Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257489

RESUMEN

Aerosols play a crucial role in the surface radiative budget by absorbing and scattering both shortwave and longwave radiation. While most aerosol types exhibit a relatively minor longwave radiative forcing when compared to their shortwave counterparts, dust aerosols stand out for their substantial longwave radiative forcing. In this study, radiometers, a sun photometer, a microwave radiometer and the parameterization scheme for clear-sky radiation estimation were integrated to investigate the radiative properties of aerosols. During an event in Xianghe, North China Plain, from 25 April to 27 April 2018, both the composition (anthropogenic aerosol and dust) and the aerosol optical depth (AOD, ranging from 0.3 to 1.5) changed considerably. A notable shortwave aerosol radiative effect (SARE) was revealed by the integrated system (reaching its peak at -131.27 W·m-2 on 26 April 2018), which was primarily attributed to a reduction in direct irradiance caused by anthropogenic aerosols. The SARE became relatively consistent over the three days as the AODs approached similar levels. Conversely, the longwave aerosol radiative effect (LARE) on the dust days ranged from 8.94 to 32.93 W·m-2, significantly surpassing the values measured during the days of anthropogenic aerosol pollution, which ranged from 0.35 to 28.67 W·m-2, despite lower AOD values. The LARE increased with a higher AOD and a lower Ångström exponent (AE), with a lower AE having a more pronounced impact on the LARE than a higher AOD. It was estimated that, on a daily basis, the LARE will offset approximately 25% of the SARE during dust events and during periods of heavy anthropogenic pollution.

2.
Environ Geochem Health ; 46(9): 366, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162847

RESUMEN

Groundwater nitrate (NO3-) contamination is a global concern. The distribution patterns, enrichment mechanisms, and human health risks of NO3- contaminated groundwater were investigated using 144 groundwater samples collected from domestic and irrigation wells in the piedmonts of the North China Plain (Beijing and Shijiazhuang areas). The results showed that the groundwater was neutral to weakly alkaline, and 47% of the groundwater samples had NO3- concentrations exceeding 50 mg/L, a threshold proposed by world health organization to threaten infants up to 3 months. Groundwater NO3- concentrations were generally higher in the Beijing piedmont than in the Shijiazhuang piedmont and decreased with depth in both piedmonts. High-NO3- (> 50 mg/L) groundwater was distributed sporadically spatially and mainly was of Ca-Mg-HCO3 hydrochemical facies. Stable isotopes (D and 18O) compositions and NO3-/Cl- ratios indicated that NO3- accumulation in groundwater was primarily due to use of N-fertilizers under agricultural practices, and was associated with groundwater recharge sources such as septic tank leakage and re-infiltration of reclaimed irrigation water. Water quality evaluation showed that groundwater quality was highly dependent on NO3- concentration, with entropy-weighted water quality index values increasing linearly with increasing NO3- concentrations. The potential health risk of high-NO3- groundwater was the most serious for infants in both the piedmonts. Therefore, reducing NO3- input from sources and drinking water intake is recommended to minimize the human health risk.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Nitratos , Contaminantes Químicos del Agua , Agua Subterránea/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Humanos , China , Medición de Riesgo , Calidad del Agua
3.
Environ Sci Technol ; 57(6): 2625-2635, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36668684

RESUMEN

Microorganisms play crucial roles in the global iodine cycling through iodine oxidation, reduction, volatilization, and deiodination. In contrast to iodate formation in radionuclide-contaminated groundwater by the iodine-oxidizing bacteria, microbial contribution to the formation of high level of iodide in geogenic high iodine groundwater is poorly understood. In this study, our results of comparative metagenomic analyses of deep groundwater with typical high iodide concentrations in the North China Plain revealed the existence of putative dissimilatory iodate-reducing idrABP1P2 gene clusters in groundwater. Heterologous expression and characterization of an identified idrABP1P2 gene cluster confirmed its functional role in iodate reduction. Thus, microbial dissimilatory iodate reduction could contribute to iodide formation in geogenic high iodine groundwater. In addition, the identified iron-reducing, sulfur-reducing, sulfur-oxidizing, and dehalogenating bacteria in the groundwater could contribute to the release and production of iodide through the reductive dissolution of iron minerals, abiotic iodate reduction of derived ferrous iron and sulfide, and dehalogenation of organic iodine, respectively. These microbially mediated iodate reduction and organic iodine dehalogenation processes may also result in the transformation among iodine species and iodide enrichment in other geogenic iodine-rich groundwater systems worldwide.


Asunto(s)
Agua Subterránea , Yodo , Contaminantes Químicos del Agua , Yoduros/análisis , Yodatos/análisis , Yodo/análisis , Hierro , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , China , Azufre/análisis , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 57(40): 15277-15287, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37751521

RESUMEN

Bacterial sulfate reduction plays a crucial role in the mobilization of toxic substances in aquifers. However, the role of bacterial sulfate reduction on iodine mobilization in geogenic high-iodine groundwater systems has been unexplored. In this study, the enrichment of groundwater δ34SSO4 (15.56 to 69.31‰) and its significantly positive correlation with iodide and total iodine concentrations in deep groundwater samples of the North China Plain suggested that bacterial sulfate reduction participates in the mobilization of groundwater iodine. Similar significantly positive correlations were further observed between the concentrations of iodide and total iodine and the relative abundance of the dsrB gene by qPCR, as well as the composition and abundance of sulfate-reducing bacteria (SRB) predicted from 16S rRNA gene high-throughput sequencing data. Subsequent batch culture experiments by the SRB Desulfovibrio sp. B304 demonstrated that SRB could facilitate iodine mobilization through the enzyme-driven biotic and sulfide-driven abiotic reduction of iodate to iodide. In addition, the dehalogenation of organoiodine compounds by SRB and the reductive dissolution of iodine-bearing iron minerals by biogenic sulfide could liberate bound or adsorbed iodine into groundwater. The role of bacterial sulfate reduction in iodine mobilization revealed in this study provides new insights into our understanding of iodide enrichment in iodine-rich aquifers worldwide.


Asunto(s)
Arsénico , Agua Subterránea , Yodo , Contaminantes Químicos del Agua , Yodo/análisis , Yoduros/análisis , ARN Ribosómico 16S/genética , Bacterias/metabolismo , Sulfuros , Sulfatos/análisis , China , Contaminantes Químicos del Agua/análisis
5.
Environ Res ; 237(Pt 2): 117101, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689335

RESUMEN

Heavy metals (HMs) from iron/steel smelting activities pose notable risks to human health, especially to those living around industrial facilities of North China Plain, the base of China's steel production. In this study, 78 outdoor windowsill dust samples were collected around a large-scale iron/steel smelter with more than 65 years of production history in the western North China Plain. Nine HMs were analysed to comprehensively assess the health risks by integrating Monte Carlo simulation, oral bioaccessibility, and source apportionment. Results showed serious pollution with Cd, Pb, and Zn based on their geo-accumulation index values and concentrations. Four potential sources including industrial sources (49.85%), traffic sources (21.78%), natural sources (20.58%), and coal combustion (7.79%) were quantitatively identified by multivariate statistical analysis. The oral bioaccessibilities of HMs determined by the physiologically based extraction test ranged from 0.02% to 65.16%. Zn, Mn, Cd, and Pb had higher bioaccessibilities than other HMs. After incorporating oral bioavailability adjustments, noncarcinogenic and carcinogenic risks were significantly reduced, especially for adults. The mean hazard index (HI) for children and adults was below the safety threshold (1.0), whereas the mean of the total carcinogenic risk (TCR) based on HM bioaccessibilities in the gastric phase remained above the acceptable level (1.0E-06) (children: 5.20E-06; adults: 1.16E-06). Traffic sources warranted increased concern as it substantially increased TCR. Cd was identified as the priority pollution in iron/steel smelting areas. Assessing source-oriented health risks associated with oral ingestion exposure can guide the management and control of HM contamination within iron/steel smelting-affected areas.

6.
J Environ Manage ; 336: 117677, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913855

RESUMEN

Nitrous oxide (N2O) emissions from agroecosystems are a major contributor to global warming and stratospheric ozone depletion. However, knowledge concerning the hotspots and hot moments of soil N2O emissions with manure application and irrigation, as well as the underlying mechanisms remain incomplete. Here, a 3-year field experiment was conducted with the combination of fertilization (no fertilizer, F0; 100% chemical fertilizer N, Fc; 50% chemical N + 50% manure N, Fc + m; and 100% manure N, Fm) and irrigation (with irrigation, W1; and without irrigation, W0; at wheat jointing stage) for winter wheat - summer maize cropping system in the North China Plain. Results showed that irrigation did not affect annual N2O emissions of the wheat-maize system. Manure application (Fc + m and Fm) reduced annual N2O emissions by 25-51% compared with Fc, which mainly occurred during 2 weeks after fertilization combined with irrigation (or heavy rainfall). In particular, Fc + m reduced the cumulative N2O emissions during 2 weeks after winter wheat sowing and summer maize top dressing by 0.28 and 0.11 kg ha-1, respectively, compared with Fc. Meanwhile, Fm maintained the grain N yield and Fc + m increased grain N yield by 8% compared with Fc under W1. Overall, Fm maintained the annual grain N yield and lower N2O emissions compared to Fc under W0, and Fc + m increased the annual grain N yield and maintained N2O emissions compared with Fc under W1, respectively. Our results provide scientific support for using manure to minimize N2O emissions while maintaining crop N yield under optimal irrigation to support the green transition in agricultural production.


Asunto(s)
Triticum , Zea mays , Estiércol , Fertilizantes , Agricultura/métodos , Suelo , Óxido Nitroso/análisis , Grano Comestible/química , China
7.
J Environ Sci (China) ; 132: 83-97, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336612

RESUMEN

Daytime HONO photolysis is an important source of atmospheric hydroxyl radicals (OH). Knowledge of HONO formation chemistry under typical haze conditions, however, is still limited. In the Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain in 2018, we investigated the wintertime HONO formation and its atmospheric implications at a rural site Gucheng. Three different episodes based on atmospheric aerosol loading levels were classified: clean periods (CPs), moderately polluted periods (MPPs) and severely polluted periods (SPPs). Correlation analysis revealed that HONO formation via heterogeneous conversion of NO2 was more efficient on aerosol surfaces than on ground, highlighting the important role of aerosols in promoting HONO formation. Daytime HONO budget analysis indicated a large missing source (with an average production rate of 0.66 ± 0.26, 0.97 ± 0.47 and 1.45 ± 0.55 ppbV/hr for CPs, MPPs and SPPs, respectively), which strongly correlated with photo-enhanced reactions (NO2 heterogeneous reaction and particulate nitrate photolysis). Average OH formation derived from HONO photolysis reached up to (0.92 ± 0.71), (1.75 ± 1.26) and (1.82 ± 1.47) ppbV/hr in CPs, MPPs and SPPs respectively, much higher than that from O3 photolysis (i.e., (0.004 ± 0.004), (0.006 ± 0.007) and (0.0035 ± 0.0034) ppbV/hr). Such high OH production rates could markedly regulate the atmospheric oxidation capacity and hence promote the formation of secondary aerosols and pollutants.


Asunto(s)
Contaminantes Ambientales , Ácido Nitroso , Ácido Nitroso/análisis , Contaminantes Ambientales/análisis , Dióxido de Nitrógeno/análisis , China , Aerosoles/análisis
8.
Environ Res ; 204(Pt C): 112310, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34762928

RESUMEN

90 groundwater samples and 14 surface water samples were collected in wet season (summer) and dry season (winter) in the North China Plain (NCP), and analyzed for 11 organophosphorus pesticides (OPPs). The results showed that the main types of OPPs in surface water and groundwater were dimethoate, dichlorvos, methyl-parathion, malathion in both summer and winter. The OPP concentrations in groundwater and surface water were higher in summer than in winter. In the vertical direction, the distribution characteristics of different four types of groundwater sampling points are different. In the horizontal direction: farmland adjacent to a river (FAR) > central farmland (CF) > nonfarm area adjacent to a river (NFAR) > central nonfarm area (CNF). The OPPs concentrations in surface water adjacent to farmland were higher than that in surface water adjacent to nonfarm area. The main factors influencing the distribution of OPPs in the groundwater and surface water were the interaction process between them, the groundwater flow field and the OPPs used in agricultural activities. The ecological risk of OPPs to surface water was greater in summer than in winter. Water Flea was at medium risk, and malathion had the greatest influence on Water Flea in both summer and winter. The non-carcinogenic and carcinogenic risks of the four main OPPs in surface water were higher than in groundwater, and were higher in summer than in winter, but they would not lead to adverse health effects on local residents.


Asunto(s)
Agua Subterránea , Plaguicidas , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Compuestos Organofosforados , Plaguicidas/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
9.
Environ Res ; 211: 113093, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35292245

RESUMEN

Hydroxymethanesulfonate (HMS), a key marker species of aqueous-phase processing, plays a significant role in sulfur budget in atmosphere. Here we have a comprehensive characterization of HMS at urban and rural sites in North China Plain (NCP) by using the real-time measurements from a high-resolution aerosol mass spectrometer (AMS) and a single-particle AMS together with offline filter analysis. Our results showed much higher winter concentration of HMS at the rural site (average±1σ: 2.58 ± 2.56 µg m-3) than that (1.70 ± 2.68 µg m-3) in Beijing due to the more frequent fog events, low particle acidity and high concentration of precursors. The HMS on average contributed 6.3% and 5.2% to organic aerosol (OA), and 16% and 12% to the total particulate sulfur, at the rural and urban sites, respectively. HMS was highly correlated with aqueous-phase secondary OA and sulfate, and its contribution to the total particulate sulfur increased significantly as a function of relative humidity demonstrating the effective HMS production from aqueous-phase processing. Single-particle analysis showed that HMS-containing particles were mainly mixed with amine-related compounds. In addition, we found that organosulfur compounds (OS) estimated from sulfur-containing fragments of AMS correlated well with HMS at both urban and rural sites. While OS at the rural site was dominated by HMS, other types of OS were also important in urban area. The high HMS also affected the estimation of particle acidity using the AMS measured and predicted ammonium, particularly during severe haze episodes. Overall, our results demonstrated the importance of HMS in winter in NCP, and it could be more important in total particulate sulfur budget as the continuous decrease in sulfate in the future.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Polvo/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Sulfatos , Azufre/análisis , Agua/análisis
10.
Environ Chem Lett ; 20(1): 59-69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34744548

RESUMEN

Despite large decreases of emissions of air pollution during the coronavirus disease 2019 (COVID-19) lockdown in 2020, an unexpected regional severe haze has still occurred over the North China Plain. To clarify the origin of this pollution, we studied air concentrations of fine particulate matter (PM2.5), NO2, O3, PM10, SO2, and CO in Beijing, Hengshui and Baoding during the lockdown period from January 24 to 29, 2020. Variations of PM2.5 composition in inorganic ions, elemental carbon and organic matter were also investigated. The HYSPLIT model was used to calculate backward trajectories and concentration weighted trajectories. Results of the cluster trajectory analysis and model simulations show that the severe haze was caused mainly by the emissions of northeastern non-stopping industries located in Inner Mongolia, Liaoning, Hebei, and Tianjin. In Beijing, Hengshui and Baoding, the mixing layer heights were about 30% lower and the maximum relative humidity was 83% higher than the annual averages, and the average wind speeds were lower than 1.5 m s-1. The concentrations of NO3 -, SO4 2-, NH4 +, organics and K+ were the main components of PM2.5 in Beijing and Hengshui, while organics, K+, NO3 -, SO4 2-, and NH4 + were the main components of PM2.5 in Baoding. Contrary to previous reports suggesting a southerly transport of air pollution, we found that northeast transport caused the haze formation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10311-021-01314-8.

11.
J Environ Sci (China) ; 113: 190-203, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34963528

RESUMEN

Organic acids are important contributors to the acidity of atmospheric precipitation, but their existence in the Chinese atmosphere is largely unclear. In this study, twelve atmospheric gaseous organic acids, including C1-C9 alkanoic acids, methacrylic acid, pyruvic acid, and benzoic acid, were observed in the suburb of Wangdu, Hebei Province, a typical rural site in the northern China plain from 16th December, 2018 to 22nd January, 2019, using a Vocus® Proton-Transfer-Reaction time-of-flight mass spectrometer (Vocus PTR-ToF). The quantification of C2-C4 alkanoic acids by the Vocus PTR-ToF was calibrated according to the titration of a NaOH solution by C2-C4 alkanoic acids from home-made permeation sources, and the other organic acids except for formic acid were quantified based on the kcap-sensitivity linearity in the Vocus PTR-ToF, whereas formic acid was not quantified because our instrument setting led to a significant underestimation in its concentration. The average total concentration of eleven gaseous organic acids was 6.96 ± 5.20 ppbv (parts per billion by volume). The average concentration of acetic acid was the highest (3.86 ± 3.00 ppbv), followed by propanoic acid, butyric acid, and methacrylic acid. Domestic straw burning was likely the dominant source of the observed gaseous organic acids according to the good correlations between acetonitrile and organic acids and between particulate K+ and organic acids, and traffic emissions could also have contributed. During episodes with continuously high concentrations of organic acids, short-distance transport dominated in Wangdu according to the backward trajectory analysis. Baoding, Shijiazhuang, and Hengshui areas were the main source areas based on potential source contribution function and concentration weighing track analysis.


Asunto(s)
Contaminantes Atmosféricos , Gases , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Compuestos Orgánicos/análisis
12.
J Environ Sci (China) ; 114: 98-114, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459518

RESUMEN

The characteristics of wintertime volatile organic compounds (VOCs) in the North China Plain (NCP) region are complicated and remain obscure. VOC measurements were conducted by a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at a rural site in the NCP from November to December 2018. Uncalibrated ions measured by PTR-ToF-MS were quantified and the overall VOC compositions were investigated by combining the measurements of PTR-ToF-MS and gas chromatography-mass spectrometer/flame ionization detector (GC-MS/FID). The measurement showed that although atmospheric VOCs concentrations are often dominated by primary emissions, the secondary formation of oxygenated VOCs (OVOCs) is non-negligible in the wintertime, i.e., OVOCs accounts for 42% ± 7% in the total VOCs (151.3 ± 75.6 ppbV). We demonstrated that PTR-MS measurements for isoprene are substantially overestimated due to the interferences of cycloalkanes. The chemical changes of organic carbon in a pollution accumulation period were investigated, which suggests an essential role of fragmentation reactions for large, chemically reduced compounds during the heavy-polluted stage in wintertime pollution. The changes of emission ratios of VOCs between winter 2011 and winter 2018 in the NCP support the positive effect of "coal to gas" strategies in curbing air pollutants. The high abundances of some key species (e.g. oxygenated aromatics) indicate the strong emissions of coal combustion in wintertime of NCP. The ratio of naphthalene to C8 aromatics was proposed as a potential indicator of the influence of coal combustion on VOCs.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Carbón Mineral , Monitoreo del Ambiente , Protones , Tiempo de Reacción , Compuestos Orgánicos Volátiles/análisis
13.
Atmos Environ (1994) ; 246: 118103, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33250658

RESUMEN

China's lockdown to control COVID-19 brought significant declines in air pollutant emissions, but haze was still a serious problem in North China Plain (NCP) during late-January to mid-February of 2020. We seek the potential causes for the poor air quality in NCP combining satellite data, ground measurements and model analyses. Efforts to constrain COVID-19 result in a drop-off of primary gaseous pollutants, e.g., -42.4% for surface nitrogen dioxide (NO2) and -38.9% for tropospheric NO2 column, but fine particulate matter (PM25) still remains high and ozone (O3) even increases sharply (+84.1%). Stagnant weather during COVID-19 outbreak, e.g., persistent low wind speed, frequent temperature inversion and wind convergence, is one of the major drivers for the poor air quality in NCP. The surface PM2.5 levels vary between -12.9~+15.1% in NCP driven by the varying climate conditions between the years 2000 and 2020. Besides, the persistent PM2.5 pollution might be maintained by the still intensive industrial and residential emissions (primary PM2.5), and increased atmospheric oxidants (+26.1% for ozone and +29.4% for hydroxyl radical) in response to the NO2 decline (secondary PM2.5). Further understanding the nonlinear response between atmospheric secondary aerosols and NOx emissions is meaningful to cope with the emerging air pollution problems in China.

14.
Pestic Biochem Physiol ; 172: 104748, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33518041

RESUMEN

Flixweed (Descurainia sophia L.) is widely distributed in winter wheat (Triticum aestivum L.) fields in the North China Plain and has evolved resistance to herbicides, including the acetolactate synthase (ALS) inhibitor florasulam. However, the florasulam resistance status of flixweed in the North China Plain is poorly understood, which hinders the integrated management of this weed in winter wheat production systems. Thus, 45 flixweed populations were collected in wheat fields in these areas, and their sensitivity to florasulam and ALS-inhibitor-resistant mutation diversity were assessed. Meanwhile, alternative herbicides/herbicide mixtures for the control of florasulam-resistant flixweed were screened and evaluated under greenhouse and field conditions. Of the populations, 30 showed florasulam resistance (RRR and RR), 9 had a high risk of evolving florasulam resistance (R?) and 6 were susceptible. These populations had 5.3 to 345.1-fold resistance to florasulam, and 4 ALS resistance mutations (P197H, P197S, P197T and W574L) were observed. The subsequent herbicide sensitivity assay showed that the SD-06 population (with ALS1 P197T and ALS2 W574L mutations) exhibited cross-resistance to all ALS inhibitors tested, but was sensitive to MCPA-Na, fluroxypyr, carfentrazone-ethyl and bipyrazone. Meanwhile, the other HN-07 population with non-target-site resistance (NTSR) also showed resistance to all tested ALS inhibitors, and it was "R?" to MCPA-Na while sensitive to fluroxypyr, carfentrazone-ethyl and bipyrazone. The field experiments were conducted at the research farm where the SD-06 population was collected, and the results suggested that florasulam at 3.75-4.5 g ai ha-1 had little efficacy (0.6-12.1%), whereas MCPA-Na + carfentrazone-ethyl (87.1-91.2%) and bipyrazone+fluroxypyr (90.1-97.8%) controlled the resistant flixweed.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Acetolactato Sintasa/genética , Arilsulfonatos/toxicidad , China , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Pirimidinas , Sulfonamidas
15.
J Environ Manage ; 289: 112492, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33819650

RESUMEN

Urbanization is an inevitable trend associated with social development that occurs preferentially in plain areas. Ecosystem services (ES) refer to the various benefits that human beings obtain from ecosystems. Competing priorities of economic development and ecological protection lead to conflicts in land use under conditions of urbanization, the root cause of which is an imbalance in the ES supply and demand. Whereas existing studies have mainly focused on the decline of ES supply capacities, an exploration of the extent to which the supply and demand of ES are matched and of their changing trends would be instructive and have practical implications. In this study, we examined changes in the temporal and spatial characteristics of the relationship between ES supply and demand in the Baiyangdian Basin in the North China Plain. We found that ES supply and demand were spatially distinctive. ES supply areas were concentrated in the western mountainous region, whereas ES demand areas were predominantly located in the eastern plain area. The main sources of ES surplus in the study area were woodland and grassland in mountainous areas, comprising 12% of the study region. Strict protection on these lands during the period 1980-2015 ensured a consistently high level of ES supply. In recent years, urbanization has been a major driver of increasing ES demand and decreasing ES surplus and is projected to accentuate the trend of declining ES surplus in the future. However, current policies remain focused on the protection of forests and grassland that predominate in mountainous areas, where urban expansion poses a lower threat compared with plain areas. We therefore recommend a policy emphasis on sustainable urban planning to mitigate ES degradation.


Asunto(s)
Ecosistema , Urbanización , China , Conservación de los Recursos Naturales , Bosques , Humanos
16.
Sensors (Basel) ; 21(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374144

RESUMEN

The launch of GRACE satellites has provided a new avenue for studying the terrestrial water storage anomalies (TWSA) with unprecedented accuracy. However, the coarse spatial resolution greatly limits its application in hydrology researches on local scales. To overcome this limitation, this study develops a machine learning-based fusion model to obtain high-resolution (0.25°) groundwater level anomalies (GWLA) by integrating GRACE observations in the North China Plain. Specifically, the fusion model consists of three modules, namely the downscaling module, the data fusion module, and the prediction module, respectively. In terms of the downscaling module, the GRACE-Noah model outperforms traditional data-driven models (multiple linear regression and gradient boosting decision tree (GBDT)) with the correlation coefficient (CC) values from 0.24 to 0.78. With respect to the data fusion module, the groundwater level from 12 monitoring wells is incorporated with climate variables (precipitation, runoff, and evapotranspiration) using the GBDT algorithm, achieving satisfactory performance (mean values: CC: 0.97, RMSE: 1.10 m, and MAE: 0.87 m). By merging the downscaled TWSA and fused groundwater level based on the GBDT algorithm, the prediction module can predict the water level in specified pixels. The predicted groundwater level is validated against 6 in-situ groundwater level data sets in the study area. Compare to the downscaling module, there is a significant improvement in terms of CC metrics, on average, from 0.43 to 0.71. This study provides a feasible and accurate fusion model for downscaling GRACE observations and predicting groundwater level with improved accuracy.

17.
Environ Monit Assess ; 192(2): 116, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31942665

RESUMEN

Serious air pollution motivates governments to take control measures. However, specific emission reduction effects of various temporary emission reduction policies are difficult to evaluate. During the Asia-Pacific Economic Cooperation meeting in Beijing in 2014, the Chinese government implemented a number of emergency emission control measures in the Beijing-Tianjin-Hebei area to maintain the air quality in this region. This gave us an opportunity to quantify the effectiveness of the emission reduction measures separately and identify the efficient policy combinations for the reduction of major pollutants. In this study, we evaluated the impacts of specific emission reduction measures on the concentrations of two major air pollutants (PM2.5 and O3) under eight policy scenarios using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Comparing these scenarios, we found that the control policies against the primary PM2.5 emission achieved the most significant results. Meanwhile, all the emission control measures raised the ozone concentrations in different degrees, which might be partly attributed to the changes of PM2.5 concentration and the ratio of NOx and VOCs caused by the emission control measures. Our results suggest that, in VOC-sensitive areas like Beijing, emergency control measures focusing on primary PM2.5 emission could lead to significant PM2.5 reduction and relatively small ozone increase, and should be considered as a priority policy. Joint emission control at the regional scale is also important especially under unfavorable meteorological conditions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Política Ambiental , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Asia , Beijing , China , Monitoreo del Ambiente , Ozono/análisis , Material Particulado/análisis
18.
J Environ Sci (China) ; 95: 240-247, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653186

RESUMEN

Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are typical persistent organic pollutants (POPs), which have high toxicity, bioaccumulation and long-distance transfer capability. Daily variation, sources of PCBs and OCPs in PM2.5 are rarely explored in polluted rural area. Here, the sources and health risks of the PCBs and OCPs were evaluated for 48 PM2.5 samples collected in winter 2017 in Wangdu, a heavy polluted rural area in the North China Plain. The average diurnal and nocturnal concentrations of Σ18PCBs and Σ15OCPs were 1.74-24.37 and 1.77-100.49, 11.67-408.81 and 16.89-865.60 pg/m3, respectively. Hexa-CBs and penta-CBs accounted for higher proportions (29.0% and 33.6%) of clean and polluted samples, respectively. Hexachlorobenzene (HCB) was the dominant contributor to OCPs with an average concentration of 116.17 pg/m3. Hexachlorocyclohexane (ΣHCHs) and dichlorodiphenyltrichloroethane (ΣDDTs) were the other two main classes in OCPs with the average concentrations of 4.33 and 15.89 pg/m3, respectively. ß-HCH and p,p'-DDE were the main degradation products of HCHs and DDTs, respectively. The principal component analysis and characteristic ratio method indicated both waste incineration and industrial activities were the main sources of PCBs, contributing 76.8% and 12.7%, respectively. The loadings of OCPs were attributed to their application characteristics and the characteristic ratio method reflected a current or past use of OCPs. Health risk assessment showed that the respiratory exposure quantity of doxin-like PCBs (DL-PCBs) and the lifetime cancer risk from airborne OCPs exposure was negligible, while the other exposure modes may pose a risk to human bodies.


Asunto(s)
Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis , China , Monitoreo del Ambiente , Humanos , Material Particulado
19.
J Environ Sci (China) ; 89: 136-144, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31892386

RESUMEN

Qualitative and quantitative analyses of derivatized phenols in Beijing and in Xinglong were performed from 2016 to 2017 using gas chromatography-mass spectrometry. The results showed substantially more severe pollution in Beijing. Of the 14 compounds detected, the total average concentration was 100 ng/m3 in Beijing, compared with 11.6 ng/m3 in Xinglong. More specifically, concentration of nitro-aromatic compounds (NACs) (81.9 ng/m3 in Beijing and 8.49 ng/m3 in Xinglong) was the highest, followed by aromatic acids (14.6 ng/m3 in Beijing and 2.42 ng/m3 in Xinglong) and aromatic aldehydes (3.62 ng/m3 in Beijing and 0.681 ng/m3 in Xinglong). In terms of seasonal variation, the highest concentrations were found for 4-nitrocatechol in winter in Beijing (79.1 ± 63.9 ng/m3) and 4-nitrophenol in winter in Xinglong (9.72 ± 8.94 ng/m3). The analysis also revealed diurnal variations across different seasons. Most compounds presented higher concentrations at night in winter because of the decreased boundary layer height and increased heating intensity. While some presented higher levels during the day, which attributed to the photo-oxidation process for summer and more biomass burning activities for autumn. Higher concentrations appeared in winter and autumn than in spring and summer, which resulted from more coal combustions and adverse meteorological conditions. The significant correlations among NACs indicated similar sources of pollution. Higher correlations presented within each subgroup than those between the subgroups. Good correlations between levoglucosan and nitrophenols, nitrocatechols, nitrosalicylic acids, with correlation coefficients (r) of 0.66, 0.69 and 0.69, respectively, indicating an important role of biomass burning among primary sources.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado , Fenoles/análisis , Beijing , China , Estaciones del Año
20.
J Environ Sci (China) ; 71: 249-260, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30195683

RESUMEN

Peroxyacetyl nitrate (PAN), as a major secondary pollutant, has gained increasing worldwide attentions, but relevant studies in China are still quite limited. During winter of 2015 to summer of 2016, the ambient levels of PAN were measured continuously by an automatic gas chromatograph equipped with an electron capture detector (GC-ECD) analyzer at an urban site in Jinan (China), with related parameters including concentrations of O3, NO, NO2, PM2.5, HONO, the photolysis rate constant of NO2 and meteorological factors observed concurrently. The mean and maximum values of PAN concentration were (1.89 ±â€¯1.42) and 9.61 ppbv respectively in winter, and (2.54 ±â€¯1.44) and 13.47 ppbv respectively in summer. Unusually high levels of PAN were observed during severe haze episodes in winter, and the formation mechanisms of them were emphatically discussed. Study showed that high levels of PAN in winter were mainly caused by local accumulation and strong photochemical reactions during haze episodes, while mass transport played only a minor role. Accelerated photochemical reactions (compared to winter days without haze) during haze episodes were deduced by the higher concentrations but shorter lifetimes of PAN, which was further supported by the sufficient solar radiation in the photolysis band along with the high concentrations of precursors (NO2, VOCs) and HONO during haze episodes. In addition, significant PAN accumulation during calm weather of haze episodes was verified by meteorological data.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Ácido Peracético/análogos & derivados , China , Conceptos Meteorológicos , Material Particulado/análisis , Ácido Peracético/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda