIS) with varying amounts of Ca2+ using a low-temperature liquid phase method. The SEM, XRD, XPS, HRTEM, BET, PL, and UV-Vis DRS characteristics were employed to analyze the structure, morphology, and optical properties of the materials. The effects of different amounts of Ca2+ on the photocatalytic degradation of 4-NP were investigated. Under visible light illumination for a duration of 120 min, a degradation rate of 63.2% for 4-Nitrophenol (4-NP) was achieved. The results showed that doping with an appropriate amount of Ca2+ could improve the visible light catalytic activity of AIS. This work provides an idea for finding suitable cheap alkaline earth metal doping agents to replace precious metals for the improvement of photocatalytic activities.

17.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675662

RESUMEN

Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.

18.
Environ Geochem Health ; 46(5): 169, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592569

RESUMEN

Density functional theory (DFT) was employed to elucidate the mechanisms for ozonolysis reaction of p-nitrophenol (PNP) and its anion form aPNP. Thermodynamic data, coupled with Average Local Ionization Energies (ALIE) analysis, reveal that the ortho-positions of the OH/O- groups are the most favorable reaction sites. Moreover, rate constant calculations demonstrate that the O3 attack on the C2-C3 bond is the predominant process in the reaction between neutral PNP and O3. For the aPNP + O3 reaction, the most favorable pathways involve O3 attacking the C1-C2 and C6-C1 bonds. The rate constant for PNP ozonolysis positively correlates with pH, ranging from 5.47 × 108 to 2.86 × 109 M-1 s-1 in the natural aquatic environment. In addition, the formation of hydroxyl radicals in the ozonation process of PNP and the mechanisms of its synergistic reaction of PNP with ozone were investigated. Furthermore, the ozonation and hydroxylation processes involving the intermediate OH-derivatives were both thermodynamically and kinetic analyzed, which illustrate that OH radicals could promote the elimination of PNP. Finally, the toxic of PNP and the main products for fish, daphnia, green algae and rat were assessed. The findings reveal that certain intermediates possess greater toxicity than the original reactant. Consequently, the potential health risks these compounds pose to organisms warrant serious consideration.


Asunto(s)
Daphnia , Nitrofenoles , Ozono , Animales , Ratas , Ambiente , Concentración de Iones de Hidrógeno
19.
Angew Chem Int Ed Engl ; 63(27): e202405213, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637914

RESUMEN

Metal-organic framework (MOF) based heterostructures, which exhibit enhanced or unexpected functionality and properties due to synergistic effects, are typically synthesized using post-synthetic strategies. However, several reported post-synthetic strategies remain unsatisfactory, considering issues such as damage to the crystallinity of MOFs, presence of impure phases, and high time and energy consumption. In this work, we demonstrate for the first time a novel route for constructing MOF based heterostructures using radiation-induced post-synthesis, highlighting the merits of convenience, ambient conditions, large-scale production, and notable time and energy saving. Specifically, a new HKUST-1@Cu2O heterostructure was successfully synthesized by simply irradiating a methanol solution dispersed of HKUST-1 with gamma ray under ambient conditions. The copper source of Cu2O was directly derived from in situ radiation etching and reduction of the parent HKUST-1, without the use of any additional copper reagents. Significantly, the resulting HKUST-1@Cu2O heterostructure exhibits remarkable catalytic performance, with a catalytic rate constant nearly two orders of magnitude higher than that of the parent HKUST-1.

20.
Nanotechnology ; 35(9)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38035397

RESUMEN

The outstanding electrical conductivity of transition metal carbides Ti3C2Tx(MXene) makes it as an excellent electron transfer medium for fabrication of efficient catalysts. However, the poor stability of MXene may restrict its application. Herein, a novel silver nanoparticles/reduced MXene nanocomposite (AgNPs/rMXene) catalyst was prepared by using L-arginine (L-Arg) as a green reducing agent. In the AgNPs/rMXene catalyst, the silver nanoparticles (AgNPs) and reduced MXene (rMXene) acted as catalytic active species and electron transfer medium, respectively. The composite catalyst exhibited superior catalytic activity in the conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), and the conversion frequency (TOF) was high up to 1109.4 h-1. Notably, the composite catalyst also showed high stability due to the reduction of L-Arg (i.e. the repair of defect groups on MXene surface). The conversion efficiency for 4-NP reduction by AgNPs/rMXene was high up to 90% after five recycles. This present study offers a simple and green approach for the design and development of efficient MXene-based catalysts.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda