Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 62(34): e202305213, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37170958

RESUMEN

Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.

2.
ACS Appl Mater Interfaces ; 15(16): 20130-20140, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36946987

RESUMEN

Development of highly efficient and stable non-precious metal-based pH-universal catalysts for hydrogen evolution reaction (HER) at high current densities remains challenging for water electrolysis-based green hydrogen production. Herein, a simple solvothermal process was developed to synthesize a NiMo metal-organic framework (MOF), from which a carbon-armored Ni4Mo alloy of an interwoven nanosheet structure was derived with a two-stage thermal treatment, to serve as a high-performance pH-universal HER catalyst. It requires low overpotentials of 22, 48, and 98 mV to achieve a current density of -10 mA cm-2 and 192, 267, and 360 mV to deliver an ultrahigh current density of -500 mA cm-2 in alkaline, acidic, and neutral media, respectively, and exhibits remarkable operational stability at an ultrahigh initial current density of -500 mA cm-2 for over 50 h, making it promising for applications in large-scale green hydrogen production. The success can be attributed to the unique catalyst design of a carbon-armored, composition-optimized NiMo alloy of an advantageous nanostructure of interwoven nanosheets for enhanced utilization of active sites and mass transfer of electrolytes and gaseous products, made possible with a MOF-derivation fabrication approach.

3.
Sci Total Environ ; 769: 144491, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33736245

RESUMEN

The development of carbon-based materials to catalyze two-electron (2e-) pathway of oxygen reduction reaction (ORR) offers great potential for hydrogen peroxide (H2O2) production. As a class of novel two-dimensional (2D) carbon materials, graphene and its derivatives have raised increasing attention as excellent noble-metal-free catalysts in 2e ORR due to their unique structure, physical and chemical properties. This review focuses on the synthesis of main graphene family members and graphene based electrodes, as well as their applications for H2O2 generation in electrochemical systems. We describe the functions of the graphene family in electrochemical systems, such as accelerating electron transfer and increasing oxygen transfer for cathodes in electrochemical systems, aiming to reveal the enhancement mechanisms of graphene and its derivatives on H2O2 production. Furthermore, the challenges and prospects for graphene family used as catalyst for H2O2 production in the future are also proposed.

4.
Artículo en Inglés | MEDLINE | ID: mdl-33654580

RESUMEN

Development of active and earth-abundant catalysts is pivotal to render hydrazine monohydrate (N2H4·H2O) viable as a hydrogen carrier. Herein, we report the synthesis of noble-metal-free Ni-W-O-derived catalysts using a hydrothermal method in combination with reductive annealing treatment. Interestingly, the thus-prepared Ni-based catalysts exhibit remarkably distinct catalytic properties toward N2H4·H2O decomposition depending upon the annealing temperature. From a systematic phase/microstructure/chemical state characterization and the first-principles calculations, we found that the variation of the apparent catalytic properties of these Ni-based catalysts should stem from the formation of different Ni-W alloys with distinct intrinsic activity, selectivity, and distribution state. The thereby chosen Ni-W alloy nanocomposite catalyst prepared under an optimized condition showed high activity, nearly 100% selectivity, and excellent stability toward N2H4·H2O decomposition for hydrogen production. Furthermore, this noble-metal-free catalyst enables rapid hydrogen production from commercially available N2H4·H2O solution with an intriguingly high hydrogen capacity of 6.28 wt % and a satisfactory dynamic response property. These results are inspiring and momentous for promoting the use of the N2H4·H2O-based H2 source systems.

5.
ACS Appl Mater Interfaces ; 11(24): 21998-22004, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31141330

RESUMEN

A Mo-Ni alloy has been demonstrated to be a benchmark noble-metal-free catalyst for the hydrogen evolution reaction (HER) in alkaline solutions. Nevertheless, further improvement on its catalytic activity is desired to meet industrial requirements. In this study, Mo-Ni-based hollow structures (MoNi-HS), backboned by MoO3- x nanosheets and decorated with metallic MoNi4 nanoparticles, were obtained via a topological transformation process by annealing MoNi-oxide hollow precursors in a reducing atmosphere. This hollow structure allowed for a large proportion of catalytic surface exposed in the electrolyte, leading to highly efficient utilization of active sites in the catalyst. As a result, robust catalytic activity toward HER was recorded in 1 M KOH electrolyte: a low overpotential of 38 mV to deliver a current density of 10 mA/cm2 and a very small Tafel slope of 31.4 mV per dec. Such a remarkable performance of MoNi-HS even outperformed the catalytic activity of the commercial Pt/C electrocatalyst, addressing an effective strategy to promote the catalytic performance of noble-metal-free catalysts.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda